
Images Don’t Lie: Duplicate Crowdtesting Reports Detection
With Screenshot Information

Junjie Wang1,3, Mingyang Li1,3, Song Wang4, Tim Menzies5, Qing Wang1,2,3,⇤

1Laboratory for Internet Software Technologies, 2State Key Laboratory of Computer Science,
Institute of Software Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China, ⇤Corresponding author
4Electrical and Computer Engineering, University of Waterloo, Canada

5Department of Computer Science, North Carolina State University, Raleigh, NC, USA
Email: {wangjunjie,limingyang,wq}@itechs.iscas.ac.cn, song.wang@uwaterloo.ca, tim@menzies.us

Abstract

Context: Crowdtesting is e↵ective especially when it comes to the feedback on GUI systems, or subjective opinions about
features. Despite of this, we find crowdtesting reports are highly duplicated, i.e., 82% of them are duplicates of others. Most of
the existing approaches mainly adopted textual information for duplicate detection, and su↵ered from low accuracy because of the
lexical gap. Our observation on real industrial crowdtesting data found that when dealing with crowdtesting reports of GUI systems,
the reports would be accompanied with images, i.e., the screenshots of the tested app. We assume the screenshot to be valuable for
duplicate crowdtesting report detection because it reflects the real context of the bug and is not a↵ected by the variety of natural
languages.

Objective: We aim at automatically detecting duplicate crowdtesting reports that could help reduce triaging e↵ort.
Method: In this work, we propose SETU which combines information from the ScrEenshots and the TextUal descriptions to

detect duplicate crowdtesting reports. We extract four types of features to characterize the screenshots (i.e., image structure feature
and image color feature) and the textual descriptions (i.e., TF-IDF feature and word embedding feature), and design a hierarchical
algorithm to detect duplicates based on the four similarity scores derived from the four features respectively.

Results: We investigate the e↵ectiveness of SETU on 12 projects with 3,689 reports from one of the Chinese largest crowdtesting
platforms. Results show that recall@1 achieved by SETU is 0.44 to 0.79, recall@5 is 0.66 to 0.92, and MAP is 0.21 to 0.58 across
all experimental projects. Furthermore, SETU can outperform existing state-of-the-art approaches significantly and substantially.

Conclusion: Through combining the screenshots and textual descriptions, our proposed SETU can improve the duplicate
crowdtesting reports detection performance.

Keywords: Crowdtesting, Duplicate report, Similarity detection

1. Introduction

Crowdtesting is an emerging trend in software testing which
accelerates testing processes by attracting online crowd workers
to accomplish various types of testing tasks [35, 12, 37, 13, 36,
15]. It entrusts testing tasks to crowd workers whose diverse
testing environments/platforms, background, and skill sets
could significantly contribute to more reliable, cost-e↵ective,
and e�cient testing results.

The benefit of crowdtesting must be carefully assessed with
respect to the cost of the technique. At first place, crowdtesting
is a scalable testing method under which large software systems
can be tested with appropriate results. This is particular true
when the testing is related with the feedback on GUI systems,
or subjective opinions about di↵erent features.

One aspect of crowdtesting which is not received enough at-
tention in prior work is the confusion factors in crowdtesting
results. Review 2-b Our observation on real industrial data
shows that an average of 82% crowdtesting reports are duplicate

(see Table 3 for details), which suggests much of the crowdtest-
ing work can be optimized. A significant problem with such a
large number of duplicate reports is that the subsequent anal-
ysis by software testers becomes extremely complicated. For
example, we find that merely working through 500 crowdtest-
ing reports to find the duplicate ones takes almost the whole
working day of a tester. This paper mostly removes that e↵ort
by a novel method for detection of duplicate reports.

The issue of duplicate reports has been studied in terms of
textual descriptions [28, 38, 18, 30, 31, 29, 26, 33, 3, 44, 24, 4,
1, 17, 27, 42] (see details in Section 3). However, in practice,
it is common that di↵erent people might use di↵erent termi-
nologies, or write about di↵erent phenomena to describe the
same issue [38, 24, 33, 42], which makes the descriptions often
confusing. Because of this, most existing approaches for dupli-
cate report detection su↵er from low accuracy. However, when
dealing with crowdtesting reports of GUI systems, besides the
textual descriptions, often the feedback is in the form of im-
ages. Our observation on real industrial crowdtesting data re-

Preprint submitted to Information and Software Technology January 18, 2019

*Manuscript
Click here to view linked References

veals that an average of 94% crowdtesting reports are accompa-
nied with an image, i.e., screenshot of the app. We suppose this
is another valuable source of information for detecting dupli-
cate crowdtesting reports. Compared with the textual descrip-
tion, a screenshot can reflect the real context of the bug and is
not a↵ected by the variety of natural languages.

In this paper, we propose SETU which combines informa-
tion from the ScrEenshots and the TextUal descriptions to de-
tect duplicate crowdtesting reports. We first extract two types
of features from screenshots (i.e., image structure feature and
image color feature), and two types of features from textual de-
scriptions (i.e., TF-IDF feature and word embedding feature).
We then obtain the screenshot similarity and textual similarity
through computing the similarity scores based on the four types
of features. To decide the duplicates of a query report, SETU
adopts a hierarchical algorithm. Specifically, if the screen-
shot similarity between the query report and candidate report
is higher than a threshold, we treat the candidate report as the
first class and rank all reports in the first class by their textual
similarity. Otherwise, we treat it as the second class (follow
behind the first class) and rank all reports in this class by their
combined textual similarity and screenshot similarity. Finally,
we return a list of candidate duplicate reports of the query re-
port, with the ranked reports of the first class followed by the
ranked reports of the second class.

We experimentally evaluate the e↵ectiveness of SETU on 12
projects with 3,689 crowdtesting reports from one of the Chi-
nese largest crowdtesting platforms. Results show that the re-
call@1 achieved by SETU is 0.44 to 0.79, recall@5 is 0.66 to
0.92, and MAP is 0.21 to 0.58 across all experimental projects.

Review 1-a This denotes, for a new-coming crowdtesting re-
port, in 44% - 79% of the time, SETU can correctly identify its
duplicate reports with only a single recommendation. And in
66% - 92% of the time, SETU can correctly identify its dupli-
cate reports with five recommendations. These results signif-
icantly and substantially outperform three state-of-the-art and
typical duplicate detection approaches. In addition, we also ex-
perimentally evaluate the necessity of screenshots and textual
descriptions in duplicate detection, as well as the relative e↵ect
of the four types of features.

This paper makes the following contributions:

• We show that the screenshots are valuable in duplicate
crowdtesting reports detection and we further demonstrate
the need to use both the screenshots and the textual de-
scriptions in detecting duplicate crowdtesting reports.

• We propose a novel approach (SETU) for duplicate
crowdtesting report detection, which combines the infor-
mation from screenshots and textual descriptions hierar-
chically.

• We evaluate the e↵ectiveness of SETU on 12 projects from
one of the Chinese largest crowdtesting platforms, and re-
sults are promising.

The rest of this paper is organized as follows: Section 2 de-
scribes the background and motivation of this study, while Sec-
tion 3 surveys related work. Section 4 presents our proposed

approach of duplicate detection. Section 5 and 6 show the ex-
perimental setup and evaluation results respectively. Section 7
provides a detailed discussion and threats to validity. Finally,
we summarize this paper in Section 8.

2. Background and Motivation

2.1. Background
In this section, we present a brief background of crowdtest-

ing to help better understand the challenges we meet in real
industrial crowdtesting practice.

Figure 1: Procedure of crowdtesting

Our experiment is conducted with Baidu CrowdTest
crowdtesting platform1. As shown in Figure 1, in general,
the task requester2 prepares the software under test and testing
tasks, and distributes them on the crowdtesting platform. Then,
the crowd workers can sign in to conduct the tasks and are re-
quired to submit the crowdtesting reports, i.e., to describe the
process and result of the testing task s/he carried on, which in-
clude the input, operation steps, result description, and screen-
shot. Table 1 demonstrates an example of the crowdtesting re-
port3.

In order to attract more workers, testing tasks are often fi-
nancially compensated. Under this context, workers can submit
hundreds of reports for a crowdtesting task. This platform de-
livers approximately 100 projects per month, and receives more
than 1,000 test reports per day on average. Review 1-b An ob-
servation on our experimental dataset shows that an average of
82% crowdtesting reports are duplicates of other reports (see
Table 3 for details).

Currently in this platform, the testers need to manually in-
spect these crowdtesting reports to identify the duplicate ones.
However, inspecting 500 reports manually could take almost
the whole working day of a tester. Obviously, such process is
time-consuming and low-e�cient.

Review 1-c Most of the existing approaches mainly adopted
textual information for duplicate detection, and su↵ered from

1Baidu (baidu.com) is the largest Chinese search service provider. Its
crowdtesting platform (test.baidu.com) is also one of the largest crowdtesting
platforms in China.

2The task requesters are usually the testers in practice, so we also call them
as the testers in the following paper.

3Note that, since all the reports are written in Chinese in our experiment
projects, we translate them into English to facilitate understanding.

2

Table 1: An example of crowdtesting report

Attribute Description: example
Environment Phone type: Samsung SN9009 Operating system: Android

4.4.2 ROM information: KOT49H.N9009 Network environ-
ment: WIFI

Crowd worker Id: 123456 Location: Beijing Haidian District
Testing task Id: 01 Name: Incognito mode
Input and opera-

tion steps

Input “sina.com.cn” in the browser, then click the first news.
Select “Setting” and then set “Incognito Mode”. Click the
second news in the website. Select “Setting” and then select
“History”.

Result descrip-

tion

“Incognito Mode” does not work as expected. The first news,
which should be recorded, does not appear in “History”.

Screenshot

Assessment Passed or failed given by crowd worker: Failed

low accuracy because of the lexical gap in natural language.
This is especially true for crowdtesting because the reports are
written by crowdworkers who are usually unprofessional in
software testing. Therefore, we propose to include screenshots
in duplicate detection to help address the issue. Section 2.2 will
provide two motivating examples to show how textual descrip-
tions lead to confusing understanding, and how screenshots and
textual descriptions can complement each other in duplicate de-
tection.

2.2. Motivation
In this section, we present two examples from Baidu

CrowdTest crowdtesting platform to motivate the need of us-
ing both the screenshots and the textual descriptions in dupli-
cate crowdtesting report detection. These examples draw from a
sport application, i.e., JIAJIA Sport. It can automatically record
and analyze users’ sport-related information such as running,
rope skipping, etc. To better test this application, its testers dis-
tribute the testing task on Baidu CrowdTest crowdtesting plat-
form, and 462 crowdtesting reports are submitted by the crowd
workers. By analyzing these crowdtesting reports, we find the
following two motivating examples.

2.2.1. Motivating Example 1: Descriptions Could be Confus-
ing

Crowdtesting reports Rope-145 and Rope-270 are about the
sharing function. Their descriptions are as follows:

Rope-145: I press the qzone4 sharing button in the bottom
and want to share my rope skipping record, but nothing hap-
pens.

Rope-270: I press the sharing button and want to share my
rope skipping record to qzone, but nothing happens except a
failure notice.

Both descriptions contain such words as “sharing button”,
“rope skipping record”, and “qzone”. Using traditional dupli-
cate detection approaches, these two reports would be identified
as duplicates with a high probability. However, if the screen-
shot information (see Figure 2) is considered, they can be easily
determined as non-duplicates, which is the ground truth. The
screenshot of Rope-145 is about the billboard of rope skipping
record, and the crowdtesting report reveals a bug about sharing

4qzone is a popular social networking website in China.

(a) Rope-145 (b) Rope-270

Figure 2: Motivating example 1

the ranking of rope skipping record. For the screenshot of Rope-
270, it demonstrates the detail page of rope skipping record,
and the report reveals a bug about sharing the detailed record.
In this sense, the screenshot provides the context-related infor-
mation and can help better detect duplicate reports. One may
argue that the above information should be in the operation
steps (see Table 1) submitted by the crowd workers. However,
the crowd workers are far from professional testers, and in our
datasets only few reports contain the detailed and correct oper-
ation steps.

Finding 1: The textual descriptions of crowdtesting reports
may easily lead to confusing understanding. With the help
of context-related information provided by screenshots, the
duplicate crowdtesting reports can be detected more accu-
rately.

2.2.2. Motivating Example 2: Screenshots Usually Lack De-
tails

In this example, crowdtesting reports Rope-62 and Rope-217
have similar screenshots (see Figure 3). If the duplicate de-
tection is only based on the screenshot information, these two
reports would be determined as duplicates with a high proba-
bility. However, the ground truth is just the opposite. Their
descriptions are as follows:

Rope-62: I walked for 10 minutes, but the steps only in-
creased by 10. An hour later, i just sat on my chair, but the
steps increased sharply.

Rope-217: In the detail page, there is indeed step record for
today, but there is no step record for this week.

From the descriptions, we can easily observe that these two
crowdtesting reports involve two di↵erent bugs, although under
the same function which is denoted by the two highly similar
screenshots. In this sense, a screenshot merely demonstrates
the context-related information about a crowdtesting report. We
still need to refer to the textual descriptions to finally determine
whether they are duplicates.

3

Table 2: Summary of duplicate bug report detection researches

Article Basic idea Experiment

projects

Performance BaselinesPublication

year

[28] Detection of Duplicate Defect Re-
ports Using Natural Language Process-
ing

Use natural language processing technique (i.e., tokeniza-
tion, stemming, stop words removal, vector space represen-
tation) to compute the similarity

Sony Erics-
son Mobile
communi-
cations

Recal@5 = 30%, Re-
call@10 = 38%, Re-
call@15 = 42%

N/A ICSE’2007

[38] An Approach to Detecting Dupli-
cate Bug Reports using Natural Lan-
guage and Execution Information

Use both natural language information and execution in-
formation to compute the similarity, and combine the two
similarity values based on heuristics

Firefox Recall@1 = 67%, Re-
call@10 = 93%

[28] ICSE’2008

[18] Automated Duplicate Detection for
Bug Tracking Systems

Build a machine learning classifier which combines the sur-
face features of the report, textual similarity metrics, and
graph clustering algorithms

Mozilla Recall@1 = 25%,
Recall@5 = 38%,
Recall@10 = 45%

[28] DSN’2008

[30] A Discriminative Model Approach
for Accurate Duplicate Bug Report Re-
trieval

Extract 54 features to measure the textual similarity of a
pair of reports based on the term weighting, then build a
machine learning classifier on these features

Firefox,
Eclipse,
OpenO�ce

Recall@1 = 32% - 38%,
Recall@5 = 48% - 52%,
Recall@10 = 56% - 61%

[28],
[38],
[18]

ICSE’2010

[31] Detecting Duplicate Bug Report Us-
ing Character N-Gram-Based Features

Compute the semantic and lexical similarity based on the
character-level n-gram model

Eclipse Recall@10 = 40%, Re-
call@20 = 48%, Re-
call@50 = 61%

N/A APSEC’2010

[29] Towards More Accurate Retrieval of
Duplicate Bug Reports

Use both the textual information and other fields informa-
tion (e.g., product, component, versions) to measure the
similarity, extend BM25F (an e↵ective similarity formula)
to handle lengthy structured report by considering weights
of terms

Eclipse,
OpenO�ce,
Mozilla

Recall@1 = 37% - 42%,
Recall@5 = 58% - 62%,
Recall@10 = 63% - 69%,
MAP = 45% - 53%

[30],
[31]

ASE’2011

[26] Detecting Bug Duplicate Reports
through Local Reference

Find the reports whose submit time is within the sliding
time window, then rank these reports based on TF-IDF

Firefox Recall@1 = 20%,
Recall@5 = 36%,
Recall@10 = 44%

N/A PROMISE’2011

[33] Improved Duplicate Bug Report
Identification

Use extended BM25F [29] for similarity measurement, in-
troduce relative similarity by considering the top-k most
similar reports (rather than only considering top-1 most
similar report)

Mozilla Recal@4 = 24%, Re-
call@20 = 25%

[18] CSMR’2012

[3] Automated Duplicate Bug Re-
port Classification using Subsequence
Matching

Hypothesize that two reports that have the longest ordered
sequence of common words are more likely to be duplicates
than those have the same frequency of unordered words;
Propose common sequence matching approach

Firefox Recall@1 = 30%,
Recall@5 = 51%,
Recall@10 = 58%

N/A HASE’2012

[44] Learning to Rank Duplicate Bug
Reports

Identify 9 textual and statistical features of bug reports, cre-
ate a ranking model based on these features to rank the du-
plicate bugs higher, learn the weights of the features by ap-
plying the stochastic gradient descent algorithm

Eclipse Recall@1 = 49%,
Recall@5 = 69%, Re-
call@10 = 76%, MRR =
58%

[30],
[29]

CIKM’2012

[24] Duplicate Bug Report Detection
with a Combination of Information Re-
trieval and Topic Modeling

Use information retrieval and topic modeling techniques to
measure the textual similarity

Eclipse,
OpenO�ce,
Mozilla

Recall@1 = 42% - 57%,
Recall@5 = 66% - 76%,
recall@10 = 80% - 86%

[29] ASE’2012

[4] A Fusion Approach For Classifying
Duplicate Problem Reports

Use multi-label classification to assign each report with
multiple duplicate prediction results and use a fusion role
to combine the results

Firefox recall@1 = 31%, re-
call@5 = 50%, re-
call@10 = 58%

[30] ISSRE’2013

[1][17] A Contextual Approach Towards
More Accurate Duplicate Bug Report
Detection and Ranking

Utilize contextual information about software-quality
attributes, software-architecture terms, and system-
development topics when computing the similarity

Eclipse,
OpenO�ce,
Mozilla,
Android

MAP = 29% - 51% [29] MSR’2013,
EMSE’2016

[27] An Empirical Study on Recommen-
dations of Similar Bugs

Use bug component field and textual similarity of bug de-
scriptions to measure the similarity

Mozilla Recall@1 = 36%, Re-
call@3 = 43%

[29] SANER’2016

[42] Combining Word Embedding with
Information Retrieval to Recommend
Similar Bug Reports

Apply information retrieval and word embedding technique
to measure the textual similarity of bug titles and descrip-
tions, and consider bug product and component fields in the
final similarity of two reports

Eclipse,
Mozilla

Recall@1 = 16% - 19%,
Recall@5 = 37% - 43%,
Recall@10 = 48% - 53%,
MAP = 26% - 33%,
MRR = 48% - 59%

[27] ISSRE’2016

Note that, [17] is the extension of [1], so we put them together and present the results of the extended paper [17].

Finding 2: Screenshots of crowdtesting reports mainly
demonstrate the context-based information. Under a spe-
cific context, only with the detailed illustration provided by
the textual description, the duplicated reports can be accu-
rately detected.

3. Related Work

3.1. Crowdtesting
Crowdtesting has been applied to facilitate many testing

tasks. Chen and Kim [7] applied crowdtesting to test case gen-
eration. They investigated object mutation and constraint solv-
ing issues underlying existing test generation tools, and pre-
sented a puzzle-based automatic testing environment. Musson

et al. [23] proposed an approach, in which the crowdworker
was used to measure real-world performance of software prod-
ucts. Gomide et al. [16] proposed an approach that employed
a deterministic automata to help usability testing. Adams et
al. [14] proposed MoTIF to detect and reproduce crashes in mo-
bile apps after their deployment in the wild.

These studies leverage crowdtesting to solve the problems in
traditional testing activities, while some other approaches focus
on the new encountered problem in crowdtesting.

Feng et al. [12, 13] proposed approaches to prioritize test re-
ports in crowdtesting. They designed strategies to dynamically
select the most risky and diversified test report for inspection in
each iteration. Jiang et al. [19] proposed the test report fuzzy
clustering framework by aggregating redundant and multi-bug
crowdtesting reports into clusters to reduce the number of in-

4

(a) Rope-62 (b) Rope-217

Figure 3: Motivating example 2

spected test reports. Wang et al. [35, 37, 36] proposed ap-
proaches to automatically classify crowdtesting reports. Their
approaches can overcome the di↵erent data distribution among
di↵erent software domains, and attain good classification re-
sults. Liu et al. [20] proposed an automatic approach to gen-
erate descriptive words for the screenshots based on the lan-
guage model and Spatial Pyramid Matching technique. Cui et
al. [11, 10] and Xie et al. [40] proposed crowd worker selec-
tion approaches to recommend appropriate crowd workers for
specific crowdtesting tasks. These approaches considered the
worker’s experience, relevance with the task, diversity of test-
ing context, etc., and recommend a set of workers who can de-
tect more bugs.

In this work, we focus on detecting the duplicated crowdtest-
ing reports to facilitate real industrial crowdtesting practice.

3.2. Duplicated Bug Report Detection

Many approaches have been proposed to detect duplicate bug
reports [28, 38, 18, 30, 31, 29, 26, 33, 3, 44, 24, 4, 1, 17, 27, 42].
The main focus of duplicate report detection is to obtain the
similarity of two reports. Runeson et al. [28] proposed the
first duplicate report detection approach which uses natural lan-
guage information of bug reports to compute the similarity.
Later, other sources of information were utilized in similarity
measurement, e.g., execution trace [38], fields information as
product and component [33, 27, 42]. Meanwhile, techniques to
improve the similarity measurement precision were also intro-
duced, e.g., BM25F similarity measurement [29], topic model-
ing [24], word embedding technique [42], etc.

Table 2 presents a summary of existing duplicate bug report
detection researches.

These approaches mainly leverage the textual information
and fields information to detect the duplicate reports. In this
work, we introduce the screenshot information to facilitate
the duplicate crowdtesting report detection. Our proposed ap-
proach combines the information from both the screenshots and
the textual descriptions, and can detect duplicate crowdtesting
reports with high accuracy.

To evaluate the e↵ectiveness of our proposed approach (in
Section 5 and 6), we choose three state-of-the-art and typical
approaches [24, 27, 42] as the baselines. The reason why we
use [27, 42] is because they are the latest two researches which
can be treated as the state-of-the-art approaches. The reason
why we use [24] is because they can achieve the highest per-
formance across all existing researches. We had planned to in-
clude [17], which is also one of the latest researches, as base-
line. However, the contextual words utilized in that work are
English-oriented; simply translating these words to Chinese or
translating our crowdtesting reports to English would bring se-
rious information loss. Therefore, this paper utilize three state-
of-the-art and typical approaches [24, 27, 42] as baseline in
evaluation (see details in Section 5.3).

4. Approach

Motivated by the two examples in Section 2.2, we propose
a duplicate detection approach (SETU), which combines infor-
mation from both the ScrEenshots and the TextUal descriptions
to detect duplicate crowdtesting reports. Figure 4 illustrates the
overview of SETU.

Our approach is organized as a pipeline comprising three
phases: feature extraction, similarity calculation, and duplicate
detection.

In the feature extraction phase, for the screenshots, we extract
two types of features, i.e., image structure feature and image
color feature (details are in Section 4.1). For the textual descrip-
tions, we also extract two types of features, i.e., TF-IDF (Term
Frequency and Inverse Document Frequency) feature and word
embedding feature (details are in Section 4.2).

In the similarity calculation phase, based on the four types of
features, we compute four similarity scores between the query
report and each of the pending reports, and obtain the screen-
shot similarity and textual similarity. Cosine similarity, which
is commonly used for measuring distance [35, 28, 27, 39], is
employed in our approach.

In the duplicate detection phase (details are in Section 4.3),
we design a hierarchical algorithm. In detail, if the screenshot
similarity between the query report and pending report is larger
than a specific threshold, we treat the pending report as first
class and rank all reports in the first class by their textual simi-
larity. Otherwise, we treat it as second class (follow behind the
first class) and rank all reports in this class by their combined
textual similarity and screenshot similarity. Finally, we return a
list of candidate duplicate reports of the query report, with the
ranked reports of the first class followed by the ranked reports
of the second class. The reason why we separate reports in two
classes is to take the advantages of the information provided by
screenshots. As described in Section 2.2, the screenshots can
provide the context-related information, and reports with dif-
ferent screenshots are very unlikely to be duplicate with each
other. We will further discuss the performance of other com-
binations of the screenshot similarity and textual similarity in
Section 7.4.

5

Figure 4: Overview of SETU

4.1. Extracting Screenshot Features
We extract screenshot features from the image of screenshot

accompanied with each crowdtesting report. Note that, in our
experimental projects, all the crowdtesting reports contain zero
or one screenshot (with details in Section 5.2). For reports
which do not have a screenshot, we use a default blank picture
to extract the features. Future work will consider the situation
that one report contains several screenshots. We use the follow-
ing two types of features.

4.1.1. Image Structure Feature
The geometric structure of an image exhibits fundamental

information for distinguishing screenshots [8, 34]. Images with
highly similar geometric structures (e.g., line segments) would
be probably the same screenshot.

Review 3-a Gist descriptor [25] can capture the spatial struc-
ture of an image through the segmentation and processing of
individual regions. Its general idea is as follows: propose a
set of perceptual dimensions (naturalness, openness, roughness,
expansion, ruggedness) to represent the dominant spatial struc-
ture of an image; estimate these dimensions based on the spec-
tral and coarsely localized information; generate a multidimen-
sional space in which scenes sharing membership in semantic
categories are projected closed together.

(a) Rope-145 and Rope-270 (b) Rope-62 and Rope-217

Figure 5: Image structure features

We use the publicly available package5 with default param-
eters to extract image structure feature. It results in a 128-
dimensional image structure feature vector for each image.

5http://people.csail.mit.edu/torralba/code/spatialenvelope/

Figure 5 shows the image structure features for the four
screenshots in Figure 2 and Figure 3. Review 3-c The x axis is
the feature’s dimension (i.e., 128), while the y axis is the value
of the feature in each dimension. We can easily find that the
image structure feature vectors of Rope-145 and Rope-270 are
obviously di↵erent with each other, while the structure feature
vectors of Rope-62 and Rope-217 are almost the same. This
coincides with our visual perception.

4.1.2. Image Color Feature
Color is another basic indicator of visual contents, and is of-

ten used to describe and represent an image [8, 34]. Images
with highly similar color distributions are probably the same
screenshot.

Review 3-b MPEG-7 descriptor [21] can capture the rep-
resentative colors on a grid superimposed of an image based
on segmentation and clustering. Its general idea is as follows:
use the edgeflow algorithm to segment image; perform color
clustering on each segmented region to obtain its representative
colors and calculate the percentage of these colors; each repre-
sentative color and its corresponding percentage form a pair of
attributes that describe the color characteristics in an image.

We also use the publicly available software6 to extract the
image color feature. It results in a 189-dimensional image color
feature vector for each image.

(a) Rope-145 and Rope-270 (b) Rope-62 and Rope-217

Figure 6: Image color features

Figure 6 demonstrates the image color feature vectors for the
four screenshots in Figure 2 and Figure 3. Review 3-d The

6http://www.semanticmetadata.net/

6

x axis is the feature’s dimension (i.e., 189), while the y axis is
the value of the feature in each dimension. The image color
feature vector of Rope-145 exerts obvious di↵erence with the
vector of Rope-270, while the color vector of Rope-62 is quite
similar with the vector of Rope-217. Just as the image structure
feature, this coincides with our visual perception.

Both structure feature and color feature are widely used in
image processing tasks [8, 34], so we adopt both of them in the
duplicate crowdtesting report detection and explore their per-
formance in Section 6.

4.2. Extracting Textual Features
We extract textual features from the textual descriptions of

crowdtesting reports.
We first collect di↵erent sources of textual descriptions to-

gether (input, operation steps, and result description), and then
conduct the natural language processing to remove noise and
extract core terms. Specifically, because the crowdtesting re-
ports in our experiment are written in Chinese, we adopt ICT-
CLAS7 for word segmentation, and segment descriptions into
words. We then remove stopwords (i.e., “am”, “on”, “the”,
etc.) to reduce noise. Note that, crowd workers often use
di↵erent words to express the same concept, so we introduce
the synonym replacement technique to mitigate this problem.
Synonym library of LTP8 is adopted. The remaining terms are
saved and will be used to extract the following two types of
features.

4.2.1. TF-IDF Feature
TF-IDF (Term Frequency and Inverse Document Frequency)

is one of the most popular feature for representing textual doc-
uments in information retrieval. The main idea of TF-IDF is
that if a term appears many times in one report and a few
times in the other report, the term has a good capability to
di↵erentiate the reports, and thus the term has high TF-IDF
value. Specifically, given a term t and a report r, T F(t, r)
is the number of times that term t occurs in report r, while
IDF(t) is obtained by dividing the total number of reports by
the number of reports containing term t. TF-IDF is computed
as: T F � IDF(t, r) = T F(t, r) ⇥ IDF(t).

With the above formula, the textual description of a report r
can be represented as a TF-IDF vector, i.e., r = (w1,w2, ...,wn),
where wi denotes the TF-IDF value of the ith terms in report r.

4.2.2. Word Embedding Feature
Word embedding is a feature learning technique in natu-

ral language processing where individual words are no longer
treated as unique symbols, but represented as d-dimensional
vector of real numbers that capture their contextual semantic
meanings [22, 5].

We use the publicly available software9 to obtain the word
embedding of a report. With the trained word embedding

7ICTCLAS (http://ictclas.nlpir.org/) is widely used Chinese NLP platform.
8LTP (http://www.ltp-cloud.com/) is considered as one of the best cloud-

based Chinese NLP platforms.
9https://code.google.com/archive/p/word2vec/

model, each word can be transformed into a d-dimensional
vector where d is set to 100 as suggested in previous stud-
ies [42, 41]. Meanwhile a crowdtesting report can be trans-
formed into a matrix in which each row represents a term in
the report. We then transform the report matrix into a vector
by averaging all the word vectors the report contains as previ-
ous work did [42]. Specifically, given a report matrix that has n
rows in total, we denote the ith row of the matrix as ri and the
transformed report vector vd is generated as follows:

vd =

P
i ri

n
(1)

With the above formula, each crowdtesting report can be rep-
resented as a word embedding vector.

The TF-IDF feature focuses on the similarity of reports con-
sidering the term matching, while the word embedding feature
concerns more on the relationship of terms considering the con-
text they appear. We adopt both of them in our approach and
investigate their performance in duplicate report detection in
Section 6.

4.3. Conducting Duplicate Report Detection

Following the previous studies [28, 38, 18, 30, 31, 29, 26,
33, 3, 44, 24, 4, 1, 17, 27, 42], our duplicate crowdtesting re-
port detection problem is formulated as follows: Given a query
report of a crowdtesting project, our approach would recom-
mend a list of duplicate reports from all the pending reports of
the project and rank them by their probabilities to be duplicates.
We design a hierarchical algorithm (Algorithm 1) to detect the
duplicate reports.

Algorithm 1 Duplicate report detection algorithm

Input:

Pending crowdtesting report set R;
Query report q; Threshold thres

Output:

A list of duplicate reports D;
1: for each report r in R and q do

2: Extract the image structure feature vector and image color feature vector
from its screenshot;

3: Extract the TF-IDF feature vector and word embedding feature vector
from its textual description;

4: end for

5: for each report r in R do

6: for f Type in [structure, color, t f id f , embedding] do

7: Compute the cosine similarity between the f Type vector of q and r,
and denote as s f Type;

8: end for

9: s screenshot = (s structure + s color)/2;
10: s textual = (s tdidf + s embedding)/2;
11: s total = (s screenshot + s textual)/2
12: if s screenshot > thres then

13: put r in D first
14: else

15: put r in D second
16: end if

17: end for

18: Rank D first based on reports’ s textual and put them in D sequentially
19: Rank D second based on reports’ s total and put them in D sequentially

(follow behind the reports of D first)

7

In the algorithm, the screenshot similarity can be seen as a
filter because the screenshot provides the context-related infor-
mation (see Section 2.2 for details). If two crowdtesting re-
ports have di↵erent screenshots, they are unlikely to be dupli-
cate even if the textual similarity between them is high. In addi-
tion, if two crowdtesting reports are accompanied with the same
screenshot, whether they are duplicate reports mainly depends
on the similarity of their textual descriptions.

The threshold to determine whether two screenshots are the
same one is an input parameter. We explore the influence of this
parameter on the detection performance in Section 5.6.

We have also experimented with di↵erent weights for
s structure and s color when combining them to obtain
s screenshot (Line 9 in Algorithm 1), the weights for s tfidf
and s embedding when combining them to get s textual (Line
10 in Algorithm 1), as well as the weights for s screenshot and
s textual when combining them to obtain s total (Line 11 in
Algorithm 1). Results turned out that when the two similari-
ties have an equal weight, SETU can achieve a relative good
and stable performance. Due to space limit, we do not present
the detailed results. Note that, this does not imply the screen-
shot and textual descriptions are equally important, because the
weights for s screenshot and s textual are only used in the sec-
ond class of reports (Line 10 and 19 in Algorithm 1). Another
note is that, for the reports in the second class, we have exper-
imented with other ranking manners, i.e., by s screenshot, by
s textual, and results turned out that with the ranking manner
shown above, the detection performance is relative good and
stable.

5. Experiment Design

5.1. Research Questions

Our evaluation addresses the following research questions:

• RQ1 E↵ectiveness: How e↵ective is SETU in detecting
duplicate crowdtesting reports?

RQ1 aims at evaluating the e↵ectiveness of SETU in dupli-
cate reports detection. We also compare SETU with the state-
of-the-art approaches (see details in Section 5.3) to investigate
whether and to what extent it improves over prior work.

• RQ2 Necessity: Are both screenshots and textual de-
scriptions necessary in detecting duplicate crowdtesting
reports?

This paper proposes to utilize both screenshots and tex-
tual descriptions in duplicate detection. RQ2 is to investigate
whether both of them are necessary. We employ two additional
experiments to investigate it. See details in Section 5.4.

• RQ3 Replaceability: What is the relative e↵ect of the
four types of features (i.e., TF-IDF, word embedding,
image color, and image structure) in detecting duplicate
crowdtesting reports?

SETU employs four types of features to characterize the
screenshots (i.e., image color and structure) and the textual de-
scriptions (i.e., TF-IDF and word embedding). RQ3 is to inves-
tigate the relative e↵ect of these features. We use another four
experiments for investigating this RQ, with details in Section
5.4.

5.2. Experimental Dataset

We mentioned that our experiment is based on crowdtesting
reports from the repositories of Baidu CrowdTest crowdtest-
ing platform. We collect all crowdtesting projects closed be-
tween June 1st 2017 and June 10th 2017. There are totally 12
crowdtesting projects.

Table 3 presents the detailed information of the projects with
the application domain, the number of reports (i.e., # report),
the number and percentage of reports which have screenshots
(i.e., # screenshots and % screenshots).

There is a label accompanied with each report. It signifies
a specific type of bug assigned by the tester in the company.
Reports with the same label denote they are duplicates of each
other. In this sense, we treat the pair of reports with the same
label as duplicates, while the pair of reports with di↵erent labels
as non-duplicates.

Review 2-c Table 3 also presents the percentage of duplicates
(i.e., % duplicates) and percentage of duplicate pairs (i.e., %
duplicate pairs).

%duplicates =
#duplicates

reports
=

#reports � #unique labels for reports
reports

(2)

%duplicate pairs =
#duplicate pairs

total pairs
=

P
#pairs of reports with same label

pairs of all reports
(3)

pairs of reports =
#reports ⇤ (#reports � 1)

2
(4)

To verify the validity of these stored labels, we addition-
ally conduct the random sampling and relabeling. In detail,
we randomly select 4 projects, and sample 30% of crowdtest-
ing reports from each selected project. A tester from the com-
pany is asked to relabel the duplicate reports, without know-
ing the stored labels. We then compare the di↵erence between
the stored duplicate results and the new labeled duplicate re-
sults. The percentage of di↵erence for each project is all below
4%. Therefore, we believe the ground truth labels are relatively
trustworthy.

For training the word embedding model, we use another
textual dataset. In detail, we crawl the textual description of
crowdtesting reports and task requirements of 500 crowdtest-
ing projects from the experimental platform. The reason why
we use this dataset is that previous studies have revealed that
to train an e↵ective word embedding model, a domain-specific
dataset with large size is preferred [42, 41]. The size of our
training dataset is 520M.

8

Table 3: Projects under investigation

Domain # report # screenshot % screenshot # duplicates % duplicates total pairs # duplicate pairs % duplicate pairs

P1 Music 213 188 88% 208 97% 22578 7187 31%
P2 Weather 215 200 93% 168 78% 22578 1549 7%
P3 Beauty 230 216 94% 214 93% 26335 5682 22%
P4 News 243 236 97% 210 86% 29403 5203 18%
P5 Browser 252 237 95% 190 75% 31626 4347 14%
P6 Medical 271 255 94% 207 76% 36585 1165 3%
P7 Safety 282 270 96% 249 87% 40186 9358 23%
P8 Education 284 278 98% 233 82% 40186 1753 4%
P9 Health 317 307 97% 246 77% 50086 1344 3%
P10 Language 344 317 97% 236 68% 58996 1064 2%
P11 Sport 462 425 93% 391 84% 106491 2381 2%
P12 E�ciency 576 547 95% 490 85% 165600 17261 11%

Summary 3,689 94% 82% 12%

5.3. Baselines

To explore the performance of our proposed SETU, we
compare it with three state-of-the-art and typical baseline ap-
proaches. Note that, since there is no approach designed for du-
plicate crowdtesting report detection, we choose the approaches
for duplicate bug report detection as our baselines. Section 3.2
has presented why we choose these three baselines.

Information retrieval with word embedding (IR-EM)

[42]: It is the state-of-the-art technique for duplicate bug report
detection. This approach first builds TF-IDF vector and word
embedding vector and calculates two similarity scores based on
them respectively. Meanwhile, it calculates a third similarity
score based on bug product field and component field. Finally,
it combines the three similarity scores into one final score and
makes similar bug recommendation with it.

Similarity based on bug components and descriptions

(NextBug) [27]: It is another state-of-the-art similarity-based
approach for duplicate bug report detection. This approach first
checks whether two reports have the same bug component field,
if yes, processes the reports with standard information retrieval
technique, calculates the cosine similarity of the reports, and
ranks the reports with the similarity value.

Note that, for these two baselines, because the crowdtesting
reports do not have the product or component fields, we use the
most similar field, i.e., test task id for substitution.

Information retrieval with topic modeling (DBTM) [24]:
It is the commonly-used technique for detecting duplicate bug
reports. DBTM supposes a report as a textual document de-
scribing one or more technical issues, and duplicate reports as
the documents describing the same technical issues. It then uti-
lizes term-based and topic-based features to detect duplicates.

5.4. Experimental Setup

This section illustrates the experimental setup for answering
each research question.

For answering RQ1, we compare SETU with three state-
of-the-art approaches (see details in Section 5.3) to investigate
whether and to what extent it improves over prior work.

For answering RQ2, we employ two additional experi-
ments, i.e., onlyText and onlyImage, to investigate whether both
screenshots and textual descriptions are necessary in duplicate
reports detection. In detail, onlyText denotes ranking the reports
only based on the textual similarity, while onlyImage denotes
ranking the reports only based on the screenshot similarity.

For answering RQ3, we use another four experiments, i.e.,
noTF, noEmb, noClr, and noStrc, to investigate the relative ef-
fect of the four types of features utilized in duplicate detection.
Each experiment denotes conducting the duplicate detection by
removing one specific type of feature. For example, noTF de-
notes applying other three features except TF-IDF (i.e., only
use word embedding, image color and image structure feature)
for duplicate detection.

For all these experiments, we employ the commonly-used
leave-one-out cross validation [6]. In detail, we use one
crowdtesting project as the testing dataset to evaluate the perfor-
mance of duplicate detection, and use the remaining crowdtest-
ing projects as the training dataset to determine the optimal pa-
rameter value (see detail in Section 5.6).

We ran our experiments on a 3.40 GHz Intel Core i7-3770
machine with 8 GB of RAM. Review 3-e For the time-cost of
feature extraction, extracting the image structure features of 188
screenshots (i.e., P1 in Table 3) consumes 132 seconds and ex-
tracting the image color features of 188 screenshots consumes
214 seconds. For training the word embedding model, it con-
sumes 540 seconds. Extracting the TF-IDF features and word
embedding features of 213 reports (i..e, P1 in Table 3) all con-
sume less than 1 second.

5.5. Evaluation Metrics

We use three evaluation metrics, i.e., recall@k, mean average
precision (MAP), and mean reciprocal rank (MRR), to evalu-
ate the performance of duplicate detection. These metrics are
commonly-used to evaluate the duplicate detection approaches
(see Table 2 for details).

Given a query report q, its ground truth duplicate reports set
G(q), and the top-k recommended duplicate reports list pro-
duced by duplicate detection approach R(q).

Review 2-d Recall@k checks whether a top-k recommen-
dation is useful [24, 30, 42]. The definition of recall@k for a
query report q is as follows:

recall@k =
(

1, i f G(q) \ R(q) , ?
0, Otherwise (5)

According to the formula, if there is at least one ground truth
duplicate report in the top-k recommendation, the top-k recom-
mendation is useful for the query report q. Given a set of query
reports, we compute the proportion of useful top-k recommen-
dations by averaging the recall@k of all query reports to get an

9

overall recall@k. As previous approaches, we set k as 1, 5, and
10 to obtain the performance.

MAP (Mean Average Precision) is defined as the mean of the
Average Precision (AP) values obtained for all the evaluation
queries. The AP of a single query q is calculated as follows:

AP(q) =
|G(q)|X

n=1

Precision@k(q)
|G(q)| (6)

In the above formula, Precision@k(q) is the retrieval preci-
sion over the top-k reports in the ranked list, i.e., the ratio of
ground truth duplicate reports of the query report q in the top-k
recommendation:

Precision@k(q) =
ground truth in top k

n
(7)

MRR (Mean Reciprocal Rank) is defined as the mean of the
Reciprocal Rank (RR) values obtained for all the evaluation
queries. RR of a single query q is the multiplicative inverse of
the rank of first correct recommendation f irstq (i.e., first ground
truth duplicate report in the recommendation list):

RR(q) =
1

f irstq
(8)

In addition, for each evaluation metric, we obtain the Im-
provement of SETU compared with other approaches (e.g., the
baseline). Taken metric MRR and approach DBTM as an exam-
ple, Improvement is calculated as follows:

Improvement =
MRR of SETU �MRR of DBTM

MRR of DBTM
(9)

To further demonstrate the superiority of our proposed ap-
proach, we perform the MannWhitney U test between our pro-
posed SETU and other approaches (i.e., the baseline). We ob-
tain the p-value to demonstrate the significance of the test, and
the Cli↵’s delta to demonstrate the e↵ect size of the test. Man-
nWhitney U test is often employed to check whether the di↵er-
ence in two data groups is statistically significant (which corre-
sponds to a p-value of less than 0.05) or not. We use one-tailed
MannWhitney U test with the following hypotheses:

H0: Performance produced by other approach (e.g., the
baseline) is no smaller than the performance produced by
SETU.

H1: Performance produced by other approach (e.g., the
baseline) is smalller than the performance produced by SETU.

We include the Bonferroni correction to counteract the im-
pact of multiple hypothesis tests.

Cli↵’s delta is often used to check if the di↵erence in two
data groups are substantial. Review 3-f We include the Bonfer-
roni correction to counteract the impact of multiple hypothesis
tests. The range of Cli↵’s delta is [-1, 1], where -1 or 1 means
all values in one group are smaller or larger than those of the
other group, and 0 means the data in the two groups is similar.
The mappings between Cli↵’s delta and e↵ectiveness levels are
shown below.

Table 4: Mappings of Cli↵’s delta to their interpretations [9]

Cli↵’s delta Interpretation
-1 <= Cli↵’s delta <0.147 Negligible
0.147 <= Cli↵’s delta <0.33 Small
0.33 <= Cli↵’s delta <0.474 Medium
0.474 <= Cli↵’s delta <1 Large

Note that, we use all results from all query reports to compute
p-value and Cli↵’s delta. For each query report, we have one
value for other approach (i.e., the baseline) and another value
for our proposed approach SETU. By computing the p-value
and Cli↵’s delta, the extent of which our approach improves
over other method can be more rigorously assessed.

5.6. Parameter Setting

Figure 7: Influence of parameter thres on duplicate detection performance

SETU has a parameter, i.e., thres, to determine the reports
of first class (Section 4.3). Figure 7 presents how the duplicate
detection performance is influenced by di↵erent parameter val-
ues. Note that, we only use MAP, which is obtained considering
the whole recommendation list of duplicates, to investigate the
parameter’s influence. Another note is that, we have experi-
mented with thres from 0.1 to 1.0, and due to space limit, we
only present the results with better performance. We can easily
observe that, almost for all our experimental projects, with the
increase of thres, the duplicate detection performance would
first increase, reach a peak, and then decrease.

In our evaluation, we tune the optimal parameter value based
on the training dataset (see Section 5.4) and apply it in the test-
ing dataset to evaluate the performance of duplicate detection.
In detail, for each parameter value, we first compute the average
MAP across all the crowdtesting projects in the training dataset
and treat the parameter value under which the largest average
MAP is achieved as the optimal thres. In this way, the tuned
optimal parameter value is 0.94 for projects P1 - P10, and 0.92
for projects P11 and P12. For other experiments in our evalua-
tion (i.e., noClr), we use the same method to tune the optimal
parameter value.

6. Results and Analysis

This section presents the results and analysis of the evalua-
tion.

10

6.1. Answering RQ1: E↵ectiveness

Table 5 presents the recall@1, recall@5, recall@10, MAP,
and MRR for each experimental project for SETU and three
baselines. To facilitate reading, Figure 8a presents the box plot
of these results.

We can see that, our approach SETU can achieve the high-
est performance in all experimental projects for all five evalu-
ation metrics. recall@1 is 0.44 to 0.79 across all experimental
projects, denoting in 44% to 79% circumstances, our approach
can find the duplicate report in the first recommendation. re-
call@5 is 0.66 to 0.92 across all experimental projects, denot-
ing in 66% to 92% circumstances, our first five recommenda-
tions contain the duplicate report. MAP is 0.21 to 0.58 across
all experimental projects. The reported recall@1 in existing
duplicate bug report detection approach is 0.16 to 0.67, and the
reported MAP is 0.26 to 0.53 (see Table 2). Since our exper-
iment is conducted on crowdtesting reports which is di↵erent
from bug reports in open source projects, these figures are not
comparable. However, the fact that these figures being the same
order of magnitude proves the e↵ectiveness of our approach.

Compared with the three baselines, SETU brings great im-
provement in all five evaluation metrics for all experimental
projects. The improvement of recall@1 is 20% to 211% com-
pared with the three baselines, while the improvement of MAP
is 28% to 241% in all experimental projects. Other evaluation
metrics also undergo similar improvements.

We further conduct Mann-Whitney U Test for the five met-
rics between SETU and each baseline. compared with the three
baselines, SETU statistically significantly (i.e., p-value for all
tests is less than 0.05) and substantially (i.e., Cli↵’s delta for
all tests is large) achieves a better performance in terms of all
the evaluation metrics for all experimental projects. This fur-
ther indicates the e↵ectiveness and advantage of our approach.
To make our presentation more catchy, we do not provide the
detailed results.

Among the three baselines, the IR-EM and NextBug employ
the product field or component field to help detect duplicate re-
ports. We use a di↵erent field test task id in this experiment.
The reason is that the crowdtesting reports do not have the field
product or component, and test task id is the most similar field.
Moreover, we also experiment with four other fields, i.e., phone
type, operation system, ROM information, and network environ-
ment (as shown in Table 1) and the performance is even worse.

The performance of NextBug is almost the worst. This might
because the reports from di↵erent test tasks are already distin-
guishable in their textual descriptions. Therefore, the utilization
of the test task id field could not provide extra information in
detecting duplicate reports. The low performance of IR-EM in
our crowdtesting reports dataset might due to the similar reason.
As the test task id almost could not contribute to duplicate de-
tection, the baseline IR-EM degenerates to, to some extent, the
approach of only using textual descriptions (i.e., the TF-IDF
and word embedding features, see results in Section 6.2).

The DBTM utilizes term-based and topic-based features for
duplicate detection. The low performance of this baseline might
because, unlike the large-scale open source projects, the reports

of one crowdtesting project only have very few topics. The op-
timal topic number is about 100 to 300 for Eclipse, OpenO�ce,
and Mozilla [24]. However, the optimal topic number for our
experimental projects is about 5 to 10. The tiny number of top-
ics cannot e↵ectively help distinguish duplicate reports.

Compared with three state-of-the-art and typical baselines,
SETU significantly and substantially achieves a better per-
formance in terms of all the evaluation metrics for all exper-
imental projects. recall@1 is 0.44 to 0.79, recall@5 is 0.66
to 0.92, and MAP is 0.21 to 0.58 across all experimental
projects.

6.2. Answering RQ2: Necessity
Figure 8b and Table 6 presents the recall@1, recall@5, re-

call@10, MAP, and MRR for each experimental project for
SETU and onlyText, onlyImage (see Section 5.4 for detail).

We can observe that the performance obtained by onlyText or
onlyImage is worse than SETU. The improvement in recall@1
of SETU is 23% to 211% compared with onlyText, and 17%
to 319% compared with onlyImage. The improvement in MAP
of SETU is 31% to 241% compared with onlyText, and 40% to
552% compared with onlyImage.

We further conduct Mann-Whitney U Test for the five metrics
between SETU and onlyText, onlyImage. Compared with only
using screenshots or textual descriptions (i.e., onlyText, onlyIm-
age), SETU significantly (i.e., p-value for all tests is less than
0.05) and substantially (i.e., Cli↵’s delta for all tests is large
) achieves a better performance in terms of all the evaluation
metrics for all experimental projects. This further indicates that
only using screenshots or textual descriptions is not e↵ective
enough, and combining these two sources of information is a
sensible choice for duplicate crowdtesting report detection. To
make our presentation more catchy, we do not provide the de-
tailed results either.

The performance of onlyImage is a little lower than the
performance of onlyText. This might because the screenshot
mainly provides the context-related information. Without the
assistance of textual descriptions, the screenshot can not dis-
tinguish the duplicate reports in many circumstances. More-
over, duplicate detection with only textual descriptions can nei-
ther achieve equivalent performance with SETU, denoting the
screenshot plays an indispensable role in detecting duplicate
crowdtesting reports.

Duplicate detection with only screenshots or textual descrip-
tions achieves significantly and substantially worse perfor-
mance than SETU in all the evaluation metrics for all exper-
imental projects. This indicates the necessity of using both
screenshots and textual descriptions in detecting duplicate
crowdtesting reports.

6.3. Answering RQ3: Replaceability
Figure 8b and Table 7 presents the recall@1, recall@5, re-

call@10, MAP, and MRR for each experimental project for

11

(a) SETU vs. baselines (RQ1) (b) SETU vs. its alternatives (RQ2, RQ3)

Figure 8: Review 1-e Performance comparison

Table 5: Performance comparison between SETU and baselines (RQ1)

SETU IR-

EM

Next

Bug

DB

TM

Improvement SETU IR-

EM

Next

Bug

DB

TM

Improvement SETU IR-

EM

Next

Bug

DB

TM

Improvement

P1 P2 P3

recall@1 0.792 0.640 0.440 0.424 23% - 86% 0.649 0.520 0.470 0.537 20% - 38% 0.715 0.575 0.487 0.535 24% - 46%
recall@5 0.872 0.720 0.640 0.700 21% - 36% 0.836 0.594 0.544 0.601 39% - 53% 0.894 0.654 0.504 0.602 36% - 77%
recall@10 0.944 0.780 0.728 0.750 21% - 29% 0.875 0.664 0.604 0.665 31% - 44% 0.915 0.735 0.664 0.720 24% - 37%
MAP 0.280 0.188 0.158 0.151 48% - 85% 0.570 0.336 0.283 0.389 46% - 101% 0.452 0.333 0.213 0.321 35% - 112%
MRR 0.831 0.684 0.624 0.576 21% - 44% 0.736 0.555 0.505 0.575 28% - 45% 0.794 0.616 0.576 0.601 28% - 37%

P4 P5 P6

recall@1 0.729 0.433 0.363 0.445 63% - 100% 0.553 0.418 0.298 0.386 32% - 85% 0.722 0.573 0.505 0.522 26% - 42%
recall@5 0.927 0.660 0.460 0.689 34% - 101% 0.815 0.675 0.575 0.615 20% - 41% 0.871 0.669 0.609 0.632 30% - 43%
recall@10 0.958 0.761 0.561 0.772 24% - 70% 0.922 0.745 0.685 0.739 23% - 34% 0.915 0.759 0.739 0.735 20% - 24%
MAP 0.584 0.171 0.271 0.198 115% - 241% 0.288 0.161 0.119 0.141 78% - 142% 0.543 0.422 0.362 0.294 28% - 84%
MRR 0.815 0.527 0.417 0.536 52% - 95% 0.663 0.490 0.320 0.447 35% - 107% 0.792 0.631 0.531 0.607 25% - 49%

P7 P8 P9

recall@1 0.542 0.174 0.224 0.193 141% - 211% 0.647 0.485 0.415 0.521 24% - 55% 0.549 0.403 0.353 0.372 36% - 55%
recall@5 0.666 0.341 0.300 0.335 95% - 122% 0.849 0.667 0.583 0.605 27% - 45% 0.768 0.568 0.528 0.555 35% - 45%
recall@10 0.693 0.440 0.420 0.409 57% - 69% 0.877 0.702 0.664 0.712 23% - 32% 0.811 0.637 0.587 0.606 27% - 38%
MAP 0.259 0.090 0.080 0.100 159% - 223% 0.321 0.244 0.164 0.220 31% - 95% 0.307 0.210 0.210 0.195 46% - 57%
MRR 0.565 0.245 0.215 0.218 130% - 162% 0.738 0.597 0.473 0.571 23% - 56% 0.644 0.527 0.477 0.501 22% - 35%

P10 P11 P12

recall@1 0.440 0.293 0.223 0.257 50% - 97% 0.773 0.613 0.523 0.512 26% - 50% 0.719 0.578 0.488 0.525 24% - 47%
recall@5 0.695 0.421 0.321 0.387 65% - 116% 0.887 0.729 0.659 0.662 21% - 34% 0.927 0.724 0.684 0.702 28% - 35%
recall@10 0.726 0.585 0.486 0.530 24% - 49% 0.924 0.759 0.739 0.725 21% - 27% 0.948 0.764 0.734 0.750 24% - 29%
MAP 0.219 0.159 0.129 0.143 37% - 69% 0.450 0.332 0.282 0.274 35% - 64% 0.564 0.413 0.383 0.401 36% - 47%
MRR 0.552 0.400 0.370 0.412 33% - 49% 0.828 0.621 0.531 0.577 33% - 55% 0.805 0.646 0.586 0.601 24% - 37%

Table 6: Performance comparison between SETU and onlyText, onlyImage (RQ2)

SETU only

Text

only

Im-

age

Improvement SETU only

Text

only

Im-

age

Improvement SETU only

Text

only

Im-

age

Improvement SETU only

Text

only

Im-

age

Improvement

P1 P2 P3 P4

recall@1 0.792 0.640 0.560 23% - 41% 0.649 0.520 0.505 24% - 28% 0.715 0.550 0.457 29% - 56% 0.729 0.433 0.397 68% - 83%
recall@5 0.872 0.720 0.640 21% - 36% 0.836 0.584 0.550 43% - 51% 0.894 0.634 0.568 41% - 57% 0.927 0.660 0.643 40% - 44%
recall@10 0.944 0.780 0.664 21% - 42% 0.875 0.646 0.601 35% - 45% 0.915 0.715 0.647 27% - 41% 0.958 0.761 0.725 25% - 32%
MAP 0.280 0.188 0.165 48% - 69% 0.570 0.326 0.257 74% - 121% 0.452 0.313 0.283 44% - 59% 0.584 0.171 0.178 228% - 241%
MRR 0.831 0.684 0.600 21% - 38% 0.736 0.555 0.422 32% - 74% 0.794 0.596 0.512 33% - 55% 0.815 0.527 0.467 54% - 74%

P5 P6 P7 P8

recall@1 0.553 0.418 0.363 32% - 52% 0.722 0.553 0.614 17% - 30% 0.542 0.174 0.184 194% - 211% 0.647 0.485 0.342 33% - 89%
recall@5 0.815 0.675 0.630 20% - 29% 0.871 0.639 0.635 36% - 37% 0.666 0.341 0.331 95% - 101% 0.849 0.667 0.488 27% - 73%
recall@10 0.922 0.745 0.660 23% - 39% 0.915 0.749 0.689 22% - 32% 0.693 0.440 0.420 57% - 64% 0.877 0.702 0.511 24% - 71%
MAP 0.288 0.161 0.147 78% - 95% 0.543 0.402 0.367 35% - 47% 0.259 0.090 0.080 187% - 223% 0.321 0.244 0.212 31% - 51%
MRR 0.663 0.490 0.463 35% - 43% 0.792 0.611 0.569 29% - 39% 0.565 0.245 0.235 130% - 140% 0.738 0.597 0.407 23% - 81%

P9 P10 P11 P12

recall@1 0.549 0.383 0.138 43% - 297% 0.440 0.293 0.105 50% - 319% 0.773 0.593 0.555 30% - 39% 0.719 0.538 0.438 33% - 64%
recall@5 0.768 0.528 0.193 45% - 297% 0.695 0.421 0.391 65% - 77% 0.887 0.709 0.622 25% - 42% 0.927 0.704 0.604 31% - 53%
recall@10 0.811 0.617 0.339 31% - 139% 0.726 0.585 0.565 24% - 28% 0.924 0.729 0.655 26% - 41% 0.948 0.764 0.664 24% - 42%
MAP 0.307 0.180 0.047 70% - 553% 0.219 0.159 0.096 37% - 128% 0.450 0.312 0.321 40% - 44% 0.564 0.403 0.303 39% - 86%
MRR 0.644 0.477 0.121 35% - 432% 0.552 0.400 0.229 38% - 141% 0.828 0.601 0.593 37% - 39% 0.805 0.606 0.506 32% - 59%

SETU and noClr, noStrc, noTF, noEmb (see Section 5.4 for
detail).

We can observe that, in most circumstances, performance ob-
tained by SETU is better than or equal with the performance

12

Table 7: Performance comparison between SETU and noClr, noStrc, noTF, noEmb (RQ3)

SETU noClr noStrc noTF noEmb Imprv. SETU noClr noStrc noTF noEmb Imprv. SETU noClr noStrc noTF noEmb Imprv.

P1 P2 P3

recall@1 0.792 0.792 0.712 0.776 0.768 0% - 11% 0.649 0.649 0.634 0.648 0.653 0% - 2% 0.715 0.657 0.663 0.626 0.663 7% - 14%
recall@5 0.872 0.870 0.840 0.860 0.860 0% - 3% 0.836 0.820 0.817 0.830 0.807 0% - 3% 0.894 0.884 0.857 0.884 0.857 1% - 4%
recall@10 0.944 0.928 0.928 0.940 0.928 0% - 1% 0.875 0.873 0.850 0.869 0.860 0% - 2% 0.915 0.905 0.889 0.901 0.905 1% - 2%
MAP 0.280 0.277 0.232 0.269 0.268 1% - 20% 0.570 0.573 0.537 0.563 0.555 -0% - 6% 0.452 0.434 0.435 0.432 0.435 3% - 4%
MRR 0.831 0.836 0.781 0.821 0.816 -0% - 6% 0.736 0.734 0.718 0.726 0.735 0% - 2% 0.794 0.755 0.747 0.737 0.757 4% - 7%

P4 P5 P6

recall@1 0.729 0.760 0.739 0.729 0.750 -4% - 0% 0.553 0.541 0.482 0.529 0.458 2% - 20% 0.722 0.746 0.674 0.726 0.734 -3% - 7%
recall@5 0.927 0.906 0.875 0.916 0.864 1% - 7% 0.815 0.809 0.767 0.813 0.750 0% - 8% 0.871 0.867 0.839 0.859 0.867 0% - 3%
recall@10 0.958 0.947 0.927 0.947 0.906 1% - 5% 0.922 0.904 0.898 0.916 0.821 0% - 12% 0.915 0.903 0.891 0.915 0.895 0% - 2%
MAP 0.584 0.607 0.559 0.583 0.566 -3% - 4% 0.288 0.287 0.247 0.281 0.253 0% - 16% 0.543 0.547 0.502 0.531 0.534 -0% - 8%
MRR 0.815 0.827 0.806 0.819 0.809 -1% - 1% 0.663 0.655 0.608 0.669 0.589 -0% - 12% 0.792 0.801 0.754 0.795 0.792 -1% - 5%

P7 P8 P9

recall@1 0.542 0.440 0.420 0.440 0.400 23% - 35% 0.647 0.612 0.603 0.636 0.578 1% - 11% 0.549 0.540 0.575 0.540 0.416 -4% - 31%
recall@5 0.666 0.665 0.675 0.685 0.655 -2% - 1% 0.849 0.829 0.833 0.826 0.780 1% - 8% 0.768 0.746 0.781 0.742 0.648 -1% - 18%
recall@10 0.693 0.706 0.696 0.706 0.696 -1% - 0% 0.877 0.862 0.864 0.867 0.841 1% - 4% 0.811 0.798 0.824 0.793 0.759 -1% - 6%
MAP 0.259 0.209 0.199 0.209 0.179 23% - 44% 0.321 0.311 0.283 0.312 0.277 2% - 15% 0.307 0.304 0.315 0.295 0.236 -2% - 30%
MRR 0.565 0.532 0.522 0.522 0.502 6% - 12% 0.738 0.718 0.703 0.726 0.672 1% - 9% 0.644 0.633 0.666 0.633 0.530 -3% - 21%

P10 P11 P12

recall@1 0.440 0.443 0.480 0.484 0.099 -9% - 344% 0.773 0.765 0.775 0.761 0.775 -0% - 1% 0.719 0.719 0.699 0.699 0.709 0% - 2%
recall@5 0.695 0.664 0.714 0.732 0.397 -5% - 75% 0.887 0.889 0.868 0.883 0.879 -0% - 2% 0.927 0.907 0.897 0.907 0.897 2% - 3%
recall@10 0.726 0.712 0.747 0.763 0.590 -4% - 23% 0.924 0.922 0.910 0.926 0.893 -0% - 3% 0.948 0.928 0.908 0.918 0.898 2% - 5%
MAP 0.219 0.211 0.226 0.242 0.089 -9% - 146% 0.450 0.436 0.444 0.447 0.442 0% - 3% 0.564 0.554 0.544 0.544 0.524 1% - 7%
MRR 0.552 0.554 0.573 0.588 0.249 -6% - 121% 0.828 0.823 0.812 0.821 0.824 0% - 1% 0.805 0.785 0.775 0.805 0.785 0% - 3%

Table 8: Results of Mann-Whitney U Test between SETU and noClr, noStrc, noTF, noEmb (RQ3)

SETU vs.

noClr

SETU vs.

noStrc

SETU vs.

noTF

SETU vs.

noEmb

SETU vs.

noClr

SETU vs.

noStrc

SETU vs.

noTF

SETU vs.

noEmb

SETU vs.

noClr

SETU vs.

noStrc

SETU vs.

noTF

SETU vs.

noEmb

P1 P2 P3

recall@1 0.05 (0.11 N) 0.00 (0.41 M) 0.05 (0.11 N) 0.00 (0.30 S) 0.71 (-0.0 N) 0.31 (0.02 N) 0.48 (0.00 N) 0.67 (-0.0 N) 0.00 (0.24 S) 0.00 (0.29 S) 0.00 (0.42 M) 0.00 (0.28 S)
recall@5 0.88 (-0.0 N) 0.00 (0.18 S) 0.36 (0.02 N) 0.02 (0.14 N) 0.02 (0.11 N) 0.36 (0.01 N) 0.50 (-0.0 N) 0.01 (0.12 N) 0.05 (0.09 N) 0.00 (0.19 S) 0.12 (0.06 N) 0.00 (0.21 S)
recall@10 0.37 (0.02 N) 0.82 (-0.0 N) 0.71 (-0.0 N) 0.52 (-0.0 N) 0.91 (-0.0 N) 0.04 (0.09 N) 0.71 (-0.0 N) 0.28 (0.03 N) 0.09 (0.07 N) 0.00 (0.17 S) 0.00 (0.14 N) 0.09 (0.07 N)
MAP 0.01 (0.15 S) 0.00 (0.48 L) 0.02 (0.14 N) 0.00 (0.27 S) 0.66 (-0.0 N) 0.00 (0.29 S) 0.12 (0.06 N) 0.00 (0.13 N) 0.01 (0.12 N) 0.00 (0.18 S) 0.06 (0.09 N) 0.00 (0.15 S)
MRR 0.79 (-0.0 N) 0.00 (0.24 S) 0.24 (0.05 N) 0.67 (-0.0 N) 0.25 (0.03 N) 0.01 (0.12 N) 0.24 (0.03 N) 0.25 (0.03 N) 0.00 (0.19 S) 0.00 (0.28 S) 0.00 (0.26 S) 0.00 (0.32 S)

P4 P5 P6

recall@1 0.99 (-0.2 N) 0.89 (-0.1 N) 0.49 (0.00 N) 0.99 (-0.3 N) 0.16 (0.06 N) 0.00 (0.41 M) 0.00 (0.20 S) 0.00 (0.53 L) 0.61 (-0.0 N) 0.00 (0.37 M) 0.31 (0.02 N) 0.87 (-0.0 N)
recall@5 0.16 (0.08 N) 0.00 (0.23 S) 0.56 (-0.0 N) 0.02 (0.16 S) 0.09 (0.08 N) 0.00 (0.27 S) 0.04 (0.10 N) 0.00 (0.36 M) 0.06 (0.07 N) 0.00 (0.18 S) 0.04 (0.09 N) 0.96 (-0.0 N)
recall@10 0.05 (0.12 N) 0.00 (0.23 S) 0.00 (0.20 S) 0.00 (0.34 M) 0.09 (0.08 N) 0.01 (0.14 N) 0.29 (0.03 N) 0.00 (0.48 L) 0.14 (0.05 N) 0.01 (0.10 N) 0.84 (-0.0 N) 0.11 (0.06 N)
MAP 0.99 (-0.2 N) 0.02 (0.17 S) 0.56 (-0.0 N) 0.40 (0.02 N) 0.38 (0.01 N) 0.00 (0.37 M) 0.12 (0.07 N) 0.00 (0.36 M) 0.53 (-0.0 N) 0.00 (0.16 S) 0.39 (0.01 N) 0.44 (0.00 N)
MRR 0.60 (-0.0 N) 0.41 (0.01 N) 0.90 (-0.1 N) 0.18 (0.07 N) 0.40 (0.01 N) 0.00 (0.19 S) 0.99 (-0.1 N) 0.00 (0.37 M) 0.55 (-0.0 N) 0.00 (0.27 S) 0.52 (-0.0 N) 0.26 (0.03 N)

P7 P8 P9

recall@1 0.00 (0.57 L) 0.00 (0.69 L) 0.00 (0.61 L) 0.00 (0.83 L) 0.00 (0.19 S) 0.00 (0.23 S) 0.06 (0.06 N) 0.00 (0.30 S) 0.01 (0.06 N) 0.99 (-0.1 N) 0.00 (0.07 N) 0.00 (0.72 L)
recall@5 0.19 (0.10 N) 0.57 (-0.0 N) 0.77 (-0.0 N) 0.48 (0.00 N) 0.09 (0.05 N) 0.09 (0.05 N) 0.00 (0.13 N) 0.00 (0.32 S) 0.00 (0.07 N) 0.95 (-0.0 N) 0.00 (0.13 N) 0.00 (0.56 L)
recall@10 0.33 (0.05 N) 0.55 (-0.0 N) 0.53 (-0.0 N) 0.29 (0.06 N) 0.24 (0.02 N) 0.06 (0.06 N) 0.17 (0.03 N) 0.00 (0.16 S) 0.00 (0.08 N) 0.79 (-0.0 N) 0.00 (0.09 N) 0.00 (0.32 S)
MAP 0.00 (0.53 L) 0.00 (0.64 L) 0.00 (0.47 M) 0.00 (0.69 L) 0.01 (0.08 N) 0.00 (0.32 S) 0.00 (0.11 N) 0.00 (0.40 M) 0.00 (0.08 N) 0.96 (-0.0 N) 0.00 (0.17 S) 0.00 (0.63 L)
MRR 0.05 (0.18 S) 0.00 (0.32 S) 0.00 (0.30 S) 0.00 (0.34 M) 0.00 (0.11 N) 0.00 (0.18 S) 0.00 (0.11 N) 0.00 (0.33 M) 0.03 (0.06 N) 0.99 (-0.2 N) 0.42 (0.00 N) 0.00 (0.64 L)

P10 P11 P12

recall@1 0.78 (-0.0 N) 0.99 (-0.3 N) 0.99 (-0.3 N) 0.00 (1.0 L) 0.09 (0.08 N) 0.79 (-0.0 N) 0.17 (0.06 N) 0.66 (-0.0 N) 0.13 (0.05 N) 0.00 (0.13 N) 0.00 (0.12 N) 0.02 (0.10 N)
recall@5 0.00 (0.19 S) 0.99 (-0.1 N) 0.99 (-0.2 N) 0.00 (0.98 L) 0.45 (0.00 N) 0.10 (0.07 N) 0.20 (0.05 N) 0.15 (0.06 N) 0.00 (0.16 S) 0.00 (0.20 S) 0.00 (0.12 N) 0.00 (0.21 S)
recall@10 0.11 (0.06 N) 0.98 (-0.1 N) 0.99 (-0.1 N) 0.00 (0.57 L) 0.53 (-0.0 N) 0.57 (-0.0 N) 0.80 (-0.0 N) 0.06 (0.09 N) 0.02 (0.10 N) 0.00 (0.20 S) 0.00 (0.20 S) 0.00 (0.22 S)
MAP 0.15 (0.05 N) 0.96 (-0.0 N) 0.98 (-0.1 N) 0.00 (0.90 L) 0.39 (0.01 N) 0.58 (-0.0 N) 0.31 (0.03 N) 0.56 (-0.0 N) 0.27 (0.03 N) 0.00 (0.15 S) 0.00 (0.13 N) 0.00 (0.25 S)
MRR 0.53 (-0.0 N) 0.97 (-0.1 N) 0.99 (-0.2 N) 0.00 (0.99 L) 0.97 (-0.1 N) 0.17 (0.06 N) 0.29 (0.03 N) 0.37 (0.01 N) 0.00 (0.13 N) 0.00 (0.16 S) 0.49 (0.00 N) 0.00 (0.13 N)

Note that: The figures X (Y Z) respectively denotes p-value, Cli↵s delta, and interpretation of Cli↵s delta (i.e., Large (L), Medium (M), Small (S), and Negligible (N))

obtained by using three features (i.e., noClr, noStrc, noTF, or
noEmb). In rare cases, the performance obtained by using three
features is a little better than the performance of SETU.

We further conduct Mann-Whitney U Test for the five met-
rics between SETU and noClr, noStrc, noTF, noEmb. Table
8 shows the p-value, the Cli↵s delta, and the interpretation of
these tests (see Section 5.5 for details). There are totally 240
tests (12 projects, 4 types of features, 5 evaluation metrics).
Among them, in 35% (83/240) tests, the performance obtained
by SETU is significantly (i.e., p-value is less than 0.05) and sub-
stantially (i.e., Cli↵s delta is not negligible, i.e., small in 21%
tests, median in 5% tests, or large in 9% tests) better than the
performance of using three features. In other 65% (157/240)
tests, the performance obtained by SETU demonstrates negli-
gible di↵erence (i.e., Cli↵’s delta is negligible although some
p-value is less than 0.05) with the performance of using three
features. In none of the 240 tests, the performance of using
three features is significantly and substantially better than the
performance of SETU. This further indicates our proposed ap-

proach of combining these four types of features is e↵ective.

Among the four experiments with three types of features,
we can see that noEmb achieves relatively worse results. This
might because the word embedding feature focuses on the rela-
tionship of terms by considering the context they appear. With-
out this feature (i.e., noEmb), simply matching the occurrence
of terms, which is done by TF-IDF feature, cannot e↵ectively
detecting the duplicate reports. This implies word embedding
feature is the least replaceable feature, i.e., the performance
would undergo a relatively large decline if removing this fea-
ture.

We can also see that noClr achieves relatively better results
among the four experiments with three types of features. This
indicates image color feature is the most replaceable feature,
i.e., the performance would undergo a relatively small decrease
if removing this feature. This also implies that image color fea-
ture would sometimes bring noise in the duplicate detection.
We will present further discussion in Section 7.3.

13

Word embedding is the least replaceable feature, while im-
age color is the most replaceable feature. In addition, du-
plicate detection with all the four features can achieve rela-
tively best performance.

7. Discussion

7.1. Further Exploration of Results

Review 1-f

We have noticed that the performance of duplicate detection
di↵er in a large range for the projects. We conducted detailed
analysis and summarized two typical reasons for the low per-
formance in some projects.

Firstly, the low quality of screenshots could not e↵ectively
provide context-related information. We find that in some
projects (e.g., P7, P9), the screenshots of many crowdtesting re-
ports do not match with the textual descriptions. For example, a
report describes the short message firewall in its textual descrip-
tion. But its screenshot is about the message sending page (i.e.,
an intermediate step for the textual description). SETU can be
misled by these inaccurate screenshots. This is mainly because
the crowdworkers are unprofessional in software testing, and
proper training and guidance are needed in crowdtesting [43].

Secondly, the short textual descriptions can only provide lim-
ited information and make it hard for duplicate detection. An-
alytical tasks (such as classification, clustering, etc.) involving
short texts have long been recognized as challenging due to the
lack of context and owing to their sparseness [2, 32]. We find
that in project P1, the median term length of crowdtesting re-
ports is 16, and the median term length of reports of project P10
is only 9. This is another important reason for the low duplicate
detection performance of P10.

However note that, existing duplicate detection approaches
also su↵er from the performance variation in di↵erent experi-
mental projects. For example, the recall@1 is 42% - 57% in
[24], and the MAP is 29% - 51% in [17].

7.2. Further Exploration of Image Features

We have mentioned that noClr (i.e., duplicate detection with-
out image color feature) can sometimes achieve a slightly better
performance than SETU, e.g., in P4, P6 (see details in Table 7).
This indicates that image color feature would bring noise to the
duplicate detection in some cases.

We have examined the screenshots of the experimental
projects, and found that, in these projects (i.e., P4, P6), screen-
shots of di↵erent functionalities (i.e., denoting non-duplicate
reports) can sometimes have very similar color distribution (as
Figure 6b shows). This is somehow coincident with our com-
mon sense, because many apps pursue a unified interface de-
sign to make it more user-friendly. Under this case, the non-
duplicate reports might share very similar image color features,
and removing this feature (i.e., noClr) can instead increase the
detection performance.

More than that, we also noticed that, in some projects as P9,
P10, the performance achieved by noStrc (i.e., duplicate de-
tection without image structure feature) is a little better than
SETU.

We further examined the screenshots of these two projects
(i.e., P9, P10), and found that, the images’ structure for dif-
ferent functionalities (i.e., denoting non-duplicate reports) can
sometimes exert no much di↵erence, just like Figure 5b shows.
In this case, the non-duplicate reports would share very simi-
lar image structure features, and removing the structure feature
(i.e., noStrc) can instead increase the detection performance.

The above analysis indicates that image color feature can
occasionally bring noise and removing it can increase the per-
formance for duplicate detection, and so does the image struc-
ture feature. We have also analyzed the reasons and found that
if non-duplicate reports tend to share a similar color distribu-
tion, removing image color feature can achieve a better perfor-
mance; this also holds true for image structure feature when
non-duplicate reports usually share a similar image structure.

This motivates us to conduct feature selection for specific
crowdtesting projects to further improve the duplicate detection
performance. In practice, this can be done based on the received
reports of the project during the crowdtesting process. One can
examine whether a large number of non-duplicate reports share
the similar color distribution or structure, so as to suggest which
features to be used for detecting the new-coming reports for this
specific project.

7.3. Advantage of Hierarchical Approach

Our proposed SETU employs a hierarchical algorithm to de-
tect duplicate reports, i.e., first classify the reports into two
classes, and rank them separately. Under SETU, the class in-
formation indicates di↵erent levels of certainty of being dupli-
cates. In detail, the first class contains the reports whose screen-
shot similarity is large enough, thus they can be more likely to
be the duplicates of the query report. On the contrary, the sec-
ond class contains the reports whose screenshots are quite dif-
ferent with the query report, thus they are less likely to be the
duplicates of the query report.

Therefore, when we provide the users with the duplicate de-
tection results, these class information can give more insights
of the detection. For example, we encourage the users put more
focus on the first class since they have large probability to be
the true duplicates. For the second class, the users only need to
glance o↵ the reports to examine whether they are the true du-
plicates, especially when there have been a large number of rec-
ommended reports in the first class. We believe our two-classes
hierarchical approach can provide more practical assistance for
duplicate detection in real-world crowdtesting practice. Mean-
while, existing approaches treated all the reports as a whole,
thus could not provide this kinds of guidelines.

7.4. Alternative Combination Manner

The motivating examples in Section 2.2 indicate that the role
of screenshots is mainly to demonstrate the context-related in-
formation, while the role of textual descriptions is to provide

14

detailed illustration of the reported problem. This is why our
proposed approach SETU first uses screenshot similarity to fil-
ter the reports to first class and conducts the ranking separately.
However, one may still argue that other combination manners
could achieve better performance. We did conduct experiments
to explore whether other combination manners could outper-
form SETU in duplicate detection. Due to word limit, we pro-
vide the detailed results and analysis, as well as the experimen-
tal setup in the external link10. Here, we briefly summarize the
main findings.

We had designed three new combination manners, i.e., ad-
dCmb, multiplyCmb, and textFirst. Specifically, addCmb de-
notes adding screenshot similarity and textual similarity as one
similarity value and ranking the reports based on it, which is
a straight-forward manner. multiplyCmb denotes multiplying
the screenshot similarity with textual similarity as one simi-
larity value and ranking the reports based on it, which is bor-
rowed from [42]. textFirst denotes treating the reports with
high textual similarity as the first class and ranking them with
the screenshot similarity (the second class is treated as SETU
does).

We further conduct Mann-Whitney U Test for the five metrics
between SETU and addCmb, multiplyCmb, textFirst. There are
totally 180 tests (12 projects, 3 alternative combination man-
ners, 5 evaluation metrics). Among them, in 73% (131/180)
tests, the performance obtained by SETU is significantly (i.e.,
p-value is less than 0.05) and substantially (i.e., Cli↵s delta is
not negligible, i.e., small in 30% tests, median in 15% tests, or
large in 28% tests) better than the performance of other com-
bination manners. In other 27% (49/180) tests, the perfor-
mance obtained by SETU demonstrates negligible di↵erence
(i.e., Cli↵’s delta is negligible although some p-value is less
than 0.05) with the performance of other combination manners.
In none of the 180 tests, the performance of alternative combi-
nation manners is significantly and substantially better than the
performance of SETU. To summarize, the combination manner
proposed in SETU can achieve relatively highest performance
than other alternative combination manners.

7.5. Threats to Validity
The external threats concern the generality of this study.

First, our experiment data consists of 12 projects collected from
one of the Chinese largest crowdtesting platforms. We can not
ensure that the results of our study could generalize beyond this
environment in which it was conducted. However, the various
domains of projects and size of data relatively reduce this risk.
Second, all crowdtesting reports investigated in this study are
written in Chinese, and we cannot assure that similar results
can be observed on crowdtesting projects in other languages.
But this is alleviated due to the fact that we did not conduct se-
mantic comprehension, but rather simply tokenize sentence and
use word as token for experiment.

Internal validity of this study mainly questions the selection
and implementation of baselines. Because there is no approach

10https://github.com/wangjunjieISCAS/ISTDuplicateDetection

for duplicate crowdtesting report detection, we can only em-
ploy the approaches for duplicate bug report detection. More-
over, as the crowdtesting reports do not have the product and
component fields as the original approaches, we employ the
most similar field (i.e., test task id) for substitution. In addition,
as these three baseline approaches are not publicly available,
we implement our own versions rigorously following the steps
described in their papers.

Construct validity of this study mainly questions the data
processing method. We rely on the stored duplicate labels of
crowdtesting reports to construct the ground truth. However,
this is addressed to some extent due to the fact that testers in the
company have no knowledge that this study will be performed
for them to artificially modify their labeling. Besides, we have
verified its validity through random sampling and relabeling.

8. Conclusion

In this work, we propose SETU, which combines the infor-
mation from both the screenshots and the textual descriptions
to detect duplicate crowdtesting reports. We evaluate the e↵ec-
tiveness of SETU on 12 commercial projects with 3,689 reports
from one of the Chinese largest crowdtesting platforms, and the
results are promising.

Review 1-d Review 2-a Note that, the application scope of
SETU is not limited to crowdtesting reports. It can also be ap-
plied in traditional software testing, especially testing of GUI
system, where the screenshots can be easily obtained. The
adoption of SETU in other scenarios and further demonstration
of its feasibility will be conducted in future.

This paper is just the starting point of the work in progress.
We are closely collaborating with Baidu CrowdTest crowdtest-
ing platform and planning to deploy the proposed duplicate
crowdtesting report detection approach online. The feedback
from real-world case studies will further validate the e↵ective-
ness, as well as guide us in improving SETU. For the future
work, we would like to explore other features, as well as con-
duct intelligent selection of optimal features to further improve
the duplicate detection performance.

9. Acknowledgments

This work is supported by the National Natural Science
Foundation of China under grant No.61602450, No.6143200,
and China Scholarship Council. We would like to thank the
testers in Baidu for their great e↵orts in supporting this work.

10. Reference

[1] Alipour, A., Hindle, A., Stroulia, E., 2013. A contextual approach towards
more accurate duplicate bug report detection, in: MSR’13, pp. 183–192.

[2] Bairi, R.B., Udupa, R., Ramakrishnan, G., 2016. A framework for task-
specific short document expansion, in: CIKM’2016, pp. 791–800.

[3] Banerjee, S., Cukic, B., Adjeroh, D., 2012. Automated duplicate bug
report classification using subsequence matching, in: IEEE 14th Interna-
tional Symposium on High-Assurance Systems Engineering, IEEE. pp.
74–81.

15

[4] Banerjee, S., Syed, Z., Helmick, J., Cukic, B., 2013. A fusion approach
for classifying duplicate problem reports, in: ISSRE’13, pp. 208–217.

[5] Bengio, Y., Ducharme, R., Vincent, P., Janvin, C., 2003. A neural prob-
abilistic language model. The Journal of Machine Learning Research 3,
1137–1155.

[6] Berson, A., Smith, S., Thearling, K., 2004. An overview of data mining
techniques. Building Data Mining Application for CRM .

[7] Chen, N., Kim, S., 2012. Puzzle-based automatic testing: Bringing hu-
mans into the loop by solving puzzles, in: ASE’12, pp. 140–149.

[8] Chen, X., Lawrence Zitnick, C., 2015. Mind’s eye: A recurrent visual rep-
resentation for image caption generation, in: CVPR’15, pp. 2422–2431.

[9] Cli↵, N., 2014. Ordinal methods for behavioral data analysis. Psychology
Press.

[10] Cui, Q., Wang, J., Yang, G., Xie, M., Wang, Q., Li, M., 2017a. Who
should be selected to perform a task in crowdsourced testing?, in: COMP-
SAC’17, pp. 75–84.

[11] Cui, Q., Wang, S., Wang, J., Hu, Y., Wang, Q., Li, M., 2017b. Multi-
objective crowd worker selection in crowdsourced testing, in: SEKE’17,
pp. 1–6.

[12] Feng, Y., Chen, Z., Jones, J.A., Fang, C., Xu, B., 2015. Test report prior-
itization to assist crowdsourced testing, in: FSE’15, pp. 225–236.

[13] Feng, Y., Jones, J.A., Chen, Z., Fang, C., 2016. Multi-objective test report
prioritization using image understanding, in: ASE’16, pp. 202–213.

[14] G., M., R., R., A., B., S., L., 2016. Reproducing context-sensitive crashes
of mobile apps using crowdsourced monitoring, in: MOBILESoft’16, pp.
88–99.

[15] Gao, R., Wang, Y., Feng, Y., Chen, Z., Wong, W.E., 2018. Successes,
challenges, and rethinking–an industrial investigation on crowdsourced
mobile application testing. Empirical Software Engineering , 1–25.

[16] Gomide, V.H.M., Valle, P.A., Ferreira, J.O., Barbosa, J.R.G., da Rocha,
A.F., d. A. Barbosa, T.M.G., 2014. A↵ective crowdsourcing applied to us-
ability testing. Int. J. of Computer Science and Information Technologies
5, 575–579.

[17] Hindle, A., Alipour, A., Stroulia, E., 2016. A contextual approach towards
more accurate duplicate bug report detection and ranking. Empirical Soft-
ware Engineering 21, 368–410.

[18] Jalbert, N., Weimer, W., 2008. Automated duplicate detection for bug
tracking systems, in: IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC, pp. 52–61.

[19] Jiang, H., Chen, X., He, T., Chen, Z., Li, X., 2018. Fuzzy clustering of
crowdsourced test reports for apps. TOIT’2018 , 18:1–28.

[20] Liu, D., Zhang, X., Feng, Y., Jones, J.A., 2018. Generating descrip-
tions for screenshots to assist crowdsourced testing, in: SANER’2018,
pp. 492–496.

[21] Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A., 2001. Color
and texture descriptors. IEEE Trans. Cir. and Sys. for Video Technol. 11,
703–715.

[22] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., 2013. Dis-
tributed representations of words and phrases and their compositionality,
in: NIPS’13, pp. 3111–3119.

[23] Musson, R., Richards, J., Fisher, D., Bird, C., Bussone, B., Ganguly, S.,
2013. Leveraging the crowd: How 48,000 users helped improve lync
performance. IEEE Software 30, 38–45.

[24] Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C., 2012. Dupli-
cate bug report detection with a combination of information retrieval and
topic modeling, in: ASE’12, pp. 70–79.

[25] Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: A holistic
representation of the spatial envelope. Int. J. Comput. Vision 42, 145–175.

[26] Prifti, T., Banerjee, S., Cukic, B., 2011. Detecting bug duplicate reports
through local references, in: Proceedings of the 7th International Confer-
ence on Predictive Models in Software Engineering, pp. 8:1–10.

[27] Rocha, H., Valente, M.T., Marques-Neto, H., Murphy, G.C., 2016. An
empirical study on recommendations of similar bugs, in: SANER’16, pp.
46–56.

[28] Runeson, P., Alexandersson, M., Nyholm, O., 2007. Detection of dupli-
cate defect reports using natural language processing, in: ICSE’07, pp.
499–510.

[29] Sun, C., Lo, D., Khoo, S., Jiang, J., 2011. Towards more accurate retrieval
of duplicate bug reports, in: ASE’11, pp. 253–262.

[30] Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S., 2010. A discriminative
model approach for accurate duplicate bug report retrieval, in: ICSE’10,

pp. 45–54.
[31] Sureka, A., Jalote, P., 2010. Detecting duplicate bug report using charac-

ter n-gram-based features, in: APSEC’10, pp. 366–374.
[32] Tang, J., Wang, Y., Zheng, K., Mei, Q., 2017. End-to-end learning for

short text expansion, in: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1105–
1113.

[33] Tian, Y., Sun, C., Lo, D., 2012. Improved duplicate bug report identifica-
tion, in: CSMR’12, pp. 385–390.

[34] Vinyals, O., Toshev, A., Bengio, S., Erhan, D., 2017. Show and tell:
Lessons learned from the 2015 mscoco image captioning challenge. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 652–663.

[35] Wang, J., Cui, Q., Wang, Q., Wang, S., 2016a. Towards e↵ectively test re-
port classification to assist crowdsourced testing, in: ESEM’16, pp. 6:1–
6:10.

[36] Wang, J., Cui, Q., Wang, S., Wang, Q., 2017. Domain adaptation for
test report classification in crowdsourced testing, in: ICSE-SEIP’17, pp.
83–92.

[37] Wang, J., Wang, S., Cui, Q., Wang, Q., 2016b. Local-based active clas-
sification of test report to assist crowdsourced testing, in: ASE’16, pp.
190–201.

[38] Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J., 2008. An approach
to detecting duplicate bug reports using natural language and execution
information, in: ICSE’08, pp. 461–470.

[39] Witten, I.H., Frank, E., 2005. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann.

[40] Xie, M., Wang, Q., Yang, G., Li, M., 2017. Cocoon: Crowdsourced
testing quality maximization under context coverage constraint, in: IS-
SRE’17, pp. 316–327.

[41] Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S., 2016. Predicting
semantically linkable knowledge in developer online forums via convolu-
tional neural network, in: ASE’16, pp. 51–62.

[42] Yang, X., Lo, D., Xia, X., Bao, L., Sun, J., 2016. Combining word em-
bedding with information retrieval to recommend similar bug reports, in:
ISSRE’16, pp. 127–137.

[43] Zhang, X., Chen, Z., Fang, C., Liu, Z., 2016. Guiding the crowds for
android testing, in: ICSE’2016, pp. 752–753.

[44] Zhou, J., Zhang, H., 2012. Learning to rank duplicate bug reports, in:
Proceedings of the 21st ACM international conference on Information
and knowledge management, pp. 852–861.

16

