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Context: Bug report assignment, namely, to assign new bug reports to developers for timely and effective bug

resolution, is crucial for software quality assurance. However, with the increasing size of software system, it

is difficult to assign bugs to appropriate developers for bug managers.

Objective: This paper propose an approach, called KSAP (K-nearest-neighbor search and heterogeneous prox-

imity), to improve automatic bug report assignment by using historical bug reports and heterogeneous net-

work of bug repository.

Method: When a new bug report was submitted to the bug repository, KSAP assigns developers for the bug

report by using a two-phase procedure. The first phase is to search historically-resolved similar bug reports

to the new bug report by K-nearest-neighbor (KNN) method. The second phase is to rank the developers who

contributed to those similar bug reports by heterogeneous proximity.

Results: We collected bug repositories of Mozilla, Eclipse, Apache Ant and Apache Tomcat6 projects to in-

vestigate the performance of the proposed KSAP approach. Experimental results demonstrate that KSAP can

improve the recall of bug report assignment between 7.5–32.25% in comparison with the state of art tech-

niques. When there is only a small number of developer collaborations on common bug reports, KSAP has

shown its excellence over other sate of art techniques. When we tune the parameters of the number of

historically-resolved similar bug reports (K) and the number of developers (Q) for recommendation, KSAP

keeps its superiority steadily.

Conclusion: This is the first paper to demonstrate how to automatically build heterogeneous network of a

bug repository and extract meta-paths of developer collaborations from the heterogeneous network for bug

report assignment.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Software projects commonly adopt a bug repository such as

Bugzilla and JIRA to manage bug reports during development and

maintenance. When a bug of the software was found, a bug report

is created and submitted to the bug repository. A bug report usually

describes the details of the found bug such as its reproduction proce-

dure and use context. Then, a project member, called bug triager or

bug manager, will examine the submitted bug report and make a de-

cision as to whom the new bug report should be assigned for its reso-

lution. This procedure, called bug report assignment, has great impact

on quality of the software. An incorrect bug report assignment would

increase the time taken for fixing a bug [1] and therefore increase the

cost of the project [2].
∗ Corresponding author. Tel.: +86 13552250923.
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On the one hand, with the increasing size and complexity of cur-

ent software systems, more and more bugs were submitted to the

ug repository of the project by developers and users. For example,

bout 200 bug reports were filed to the Eclipse bug repository per

ay close to its release dates, and for the Debian project, this number

s about 150 [3]. On the other hand, with the prevalence of globally

istributed software developer teams, it is difficult to find appropri-

te developers to resolve these bugs for bug triagers [8]. For instance,

bout two person-hours per day have to be spent on bug triage in the

clipse project and nearly 25% of Eclipse bug reports were reassigned

ue to inaccurate manual bug assignment [3]. Thus, there is a rising

nterest in automating the process of bug report assignment [2–5].

After a bug was fixed, it will be marked as “resolved” or “fixed”

n the open bug repository. Motivated by this observation, bug report

ssignment is typically modeled as a classification problem as label-

ng the target bug report with a developer as done by Anvik et al. [4]

nd Cubranic et al. [5]. However, we hold that in fact a bug resolu-

ion coming into being is with contribution of a group of developers.

http://dx.doi.org/10.1016/j.infsof.2015.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.10.004&domain=pdf
mailto:zhangwen@mail.buct.edu.cn
mailto:wangsong@uwaterloo.ca
mailto:wq@itechs.iscas.ac.cn
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Fig. 1. A snapshot of the bug report for bug #333160 of Mozilla project.
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or instance, the Mozilla bug report #333160 “Document the Recently

losed Tabs menu and the keyboard shortcut”1 as shown in Fig. 1 in-

olves 4 developers’ collaborative contribution with 19 comments in

iscussion. We observed that on average, each Mozilla bug report in-

olves no less than 3 developers’ contribution. Each Eclipse bug re-

ort involves no less than 5 developers’ conversations on average [3].

hus, we regard that bug reports are resolved with collaborative con-

ribution of developers rather than “one developer dominating the

hole bug report resolution” [6]. Following this line of motivation,

e have conducted a previous study on using social network analysis

o model the collaboration of developers in bug resolution [7].

However, two problems are still remaining for more work. First, a

omogenous network is incapable of modeling developers’ collabora-

ion on bug resolution [9–11]. Second, the clique method, which links

ll developers who contributed to a common bug report, is unsuit-

ble for network modeling of developer collaboration. The problem

ith the clique method is that many “exceptional” developers partic-

pated in crowding activities but they seldomly participated in non-

rowding bug report resolution [11]. In this paper, we refer to a bug

eport as a crowding bug report if it has crowding (i.e. the upper three

uartiles) participants and we refer it as a non-crowding bug report if

t has a small number (usually the first quartile) of participants. Using

he clique method, it seems that those “exceptional” developers con-

ribute to resolution of a large number of bug reports because they

ave a large number of links to other developers. However, in fact,

hose “exceptional” developers merely contributed a small number

f crowding bug reports. In real practice of bug report resolution, two

evelopers (dev1 and dev2) can collaborate with each other via differ-

nt activities [12]. For instance, one developer (dev1) can toss a bug

eport to another developer (dev2) [1] or make a comment for a bug

eport (br1) which is under the same component as another bug re-

ort (br2) meanwhile br2 is commented by another developer (dev2).

In this paper, we propose an approach, called KSAP, to improve the

tate of art bug report assignment approaches using KNN search and
1 https://bugzilla.mozilla.org/show_bug.cgi?id=333160.

p

m

a

eterogeneous proximity. For each new incoming bug report, KSAP

rstly searches similar bug reports from historically-resolved bug re-

orts, and then ranks the developers who contributed to those sim-

lar bug reports for recommendation. We claim the contribution of

his paper mainly in three aspects. Firstly, we propose a method to

onstruct a heterogeneous network of a bug repository in Section 3.

econdly, we develop KSAP for automatic bug report assignment

ased on heterogeneous proximity in Section 4. Thirdly, we conduct

xperiments to examine the performances of KSAP compared with

he state of art techniques on automatic bug report assignment in

ection 5. Section 6 presents threats. Section 7 presents related work

nd Section 8 concludes the paper.

. Background

.1. Bug report

A bug report consists of many predefined meta-fields and free-

orm textual contents. Predefined meta-fields describe the basic

ttributes of a bug report such as “report id”, “reporter”, “product

d”, “component id”, etc. “product id” stands for the product in

hich the bug was found, and “component id” stands for the spe-

ific component of the product. The free-form textual content of

bug report refers to the natural language description of the bug,

ncluding description of the bug report and comments posted by

evelopers.

Fig. 1 shows Mozilla bug #333160. The meta-fields are surrounded

ith red dotted line. The developer who reported the bug and the

escription of the bug are surrounded with purple dotted line. The

evelopers who made comments to the bug report are surrounded

ith green dotted line. The comments are surrounded with blue dot-

ed line. We regard that the developers who reported and made com-

ents to the bug report are interested in the bug report and have

otential in resolving the bug. Thus, the problem of bug report assign-

ent can be simplified as assigning new bug reports to the interested

nd potential developers in the project.

https://bugzilla.mozilla.org/show_bug.cgi?id=333160
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Fig. 2. Schema of entities and relations of a bug repository.

Table 1

The 10 types of relations between the 5 types of entities in the schema.

Type no. Connotation list Cardinality

1 report|assign|toss|fix|close|reopen|be assigned

to|be tossed

1:n

2 report−1

|assign−1|toss−1|fix−1|close−1|reopen−1|be

assigned to|be tossed to

1:1

3 comment−1 1:n

4 comment 1:1

5 write 1:n

6 write−1 1:1

7 contain−1 1:1

8 contain 1:n

9 contain−1 1:1

10 contain 1:n
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2.2. Problem formulation

With the above brief introduction of bug report and its compo-

nents, we define four core concepts involved in bug report assign-

ment as follows. We extend the previous work [7] by introducing

meta-fields and differentiated bug reporter and commenters in the

definition.

Definition 1. Bug report bri: a bug report bri can be represented by

using a quadruple as bri = {mi, di, dev(r)
i

, dl
(c)
i

}, where mi denotes the

meta-fields of bri, di denotes the document of bri, dev(r)
i

denotes the

developer who reported the bug and dl
(c)
i

denotes the commenter list

of bri containing the developers who commented to bri.

Definition 2. Meta-fields mi of bri: we use its component ci and prod-

uct pi as two elements of mi i.e. mi = {ci, pi}.

Definition 3. Commenter list dl
(c)
i

of bug report bri: for a historical

bug report bri, its commenter list dl
(c)
i

= {dev(c)
i,1

, . . . , dev(c)

i,|dl
(c)
i

|} con-

tains the developers who make comments to the bug report bri. For a

new bug report, its developer list dl
(c)
i

is empty.

Definition 4. Document di of bug report bri: for a historical

bug report bri, we use its description dsi and comments cti =
{cti,1, . . . , cti,|cti|} posted by its commenters dl

(c)
i

to denote its docu-

ment di, i.e. di = {dsi, cti}. Note that a developer devi, j can make more

than one comments for bri. For a new bug report brnew, we used its

description dsnew to denote its document, i.e. dnew = {dsnew}.

With the above definition, the problem of bug report assign-

ment can be simplified as the following. Given historical bug reports

{br1, . . . , bri, . . . , brm} (m is the size of bug report collection) in the

open bug repository and a new bug report brnew, we need to find

Q (a predefined number) developersdlnew = {devnew,1, . . . , devnew,Q}
(where dlnew⊆dl1∪...∪dli∪...∪dlm and |dlnew| = Q) who are capable of

contributing to brnew resolution.

3. Heterogeneous network of bug repository

Traditional homogenous network is composed of merely single

type of nodes (referred to as entities hereafter) and single type of

relations between the nodes, such as the nodes as papers and the

relation as “cite” in citation network and the nodes as emails and the

relation as “send to” in email network [22]. However, a heterogeneous

developer network contains multiple types of nodes, such as develop-

ers, bugs, comments, components, and products, and multiple types

of relations between these nodes [21]. In this section, we construct

a heterogeneous network of a bug repository and extract developers’

collaboration from the heterogeneous network. For consistence, we

use nodes and entities in heterogeneous network interchangeably.

3.1. Entities and relations

We consider 5 types of entities in our heterogeneous network: de-

veloper, bug, comment, component, and product. For abbreviation,

we use their first capital letters to denote these entities, namely D for

developers, B for bug reports, C for components, and P for products.

We use T to denote comments in order to distinguish the abbreviation

of component and comment.

During software development, the entities in bug reposito-

ries interact with each other frequently. These interactions de-

note various relations between entities. Specifically, the interac-

tion between developer and comment can be expressed by the

relations “write” and “written by” (denoted as write−1); bug

and comment by “comment” and “commented by” (denoted as
omment−1); component and bug, product and component by “con-

ain” and “contained in” (denoted as contain−1). Previous stud-

es [13,23] show that interactions between developers and bugs

ave multiple relations. We use “report/assign/toss/fix/close/reopen”

o denote the multiple relations from developers to bugs and

report−1/assign−1/toss−1/fix−1/close−1/reopen−1” to denote the

ultiple relations from bugs to developers.

Fig. 2 illustrates the schema derived from our analysis of the en-

ities and their relations in a bug repository. In the schema, nodes

enote entities, and edges denote relations between entities. Enti-

ies can connect with each other via different meta-paths, e.g., two

evelopers can be connected via a “developer–bug–developer” path

D–B–D), “developer–comment–bug–comment–developer” path (D–

–B–T–D) and so on.

Table 1 shows the 10 types of relations between the 5 types of en-

ities in Fig. 2. The first column corresponds to the type number, the

econd column describes the connotation of the relation and the third

olumn describes the cardinality of the two entities. For instance,

he relation type No. 1 D→B, with size of the connotation list as 8

nd the cardinality as 1:n, refers to that one (1) developer can re-

ort|assign|toss|fix|close|reopen|be assigned to|be tossed more than

ne (n) bug reports. The relation type No. 2 B→D, also with size of

onnotation list as 8 and the cardinality as 1:1, refers to that a bug re-

ort (1) can be (report−1 |assign−1|toss−1|fix−1|close−1|reopen−1) by

r be assigned |tossed to only one (1) developer. By analogy, all the

ther relations can be explained explicitly.

.2. Building heterogeneous network

In order to build the heterogeneous network HN of a bug reposi-

ory, we need to parse each bug report and link the 5 types of entities

ithin it. Taking the bug report in Fig. 1 as an example, developers

nvolved are “Mark Pilgrim”, “Robert Strong”, “Mike Beltzner”, “Mike

onner” and “timeless”. The bug report is “#333160”, its component

s “Installer” and its product is “Firefox”. The comments are the 4 tex-

ual contents surrounded with blue dotted line. Table 2 shows the
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Table 2

The activity log of bug report #333160 of Mozilla project.

Who When What Removed Added

Mark Pilgrim 2006-10-12 11:30:02 Assignee Mark Pilgrim Robert Strong

Status ASSIGNED NEW

Robert Strong 2006-10-18 16:38:25 Assignee Robert Strong Mike Beltzner

Mike Beltzner 2006-10-26 12:02:22 Status New Assigned

Mike Beltzner 2007-01-03 16:44:14 Priority P3 P5

Mike Beltzner 2007-03-01 16:27:31 Status Assigned Resolved

Resolution – Fixed

Bug333160 Installer Firefox 

Comment 4 Comment 3 

Comment 2 Comment 1 

Mike Beltzner 

Mark Pilgrim 

Mike Conner 

timeless

report|tossed 

reported-1

contain-1

contain

contain
-1

contain

write

write-1

write
-1

write

write
-1

write

comment

assigned to

comment
-1

write

write
-1

comment

comment
-1

comment
comment

-1

tossed|assigned with

assigned to

assigned with

Robert Strong 

comment
comment

-1

Fig. 3. The heterogeneous network of Mozilla bug report #333160.
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ctivity log of Mozilla bug report #333160, we see that “Mark Pilgrim”

ssigned this bug to himself and then tossed it to “Robert Strong”, and

ater “Robert Strong” tossed this bug to “Mike Beltzner”.

From the network schema, we firstly parse the bug report to ex-

ract the developers who report and comment the bug report, as well

s its component and product. We then parse its activity log to ex-

ract the relation “reports|tosses|assignes|fixes|closes| reopens|(is as-

igned to)|(is tossed) ” between developers. Fig. 3 shows the con-

tructed heterogeneous network using Mozilla bug report #333160.

e use red boxes to denote developers, blue box for bug report, green

oxes for comments, purple box for component and yellow box for

roduct.

To formalize the above process, we represent a bug report bri as

ri = {{ci, pi}, {dsi, {cti,1, . . . , cti,|cti|}}, dev(r)
i

, {dev(c)
i,1

, . . . , dev(c)

i,|dl
(c)
i

|}}
ased on the definitions in Section 2.2. Furthermore, we

xtract the developers from the activity log2 of bri as dl
(a)
i

=
dev(a)

i,1
, . . . , dev(a)

i,|dl
(a)
i

|}. With these expressions, the procedure of

uilding a heterogeneous network for a bug repository can be

escribed in Fig. 4.

The basic idea of the algorithm in Fig. 4 is that for each bug report,

e enumerate all instances of the entities and their relations shown

n Fig. 2 and append them into the heterogeneous network HN one by

ne. Lines 2–5 are used to add the developer who submitted the bug

eport to the heterogeneous network HN. Lines 6–10 add the devel-

pers who changed the bug report status to the heterogeneous net-

ork HN. Lines 12–17 add the comments of the bug report bri and

ommenters to the heterogeneous network HN. Lines 19–24 add the

omponent and product to the heterogeneous network HN.

.3. Developers’ collaboration extraction

All the two developers’ collaboration can be described by a

eta-path which starts from D and ends with D within the
2 We only retained the developers who changed status of the bug report in activity

og.

p

o

s

e

etwork schema shown in Fig. 2. For instance, D–B–D can be

sed to characterize the collaboration that one developer (D) re-

orts|tosses|assignes |fixes|closes|reopens|(is assigned to)|(is tossed)

bug (B) which is reported|tossed|assigned|fixed| closed|reopened

y or is assigned|tossed to another developer (D) .

With this intuition, we adopt graph traverse [17] to produce all

he paths between D and D in the network schema. We remove paths

hat include trivial sub-paths such as B–T–B, C–B–C, etc., in building

he heterogeneous developer network. The reason is that sub-path B–

–B stands for a bug (B) is commented by a comment (T) and mean-

hile the same comment (T) also comments on another bug (B). That

eans the comment (T) is with two bugs at the same time. This is a

are case because a comment (T) can comment on only one bug. For

he sub-path C–B–C, it is impossible that a bug report belongs to two

omponents at the same time. Thus, we use Pruning Rule 1 to remove

ll the unlikely paths when producing all the paths starting from D

nd ending with D from the network schema.

Pruning Rule 1. If there are two relations X→Y and Y→X in a path,

nd the relation X→Y has size of connotation list as 1 and proportion

s 1:n, and the relation Y→X has size of connotation list as 1 and

roportion as 1:1, then the path X–Y–X is pruned for further consid-

ration.

The algorithm for finding all the meta-paths between D and D in

he network schema is illustrated in Fig. 5. The input of the algo-

ithm is a starting node, an ending node and the network schema

hown in Fig. 2. In this context, both starting and ending nodes are

he same as D. Lines 1–7 are the function generatePath that gener-

tes all the paths that start from startNode and end with endNode

n the network schema. Lines 8–14 are the function generatePathR

hat recursively generates paths from path to the endNode. Lines 15–

6 are the function oneStepPath that returns all the paths which are

f one step from the given path and startNode. We should notice

hat the function isPruned(temPath) was used to implement Pruning

ule 1 to decide whether or not a path is possible. Once all one-step

aths from the startNode are generated, we need to decide whether

r not each ending node of these paths is equal to endNode. If the an-

wer is positive, then we find a path that starts from startNode and

nds with endNode. Otherwise, we followed the path to walk on the
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============================================== 
Input: the bug reports in the bug repository, i.e. { 1br ,…, ibr ,…,

mbr } and its activity logs; 
Output: a heterogeneous network HN; 
============================================== 

1  for each
i

br in { 1br ,…, ibr ,…, mbr } { 

2    nodeB = new node(
i

br , B); 

3    nodeD = new node( ( )r
idev , D); 

4    linkBD = new link(nodeB,nodeD,1);HN.add(linkBD); 
5    linkDB = new link(nodeD,nodeB,2);HN.add(linkDB); 

6    for each ( )
,
a

i jdev  in ( )
( ) ( )
,1 ,| |

{ ,..., }a
i

a a
i i dl

dev dev { 

7      nodeD = new node( ( )
,
a

i jdev , D); 

8      linkBD = new link(nodeB,nodeD,1);HN.add(linkBD); 
9      linkDB = new link(nodeD,nodeB,2);HN.add(linkDB); 
10   } 
11for each ,i jct  in ,1 ,| |{ ,..., }ii i ctct ct { 

12     nodeT = new node( ,i jct ,T); 

13     linkBT = new link(nodeB,nodeT,3);HN.add(linkBT); 
14     linkTB = new link(nodeT,nodeB,4);HN.add(linkTB); 
15     nodeD = new node( ( )

,
c

i jdev , D); 

16     linkDT = new link(nodeB,nodeT,5);HN.add(linkDT); 
17     linkTD = new link(nodeT, nodeB,6);HN.add(linkTD); 
18   } 
19   nodeC = new node( ic ,C); 

20   linkBC = new link(nodeB, nodeC,7);HN.add(linkBC); 
21   linkCB = new link(nodeC, nodeB,8); HN.add(linkCB); 
22   nodeP = new node( ip ,C); 

23   linkCP = new link(nodeC, nodeP,9); HN.add(linkCP); 
24   linkPC = new link(nodeP, nodeC,10);HN.add(linkPC); 
25 } 
============================================== 

Fig. 4. The algorithm of building a heterogeneous network for a bug repository.

============================================= 
Input: startNode, endNode, schema 
Output: pathList 
=============================================
1  generatePath(startNode, endNode, schema) { 
2 tempPathList = oneStepPath(null,startNode,schema);
3    for each path in tempPathList 
4    if path.endNode==endNode 
5  pathList.add(path); 
6    else generatePathR(path, endNode, graph); 
7} 
-----------------------------------------------------------------------------
8  generatePathR(path,endNode, schema){ 
9   tempPathList = oneStepPath(path, path.endNode, schema);
10  for each path in tempPathList 
11   if path.endNode==endNode 
12   pathList.add(path); 
13  else generatePath(path,endNode,schema);
14} 
-----------------------------------------------------------------------------
15  oneStepPath(path, startNode, schema){
16    tempPathList = new List;  
17    if path==null 
18       for each link in schema 
19          if link.startNode==startnode 
20  tempPathList.add(link) 
21    else for each link in schema 
22       if link.endNode==path.startNode 
23tempPath = combine(path,link);
24if(!isPruned(tempPath)) 
25 tempPathList.add(tempPath); 
26    return tempPathList;} 
============================================= 

Fig. 5. The algorithm for generating meta-paths between entities from the network

schema.

====================================== 
Input: meta-path D-B-D, developer pair (devi,devj),

 heterogeneous network HN
Output: A set of instances of meta path D-B-D InSet. 
====================================== 
1 for each link l in HN
2  if l.startNode is devi and l.endNode.type is B 
3 for each link l’  in HN
4     if l.endNode is l’ .startNode and l’ .endNode is devj 

5         InSet.add(new MPInstance(l,l’ ,1));
======================================= 

Fig. 6. The algorithm of extracting instances of meta-path D-B-D from the heteroge-

neous network HN.
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network step by step recursively until all the paths are either ending

with endNode or pruned.

After finding all the paths starting from D and ending with

D in the network schema, we also need to eliminate repetitive

paths such as D–B–T–D and D–T–B–D because that a developer

D reports|tosses|assignes|fixes|closes| reopens|(is assigned with)|(is

tossed with) a bug report (B) that has a comment T written by another

developer D is of the same meaning as that a developer D writes a

comment T for a bug report B reported|tossed|assigned|fixed|closed|

reopened by or assigned|tossed to another developer D. Thus we

use the Pruning Rule 2 shown below to eliminate all the repetitive

paths.

Pruning Rule 2. For two paths X–Y–…–Z and Z–…–Y–X, if

they are of same length, and all links in one path X–Y–…–Z are

reversely ordered in another path Z–…–Y–X, then we call the

two paths repetitive and eliminate either of them in output path

list.

Table 3 lists the 9 meta-paths output from the algorithm in Fig. 5

using D as startNode and endNode. Their meaning is explained in

the second column. We use the 9 meta-paths to extract developer

collaboration in a bug repository. Firstly, we regulate a developer as

the starting node, and use one of the meta-paths in Table 3 for guid-

ance. Secondly, we traverse the whole graph to find all the paths those

are instances of the guided meta-path. Taking the network shown in

Fig. 3 for an example, by the meta-path “D-B-D”, we found the collab-

oration among “Mike Beltzner”, “Mark Pilgrim” and “Robert Strong”

because “Mark Pilgrim” reported Mozilla bug report #333160 and the

bug report was then tossed to “Robert Strong” and next to “Mike

Beltzner”. By the meta-path “D–B–T–D”, we found the collaboration
etween one of “Mike Beltzner”, “Mark Pilgrim” and “Robert Strong”,

nd one of “Mike Conner” and “timeless” because “Mike Conner” and

timeless” commented on the bug report. By the meta-path “D–T–

–T–D”, we found the collaboration among “Mike Beltzner”, “Robert

trong”, “Mike Conner” and “timeless” because they four developers

ommented on the bug report.

Specifically, for the meta-path D–B–D, we firstly find devi (D) in

N, and then traverse all the entity nodes as bugs (B) adjacent to devi

n HN, and finally find devj (D) adjacent to the bugs (B) in HN. Con-

equently, all the instances of meta-path D–B–D starting from devi

nd ending with devj are extracted from the heterogeneous network

N. We can describe this procedure in Fig. 6. Line 2 is used to find

he links of D–B in the heterogeneous network HN. Line 3 to Line 4 is

sed to find the links of B–D in the heterogeneous network HN. Line 5

s used to compose the instances of meta-path D–B–D and add them

o an instance set InSet. Here, new MPInstance(l, l’,1) means an in-

tance that is of type 1 in Table 3 and comprises two links l (D–B) and

’ (B–D). By analogy, we can adapt the algorithm in Fig. 6 to extract all

he instances from the heterogeneous network for all the meta-paths

isted in Table 3.
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Table 3

Meta-paths used in building heterogeneous developer network.

No. Meta-path Meaning of the relation

1 D–B–D One developer (D) reports|tosses|assignes|fixes|closes| reopens|(is assigned with)|(is tossed with) a bug (B) that was

reported|tossed|assigned|fixed|closed| reopened by or is assigned|tossed to another developer (D)

2 D–B–T–D One developer (D) reports|tosses|assignes|fixes|closes| reopens|(is assigned with)|(is tossed with) a bug (B) that has comment (T) made

by another developer (D)

3 D–T–B–T–D One developer (D) make a comment (T) for a bug (B) which has another comment (T) made by another developer (D)

4 D–B–C–B–D One developer (D) reports|tosses|assignes|fixes|closes|reopens|(is assigned with)|(is tossed with) a bug (B) of a component (C) and

another bug (B) of the same component(C) was reported|tossed|assigned|fixed|closed|reopened by or is assigned|tossed to another

developer (D)

5 D–B–C–B–T–D One developer (D) reports|tosses|assignes|fixes|closes|reopens|(is assigned with)|(is tossed with) a bug (B) of a component (C) and

another bug (B) of the same component(C) has a comment (T) made by another developer (D)

6 D–T–B–C–B–T–D One developer (D) make a comment (T) for a bug (B) which is of the same component (C) as another bug (B) that has a comment (T)

made by another developer (D)

7 D–B–C–P–C–B–D One developer (D) reports|tosses|assignes|fixes|closes|reopens|(is assigned with)|(is tossed with) a bug (B) of a product (P) and another

bug (B) of the same product(P) is reported|tossed|assigned|fixed closed|reopened by or is assigned|tossed to another developer (D)

8 D–B–C–P–C–B–T–D One developer (D) reports|tosses|assignes|fixes|closes|reopens|(is assigned with)|(is tossed with) a bug (B) of a product (P) and another

bug (B) of the same product(P) has a comment (T) made by another developer (D)

9 D–T–B–C–P–C–B–T–D One developer (D) make a comment (T) for a bug (B) which is of the same product (P) as another bug (B) that has a comment (T) made

by another developer (D)

Fig. 7. The overview of KSAP.
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3 http://ftp.uspto.gov/patft/help/stopword.htm.
4 http://tartarus.org/∼martin/PorterStemmer/.
. KSAP – the proposed approach

This section proposes KSAP that utilizes K-nearest-neighbor

earch and heterogeneous proximity for automatic bug report assign-

ent. The overview of KSAP is shown in Fig. 7.

.1. K-nearest-neighbor search

K-nearest-neighbor (K-NN) classification is a type of instance-

ased lazy learning that classifies objects based on the top K similar

raining objects in the feature space [14]. For simplicity, we adopt the

asic idea of K-NN classification to search the top K similar histori-

al bug reports of a new bug report to establish the similar bug re-

ort set of the new bug report. The cosine similarity is used to mea-

ure similarity of the document vector of the new bug report dnew

nd the document vector of a historical bug report di as defined in

ection 2.2.

Natural language processing (NLP) is employed to transfer docu-

ents of bug reports di into numeric vectors that can be processed by

-nearest-neighbor search. The processing includes two steps: docu-

ent indexing and term weighting. Tokenization, stop word elimi-

ation and stemming are employed to preprocess the documents of

oth historical and new bug reports and vector space model [15] is

mployed to index the document contents using the terms occurring

n the documents. The 100 stop words from USPTO (United States
atent and Trademark Office) patent full-text and image database3

s used for stop word elimination. Porter stemming algorithm was

sed for English word stemming processing4. TF-IDF that is ex-

ensively studied in our previous research [16] is used for term

eighting.

When a new bug report arrives, KSAP firstly transfers the new bug

eport into a document vector dnew = {wnew,1, . . . , wnew,|dnew|}. Then,

he documents of historical bug reports in the open bug repository

re used to compute cosine similarities against the document vector

f the new bug. Finally, the predefined number (K) of historical bug

eports, whose documents are of the top K similarities with dnew, are

xtracted from the open bug repository to construct the similar bug

eport set of brnew. That is, SimSet(brnew, k) = {brsimilar
1

, . . . , brsimilar
k

}.

.2. Heterogeneous proximity ranking

To derive the Q developers as formulated in Section 2.2, we

rstly extract the attached developers from the historical bug re-

orts in SimSet(brnew, k), i.e. to construct a candidate developer list

lsimilar = dlsimilar
1

∪ ... ∪ dlsimilar
k

. Those attached developers are the

ommenters in dl
(c)
i

. Although in most cases all the developers in

l
(c)
i

and dl
(a)
i

together contributed to the bug resolution, we found

http://ftp.uspto.gov/patft/help/stopword.htm
http://tartarus.org/~martin/PorterStemmer/
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that some developers who are wrongly assigned with the bug report

tossed the bug report back to the bug manager. Thus, those wrongly

assigned developers actually do not contribute to bug resolution. This

is reason that we only use the developers in dl
(c)
i

as candidates for

recommendation.

In addition to document similarity, we also consider matching

meta-fields of new bug reports with that of historical bug reports.

With the guidance of meta-paths shown in Table 3 and the Algorithm

shown in Fig. 6, we can easily extract the instances of the meta-paths

from the heterogeneous network HN. For each developer devi in the

candidate developer list dlsimilar, we enumerate the developer against

all the other developers devj in dlsimilar to extract all the collaboration

between devi and all the developers in dlsimilar using the 9 meta-paths

listed in Table 3.

We can see from Table 3 that the meta-paths can be categorized

into 3 types based on developers’ collaboration. The first type is that

two developers collaborate on common bugs (No. 1, 2 and 3). The sec-

ond type is that two developers collaborate on common components

(No. 4, 5 and 6). The third type is that two developers collaborate

on common products (No. 7, 8 and 9). We indicate the type of meta-

path instance in Line 5 of the algorithm shown in Fig. 6. Thus, after

extracting instances of meta-paths among developers in dlsimilar, we

compute three types of heterogeneous proximity of two developers

as follows:

HetPro(B)(devi, dev j) = Num1(devi, dev j) + Num2(devi, dev j)

+ Num3(devi, dev j) (1)

Eq. (1) is used to measure the heterogeneous proximity of two de-

velopers devi and devj in dlsimilar on common bugs. Here, Num1(devi,

devj) is the number of bug reports on which the two developers’

collaboration relations belong to No.1 shown in Table 3. By analogy,

Num2(devi, devj) and Num3(devi, devj) are the numbers of bug reports

on which the two developers’ collaboration relations belong to meta-

paths No.2 and No.3, respectively.

HetPro(C)(devi, dev j) = 1

|S(c)| (Num4(devi, dev j, c)

+ Num5(devi, dev j, c) + Num6(devi, dev j, c)) (2)

Eq. (2) is used to measure the heterogeneous proximity of two

developers devi and devj in dlsimilar on common components. Here,

c is the component of the new bug report under consideration and

S(c) returns a set of bug reports belonging to component c in the

bug repository. Num4(devi, devj, c), Num5(devi, devj, c) and Num6(devi,

devj, c) denote the number of bugs on which the collaboration re-

lations of devi and devj belong to meta-paths No.4, No.5 and No.6,

respectively.

Compared to developers’ collaboration on common bug reports,

two developers devi and devj have higher possibility to collabo-

rate on common components. Thus, we use |S(c)| to normalize

the importance of developers’ collaboration on the common com-

ponent c when measuring the heterogeneous proximity between

devi and devj. We can deduce from Eq. (2) that, only under the

condition that devi(D) reports|tosses|assignes|fixes|closes|reopens|

(is assigned with)|(is tossed with) a bug report (B) of the com-

ponent c and all the other bug reports (B) of the component

c were reported|tossed|assigned| fixed|closed|reopened by devj(D),

i.e. collaborated on all the reports of the component c resulting

inNum4(devi, dev j, c) = |S(c)|, the heterogeneous proximity of devi

and devj as HetPro(C)(devi, devj) is increased by 1.

HetPro(P)(devi, dev j) = 1

|S(p)| (Num7(devi, dev j, p)

+ Num8(devi, dev j, p) + Num9(devi, dev j, p)) (3)

Eq. (3) is used to measure the heterogeneous proximity of two

developers devi and devj in dlsimilar on common products. Here, p is
he product of the new bug report and S(p) returns a set of bug re-

orts belonging to product p in the bug repository. Num7(devi, devj,

), Num8(devi, devj, p) and Num9(devi, devj, p) denote the number of

ug reports on which the collaboration relations of devi and devj be-

ong to meta-paths No.7, No.8 and No.9 shown in Table 3, respectively.

y analogy with Eq. (2), |S(p)|is used to normalize the importance of

evelopers’ collaboration on the common product p when measuring

he heterogeneous proximity between devi and devj.

With the above equations to measure heterogeneous proximity of

wo developers on common bug reports, component c and product

, we compute the overall heterogeneous proximity of a developer

evi in dlsimilar using Eq. (4). That is, we summarize the heterogeneous

roximities of devi and all the other developers devj in dlsimilar on

ommon bugs, component c and productp to measure his or her over-

ll heterogeneous proximity in dlsimilar. Thus, heterogeneous proxim-

ty ranking for each developer in dlsimilar is derived by Eqs. (1)–(4) and

sed to rank developers’ expertise on the incoming new bug report

rnew.

The intuitive explanation of KSAP for bug report assignment is

hat when a new bug report is incoming, those developers assigned

or its resolution should not only have similar expertise with the new

ug report (using content matching using K-NN search) but also pos-

ess historical experience in collaboration with other developers in

esolving bug reports of component c and product p of the new bug

eport.

etPro(devi, dlsimilar) =
∑

dev j∈dlsimilar ,dev j �=devi

HetPro(B)(devi, dev j)

+
∑

dev j∈dlsimilar ,dev j �=devi

HetPro(C)(devi, dev j)

+
∑

dev j∈dlsimilar ,dev j �=devi

HetPro(P)(devi, dev j) (4)

. Experiments

.1. The datasets

To examine the effectiveness of KSAP in real practice, we collected

he Mozilla5 and Eclipse6 bug repositories from MSR2011 website7.

e also collected Apache Ant and Apache Tomcat6 bug reports (prod-

cts are Ant and Tomcat6, respectively.) from ASF Bugzilla system8.

he bug reports with status “resolved” and resolution as “fixed” and

ith no modification in the fields “Product” and “Component” are

ncluded in the experiments. We follow Guo et al. [18] to use 2.5

ears as the time interval to collect bug reports in order to reduce

ossible changes in status and fields in the future. The used data ex-

racted from Mozilla bug repository are the bug reports of Mozilla

roject from 30th July, 1999 to 2nd September, 2009. The Eclipse bug

epository records bug reports of Eclipse project from 10th October,

001 to 25th June, 2010. The Apache Ant bug repository records Ant

ug reports from 07th, September, 2007 to 24th, December, 2012.

he Apache Tomcat6 records Tomcat6 bug reports from 24th, Au-

ust, 2003 to 28th, December, 2012. One threat here is the developer

liases [11]. That is, one developer may have more than one identifier

n a project. By our manual checking randomly, we found very few

eveloper aliases in our investigated projects.

Based our observation, we found that both the number of bug

eports submitted by each developer and the number of com-

ents attached with each bug report conforms to a power-law

istribution with heavy tail [20] as shown in Fig. 8. The curve

http://bugzilla.mozilla.org/
https://bugs.eclipse.org/bugs/
http://2011.msrconf.org/msr-challenge.html
https://issues.apache.org/bugzilla/
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Fig. 8. The bug report-developer (above) and comment-bug report (below) distribution of Mozilla, Eclipse, Apache Ant and Apache Tomcat6 projects.
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f Eclipse project is below the curve of Mozilla project because

he former has a smaller number of bug reports than the latter.

he same reason is explained for Apache Ant and Apache Tom-

at6 projects. We can see that most bug reports are resolved with

he contribution of a relatively small number of developers and

ost bug reports have a small number of comments. Here, we

liminate those developers who appeared only once in the bug

epository from candidate bug resolvers as we speculate that they

ight have no interest in the project any more afterwards.

For Mozilla project, on average, each bug report has 6.27 com-

ents and each developer contributes to 80.45 bug reports. For

clipse project, on average, each bug report has 8.36 comments and

ach developer contributes to 70.56 bug reports. For Apache Ant

roject, on average, each bug report has 4.35 comments and each de-

eloper contributes to 1.64 bug reports. For Apache Tomcat6 project,

n average, each bug report has 4.66 comments and each developer

ontributes to 1.46 bug reports.

We only use those bug reports whose components and products

re not changed since its submission to the bug repository. In fact, we

ound that all those bug reports with changed components or prod-

cts since its submission account for less than 5.0 percentages of all

he investigated bug reports. Thus, we collected 74,100 bug reports

rom Mozilla project and 42,560 bug reports from Eclipse project. We

ollected 763 bug reports from Apache Ant project and 489 bug re-

orts from Apache Tomcat6 project. Here, we combine “duplicate”

ug reports to an extended one because they can provide supplement

nformation for each other [26]. After data refinement, the basic in-

ormation of the bug reports and its developers used for experiments

re summarized in Table 4.

.2. Experiment setup

We mimic the working scenario of a bug manager who has the

istorically-resolved bug reports and was confronted with new in-

oming bug reports. For all the investigated projects, we sort the

hole dataset listed in Table 4 in chronological order of creation time

nd divide them into 5 subsets listed in Table 5.

Inside each subset, we further divide the sorted data into 11 non-

verlapping folds (i.e., windows or frames) of equal sizes. We firstly

rain KSAP model using the bug reports from fold 1 and test the

rained model using the bug reports from fold 2. Next, the model is

rained using the data from folds 1 and 2, and is tested using the data

rom fold 3. By analogy, at the last step, we train KSAP model using
he bug reports of folds from 1 to 10 and test the trained model using

he bug reports from fold 11. Then, we compute the average precision

nd recall across the 10 folds. Finally, we further average the perfor-

ances on the 5 subsets for each project.

It should be noted that for Apache Ant and Apache Tomcat6

rojects, all the bug reports belong to the product “Ant” or “Tomcat6”.

hus, we only use Eqs. (1), (2) and (4), i.e. heterogeneous proximity on

ommon bugs and components, for ranking. For Mozilla and Eclipse

roject, they have more than one products and each product includes

any components. In this case, we use all Eqs. (1)–(4)in ranking de-

elopers.

.3. Baseline methods

We compare KSAP with the state of art techniques as ML-KNN

19,24], DREX [7], DRETOM [3], Bugzie [36], DevRec [24] and devel-

per prioritization (DP method) [40] in bug report assignment. ML-

NN is used to transfer the bug triage problem to multi-labeled clas-

ification where each bug report is regarded as a data point and the

evelopers who contribute to bug report resolution are regarded as

ts labels. This intuition is from Anvik’s proposal to transfer bug fixer

ecommendation to a typical classification problem [4]. DREX is de-

ived from our previous work and its difference with KSAP lies in

hat it adopts homogeneous network ranking. DRETOM is also de-

ived from our previous work that uses LDA to construct topic mod-

ls of bug reports to enhance matching between new incoming bug

eports and developers’ expertise.

Bugzie is proposed by Tamrawi et al. [36]. For each test bug report,

e firstly extract its timestamp and fetch the candidate developers

rom the sorted training bug reports by timestamp. However, differ-

nt from Tamrawi et al. [36], we extract technical terms by using not

nly the summary and description of bug reports but also the com-

ents posted by the developers. The reason is that we are not to rec-

mmend a single developer to fix the bug but to recommend a group

f developers to contribute ideas and advices in terms of comments

o resolve bug reports.

DevRec is proposed by Xia et al. [24]. DevRec consists of two com-

onents: the one is BR-Based analysis using multi-labeled classifica-

ion implemented by ML-KNN [19] and the other is D-Based analy-

is to measure the experience of a developer on the new incoming

ug report by using four affinity scores of terms, topics, product and

omponent. The same setting for LDA used in DRETOM was adopted

y D-Based analysis to compute the affinity score of topics. For each
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Table 4

The basic information of bug reports for experiments on Mozilla, Eclipse, Apache Ant and Apache Tomcat6 projects. U.D. abbreviates

for “unique developers”. B.D. abbreviates for “bug reports for each developer”. U.D.B abbreviates for “unique developers for each bug

report”. C.B. abbreviates for “comments for each bug report”.

Project # of bug reports # of U.D. Average # of B.D. Average # of U.D.B. Average # of C.B.

Mozilla 74,100 51,571 84.78 5.35 6.67

Eclipse 42,560 5170 78.23 5.58 9.52

Apache Ant 763 587 3.75 2.17 4.35

Apache Tomcat6 489 170 6.21 2.23 4.66

Table 5

The 5 subsets with its training and test data for Mozilla, Eclipse, Apache Ant and Apache Tomcat6

projects. T.B. and S.B. abbreviate for “training bug reports” and “test bug reports”, respectively.

Project Subset no. Time duration # of bug reports

Mozilla 1 30/07/1999–29/07/2001 15,350

2 30/07/2001–29/07/2003 14,776

3 30/07/2003–29/07/2005 14,599

4 30/07/2005–29/07/2007 14,617

5 30/07/2007–02/09/2009 14,508

Eclipse 1 10/10/2001–09/08/2003 8521

2 10/08/2003–09/06/2005 8604

3 10/06/2005–09/04/2007 8582

4 10/04/2007–09/02/2009 8518

5 10/02/2009–25/06/2010 8085

Apache

Ant

1 07/09/2007–07/09/2010 281

2 01/06/2008–01/06/2011 264

3 01/12/2008–01/12/2011 274

4 10/01/2009–10/01/2012 268

5 01/12/2010–24/12/2012 287

Apache

Tomcat6

1 24/08/2003–24/08/2008 234

2 25/08/2004–24/08/2009 224

3 25/08/2005–24/08/2010 218

4 25/08/2006–24/08/2011 221

5 26/08/2007–28/12/2012 263
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investigated project, we follow Xia et al. [24] using random exhaus-

tive search in tuning the five parameters γ 1, γ 2, γ 3, γ 4 and γ 5 to

weight each score in recommending developers for bug resolution.

The parameters of ML-KNN are K and s, where K is the number of

nearest neighbors with the same meaning as K in Section 4.1, and s is

used for probability smoothing. Following Zhang and Zhou [20], we

set s as 1 and tune the parameter K together with KSAP. For DREX, its

parameters includes K, N and Q where K has the same meaning as K in

Section 4.1 and Q has the same meaning as Q in Section 2.2. N denotes

the minimum number of bug reports for a developer if he/she was in-

cluded in the candidates for resolving new bug reports and we set N

as 80 according to our previous work [7]. We use the network metric

degree to measure developer importance in homogeneous network

ranking because it has been proved with the best performance in our

previous research [7]. For DRETOM, it has three parameters: the num-

ber of topics T, θ to trade off developer’s interest and expertise, and

the number of developers Q for recommendation. Following our pre-

vious work [3], we set T as 200 and θ as 0.2 for optimal performance.

Two parameters need to be tuned in Bugzie as x%, i.e. the percent-

age of top fixers in developer cache and k, i.e. the number of tech-

nical terms for each developer. For all the investigated projects, we

tune that when using all technical terms, 30% of most recent devel-

opers are enough to peak the top-5 accuracies. Moreover, we found

that when we set x as 20, for Eclipse project, the parameter k should

be set as 30 to peak the top-5 accuracy. For Mozilla project, the pa-

rameter k should be set as 35 for best performance. For Apache Ant

and Tomcat6 projects, the parameter k should be tuned as 25 for best

performance.

In DevRec, we need to tune five parameters as γ 1, γ 2, γ 3, γ 4 and

γ 5. For Mozilla and Eclipse projects, we tune the parameters using

evaluation criterion as Recall@5 and set the maximum number of it-

erations as 500 because we see from Table 4, there are about 5 unique

developers for each bug report of both projects. With the same rea-

son, for Apache Ant and Tomcat6 projects, we use Recall@3 as the
 o
valuation criterion in parameter tuning and set the maximum num-

er of iterations as 300.

We follow Xuan et al. [40] to introduce DP method as a baseline

ethod for bug report assignment. However, we are different from

hem in that their method is used to find a single bug fixer for each

ug report but ours is to locate a group of developers for collabora-

ion. For each product and component, we construct a directed de-

eloper network as depicted in Fig. 1 in [40] using training data and

ompute the priority value for each developer. Then, we combine the

robability of each developer predicted by SVM for ranking [41] and

is or her priority score to produce the final score of the developer

s done in [40]. Finally, for a given test bug report, the developers are

orted in descending order by their final scores.

.3. Experimental results

Fig. 9 shows the precision and recall when recommending 10

Q = 10) developers for each test bug report of Mozilla and Eclipse

rojects shown in Table 5. Fig. 10 shows the precision and recall

hen recommending 3 (Q = 3) developers for each test bug report

f Apache Ant and Apache Tomcat6 projects shown in Table 5. The

recision and Recall are computed using Eqs. (5) and (6), respectively.

ecause the parameter K, i.e. the number of neighbors, is the only pa-

ameter needing to be tuned and, all the KSAP, DREX and ML-KNN

ave the common parameter K, we compare the three methods sep-

rately to tune parameter K for them.

recision = |{devnew,1, . . . , devnew,Q} ∩ {GroundTruth}|
|{devnew,1, . . . , devnew,Q}| (5)

ecall = |{devnew,1, . . . , devnew,Q} ∩ {GroundTruth}|
|{GroundTruth}| (6)

Here, {devnew,1, . . . , devnew,Q} denotes the recommended Q devel-

pers for resolving each test bug report. {GroundTruth} denotes the
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Fig. 9. The performances of KSAP in recommending 10 developers for each bug report of Mozilla and Eclipse projects compared with DREX and ML-KNN when tuning the parameter

K.
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et of developers who really contributed to the test bug resolution in

eal practice. For instance, the {GroundTruth} for bug report #333160

f Mozilla shown in Table 2 is {Mark Pilgrim, Robert Strong, Mike

eltzner}. The reason we set Q as 10 for Mozilla and Eclipse projects

s that on average, about 10 developers collaborate with each other to

esolve a bug report as shown in Table 4 in the column “Average # of

.D.B.” The same reason is explained for setting Q as 3 for Apache Ant

nd Apache Tomcat6 projects. All the performances shown in Figs. 9

nd 10 are averaged on all the test bug reports.

We can see from Fig. 9 that, KSAP and DREX produced higher pre-

ision than ML-KNN when the number of similar historical bug re-

orts K is varied from 10 to 30 on both projects. This outcome means

hat developer ranking by based on developer collaboration by net-

ork is effective in bug report assignment. The frequency of a devel-

per in historical bug resolution is not the solely important factor. The

umber of times that a developer collaborated with other developers

s also decisive in developer recommendation for new bug reports.

It seems that there is no difference in precision between KSAP and

REX. However, when it comes to recall, we can see that KSAP pro-

uced the best performance among the three methods. In fact, in bug

eport assignment, recall is a more widely accepted metric for de-

ermining the performance because, the sizes of {GroundTruth} are

ifferent for different bug reports9 [4]. The outcome illustrates that

eterogeneous proximity ranking are more effective than traditional
9 Assuming that a bug report has 4 developers in its historical resolution, if we rec-

mmended 10 developers to the bug, the best precision we can derive from bug triag-

ng is merely 40%. However, if the bug report has 10 developers in its historical resolu-

ion, then the precision can attain up to 100%.

i

1

d

f

omogenous network ranking. In DREX, we model developers’ collab-

rative behavior by single relation as commenting on common bugs.

owever, in KSAP, the developers’ collaborative behaviors were cap-

ured by more than only one relation, i.e. the 9 meta-paths as shown

n Table 3. When more information is utilized to characterize devel-

pers’ collaborative behavior, the more effective the developers’ col-

aboration is when it used in bug report assignment.

Moreover, we can see from Fig. 9 that when the number of sim-

lar historical bug reports K is varied from 10 to 30, there is an ob-

ious trend for both KSAP and DREX that the Recall increases to a

axima peak value at first and then goes down. For Mozilla project,

SAP and DREX produce their maxima when K is equal to 24. For

clipse project, they produce their maxima when K is equal to 22. We

xplain this outcome as that the number of training bug reports of

clipser JDT project is relatively smaller than that of Mozilla project

s shown in Table 5. Thus, it is not necessary to “query” a large num-

er of similar bug reports when recommending appropriate develop-

rs for Eclipse bug reports. When K is small, KSAP and DREX “query”

small number of similar bug reports and the number of candidate

evelopers is small so the recall is not maximized. When K is larger

han a critical value (24 for Mozilla project and 22 for Eclipse project),

SAP and DREX “query” too many bug reports to produce a high recall

ue to “noise” in candidate developers. The best case is that when K is

qual to 22, on Mozilla project, KSAP (0.70) improves 18.64% on recall

n contrast to DREX (0.59). The worst case is that when K is equal to

4, on Eclipse project, DREX produces 0.75 on Recall and KSAP pro-

uce 0.77 on recall with 2.67% increase.

In Fig. 10, we see for Apache Ant project, KSAP produce better per-

ormances than other baseline methods on both precision and recall.
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Fig. 10. The performances of KSAP in recommending 10 developers for each bug report of Apache Ant and Apache Tomcat6 projects compared with DREX and ML-KNN when

tuning the parameter K.
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When we vary K from 1 to 10, the best performance of KSAP is derived

when K is 3. In this case, KSAP produce a precision as 0.19, which is of

35.71% increase than that of DREX (0.14). Meanwhile, KSAP produce

a recall as 0.51 which brings about an increase as 24.39% compared

with the recall of DREX (0.41). Moreover, when K is set as 10, KSAP has

an approximately equal precision but an increase as 32.25% on recall

(0.41) compared with DREX (0.31). For Apache Tomcat6 project, there

seems no difference on precision between KSAP and other methods

when we varied K from 1 to 10. However, on recall, KSAP produce the

best performance as 0.49 when K is 5, which is of 13.95% increase

than that of DREX (0.43).

It is very interesting to see from Figs. 9 and 10 that over all,

the performances of KSAP and other methods on Apache Ant and

Apache Tomcat6 projects are not good as those on Mozilla and Eclipse

projects. We explain that this is caused by the fact that the number of

bug reports and the number of developers of Apache Ant and Apache

Tomcat6 project are much smaller than that of Mozilla and Eclipse

projects, resulting in less collaboration among developers than the

latter two projects.

Nevertheless, we see KSAP produced much better performances

in Apache Ant project than that in Apache Tomcat6 project. We ex-

plain that the heterogeneous proximity on common component (i.e.

HetPro(C)(devi, devj) in Eq. (2)) makes greater impacts on KSAP for

Apache Ant project than for Apache Tomcat6 project. From Table 4,

the average number of bug reports for each developer is 3.75 for

Apache Ant project. That is to say, each developer participates in res-

olution of less than 4 bug reports, which is much smaller than that for

Apache Tomcat6 project. In this case, the traditional methods such as

DREX and ML-KNN that only take common bug reports into account

would not produce a good performance due to the lack of enough
ommon bug reports. However, this is not a problem for KSAP to make

se of common components of developers.

Fig. 11 illustrates the performances of KSAP compared with DREX,

L-KNN, DRETOM, Bugzie and DevRec when we vary the number of

ecommended developers Q and fixed the number of similar histori-

al bug reports K for Mozilla and Eclipse projects. Here, we set K as 24

or Mozilla project and 22 for Eclipse project, respectively, because

e see from Fig. 9 that the recall is maximized with the two num-

ers. We can see from Fig. 11 that when Q is varied from 5 to 30, the

recision is decreasing and the recall is increasing for both projects.

his outcome can be easily understood as, when more developers

re recommended for bug resolution, it brings about more develop-

rs both within and outside {GroundTruth}. Moreover, the developers

ith high ranking are more prone to be within {GroundTruth} than

hose with low ranking given by each method. The performances de-

ived from Eclipse project are better than that derived from Mozilla

roject because we can see from Table 4 that the number of unique

evelopers of Eclipse project is much smaller than that of Mozilla

roject. Also, we see no obvious difference among all the considered

ethods except ML-KNN on the precision. The same reason for the

utcome in Fig. 9 can be explained here.

However, on the recall, we can see from Fig. 11 that KSAP outper-

orms DREX and DRETOM significantly (P<0.05 with Mann–Whitney

test [25]) for both Mozilla and Eclipse projects. In particular, the dif-

erence on the recall between KSAP and other methods derived from

ozilla project is larger than that derived from Eclipse project. We

xplain that KSAP is more effective when a project has larger num-

er of unique developers. The best case is that when Q is equal to 30,

n Mozilla project, KSAP (0.86) improves 7.5% on the recall compared

ith DREX (0.80). The worst case is that when K is equal to 2, on
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Fig. 11. The performances of KSAP in recommending different number of developers for each bug report of Mozilla and Eclipse projects with fixed number of K.
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clipse project, Bugzie produce 0.70 on the recall and KSAP produce

.62 on the recall.

When Q is varied from 2 to 10, the recall of KSAP and other meth-

ds increase steadily. However, it is not the case when Q is larger

han 10 for both projects. We explain the outcome that developers

rovided by KSAP with high ranking are mostly in {GroundTruth} and

hose with low ranking are mostly out of {GroundTruth}. When we

ecommended more developers (that is, Q becomes larger), the recall

f KSAP also increases. However, when it goes up to a critical number

approximately two times the average number of unique developers),

ASP produce very few number of developers in {GroundTruth}. Con-

idering that there are 51,571 developers in Mozilla project, when we

ecommend only 20 developers for a new bug report, KSAP can pre-

isely hit more than 4 developers for most bug reports (remember-

ng that the average number of unique developers is more than 5 in

able 4).

When we recommend less than 5 developers for Mozilla and

clipse projects, the recall of Bugzie is much larger than that of

SAP and other methods. This outcome illustrates that when only a

mall number of (less than 5) developers are recommended, locality

nd recency are a decisive factors in producing a good performance.

owever, when we recommend more than 5 developers, the perfor-

ances of Bugzie are worse than that of KSAP in the recall. We ex-

lain that in recommending a right fixer to fix the bug, Bugzie is a

ood choice to do this kind of job because “one of the recent fixers

s likely to be the fixer of the next bug report” [36]. However, in rec-

mmending a group of developers who may contribute ideas to bug

esolution, the locality or recency may be not as important as that in
ecommending a right fixer. By manual checking, we found that al-

hough some developers fixed bugs in a very short period, they ac-

ually make comments for bug resolution for a long time. For in-

tance, the developer “Adam Schlegel” fixed seven bugs from 10th,

une, 2002 to 29th, July, 2002 but he or she made 287 comments for

66 bug reports from 29th, October, 2001 to 23rd, August, 2002.

For DevRec method, on the one hand, the values of parameters γ 1,

2, γ 3, γ 4 and γ 5 are dependent on the sampled subset of training

ug reports to a great extent. On the other hand, when we change

he orders of parameters γ 1, γ 2, γ 3, γ 4 and γ 5 in searching space,

he optimal parameter composition of each order setting is differ-

nt from each other. It can be seen from Fig. 11 that, for Mozilla and

clipse project, DevRec performs comparable to KSAP and better than

ther methods when we recommended 5–10 developers for bug res-

lution. However, the performance of DevRec deteriorate more dras-

ically than other methods when Q is larger than 10. We explain this

utcome as that in most cases, the parameter tuning method used by

evRec caused over fitting of developer recommendation. That is to

ay, it is not easy to generalize the parameter setting of DevRec de-

ived in recommending 5 developers to other cases.

For DP method, when Q is small (not larger than 5), it is very ef-

ective in recommending potential developers for collaborative bug

esolution. However, when Q becomes large (more than 10), its per-

ormance decreases drastically on both Mozilla and Eclipse projects.

e manually checked the output of ranking by the DP method

nd found that for most developers, their final scores are approxi-

ately equal to that of their neighbors. For a sequence of 5 neighbor-

ng developers, their differences on final scores are less than 0.02.
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Table 6

The performances on precision of KSAP compared with other baseline methods in bug report assign-

ment on Mozilla and Eclipse projects.

Project Method pair Precision @1 Precision @5 Precision @10 Precision @20

Mozilla KSAP vs ML-KNN >> >> >> >>

KSAP vs DREX ∼ ∼ ∼ >

KSAP vs DRETOM ∼ ∼ ∼ >

KSAP vs Bugzie ∼ ∼ ∼ ∼
KSAP vs DevRec ∼ ∼ > >>

KSAP vs DP ∼ ∼ > >>

Eclipse KSAP vs ML-KNN >> >> >> >>

KSAP vs DREX ∼ ∼ ∼ >

KSAP vs DRETOM ∼ ∼ ∼ >

KSAP vs Bugzie < ∼ ∼ >

KSAP vs DevRec < < < >>

KSAP vs DP > ∼ > >>

Table 7

The performances on recall of KSAP compared with other baseline methods in bug report

assignment on Mozilla and Eclipse projects.

Project Method pair Recall @1 Recall @5 Recall @10 Recall @20

Mozilla KSAP vs ML-KNN >> >> >> >>

KSAP vs DREX > >> >> >>

KSAP vs DRETOM >> >> >> >>

KSAP vs Bugzie <<∼ ∼ > >>

KSAP vs DevRec << ∼ ∼ >>

KSAP vs DP ∼ << >> >>

Eclipse KSAP vs ML-KNN >> >> >> >>

KSAP vs DREX >> >> >> >>

KSAP vs DRETOM >> >> >> >>

KSAP vs Bugzie << << >> >>

KSAP vs DevRec << < >> >>

KSAP vs DP << < >> >>
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Moreover, the average difference on final scores of developers of

Mozilla project are smaller (0.0037) than that of developers of Eclipse

project (0.013). We explain that this outcome is caused by the larger

number of developers involved in Mozilla project than that involved

in Eclipse project as shown in Table 4 and the transmissive charac-

teristic of scores from one developer to other adjacent developers in

the network. Due to the small difference of final scores given by the

DP method, it cause the probability produced by SVM for ranking [41]

decisive in ranking developers when we recommend more than 5 de-

velopers. As a result, we see from Fig. 11 that the performance of the

DP method are similar to that of ML-KNN when Q is larger than 5.

To better illustrate the effectiveness of each method, the classic

non-parameter Mann–Whitney U test [1] is employed. Tables 6 and 7

demonstrate the results of Mann–Whitney U test of the performances

of KSAP and other baseline methods on precision and recall, respec-

tively. The following codification of the P-value in ranges was used:

“>>” (“<<”) means that P-value is lesser than or equal to 0.01, indi-

cating a strong evidence that KSAP outperforms the compared base-

line method; “<” (“>”) means that P-value is bigger than 0.01 and

minor or equal to 0.05, indicating a weak evidence that KSAP out-

performs the compared baseline method; “∼” means that P-value is

greater than 0.05, indicating that the compared methods do not have

significant differences in performances.

Fig. 12 illustrates the performances of KSAP compared with DREX,

ML-KNN, DRETOM, Bugzie, DevRec and DP method when we varied

the number of recommended developers Q and fixed the number of

similar historical bug reports K for Apache Ant and Apache Tomcat6

projects. Here, we set K as 3 for Apache Ant project and set K as 5 for

Apache Tomcat6 project because, we see from Fig. 10 that the recall

is maximized for at these two numbers. We can see from Fig. 12 that

when Q is varied from 1 to 10, the precision is decreasing and the

recall is increasing for both projects. The superiority of KSAP’s perfor-

mances is more obvious on Apache Ant project than that on Apache
omcat6 project. The same reason as less communication and col-

aboration on common bug reports of Apache Ant project than that

f Apache Tomcat6 project can be explained here. Moreover, we ob-

erved that when Q is attains up to 4, which is around two times the

verage number of developers for each bug report (i.e. 2.17 for Apache

nt and 2.23 for Tomcat6 in Table 4), both recall enters into an stable

tate with very small increase when we further increase Q.

For Apache Ant and Tomcat6 projects, it can be seen that when

e recommended 3 developers for bug resolution, Bugzie and De-

Rec performs comparable to (even better than) KSAP in Recall. The

P method performs even better than KSAP. However, when we rec-

mmended more than 3 developers, the performances of Bugzie are

uch worse than that of KSAP. The same explanation of recommend-

ng bug fixer other than contributors in Mozilla and Eclipse projects

an be used here. The performances of DevRec decreases drastically,

ven worse than ML-KNN in some cases in precision. The same expla-

ation of possible over fitting in Eclipse and Mozilla projects can be

lso be employed here. We also see that when Q is larger than 3, the

erformances of the DP method is similar to that of ML-KNN method.

e also conducted Mann–Whitney U test to examine the significance

evel of precision and recall of KSAP compared with other baseline

ethods as shown in Tables 8 and 9, respectively.

Table 10 lists the average values with standard deviation of MAP

nd MRR [42] measured on different projects of KSAP, Bugzie, DevRec

nd DP method. We can see that on the one hand, in Mozilla and

clipse projects, the differences of MAP between KSAP and Bugzie

re much larger than that of MRR. This outcome is caused by the fact

hat both KSAP and Bugzie can rank the developers in {GroundTruth}

t the top places but, KSAP provides those developers with smaller

ankings than Bugzie. By our manual inspection, we found that KSAP

anks those developers in {GroundTruth} within top 30 places in

ost cases. However, Bugzie needs to count 50 places to find all

he developers in {GroundTruth}. Nevertheless, considering the large
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Fig. 12. The performances of KSAP in recommending different number of developers for each bug report of Apache Ant and Apache Tomcat6 projects with fixed number of K.

Table 8

The performances on precision of KSAP compared with other baseline methods in

bug report assignment on Ant and Tomcat6 projects.

Project Method pair Precision @1 Precision @5 Precision @10

Ant KSAP vs ML-KNN >> >> >>

KSAP vs DREX >> >> >>

KSAP vs DRETOM >> >> >>

KSAP vs Bugzie << ∼ >>

KSAP vs DevRec < ∼ >

KSAP vs DP << > >>

Tomcat6 KSAP vs ML-KNN >> >> ∼
KSAP vs DREX >> ∼ ∼
KSAP vs DRETOM >> ∼ ∼
KSAP vs Bugzie << ∼ >

KSAP vs DevRec ∼ ∼ ∼
KSAP vs DP << ∼ ∼
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Table 9

The performances on recall of KSAP compared with other baseline methods

in bug report assignment on Ant and Tomcat6 projects.

Project Method pair Recall @1 Recall @5 Recall @10

Ant KSAP vs ML-KNN >> >> >>

KSAP vs DREX > >> >>

KSAP vs DRETOM >> >> >>

KSAP vs Bugzie <<∼ >> >>

KSAP vs DevRec < >> >>

KSAP vs DP << << >>

Tomcat6 KSAP vs ML-KNN >> >> >>

KSAP vs DREX >> >> >>

KSAP vs DRETOM >> >> >>

KSAP vs Bugzie << >> >>

KSAP vs DevRec << >> >>

KSAP vs DP << >> >>
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umber of candidate developers (51,571 for Mozilla project and 5170

or Eclipse project), we can draw that both KSAP and Bugzie can

roduce acceptable performances in developer recommendation. On

he other hand, in Apache Ant and Apache Tomcat6 projects, we can

ee that KSAP outperforms other methods significantly. We manu-

lly checked the outcome of each method and found that for all the

ethods, they can locate at least one developer in {GroundTruth} at

op 10 places. For KSAP, it can approximately locate 2 developers in

GroundTruth} at top 30 developers. For other methods, the number is

pproximately 100. Moreover, if we want to locate all the developers

n {GroundTruth}, KSAP needs to search top 150 and 100 places in Ant
nd Tomcat6 ranking, respectively. For other methods, they need to

earch at least top 350 and 200 places in Ant and Tomcat 6 ranking,

espectively.

. Threats

For external validity, there is a threat of generalization of our ex-

eriments, i.e. recommending developers for bug report resolution.

he projects under investigation are all from open source community.

ince we only used open source projects for evaluation, the results

ight not be generalizable to closed-source projects. The reason here

s that the subject projects used in the paper have a history of more
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Table 10

The average values with standard deviation of MAP and MRR of KSAP and other methods in bug report assignment on Mozilla, Eclipse, Ant and Tomcat6 projects.

Project Method

KSAP Bugzie DevRec DP

MAP MRR MAP MRR MAP MRR MAP MRR

Mozilla 0.4449 ± 0.0673 0.2779 ± 0.0247 0.3740 ± 0.0583 0.2459 ± 0.0481 0.2322 ± 0.0598 0.1338 ± 0.0271 0.2201 ± 0.0439 0.1127 ± 0.0236

Eclipse 0.5642 ± 0.0597 0.2800 ± 0.0175 0.4253 ± 0.0572 0.2611 ± 0.0419 0.2884 ± 0.0372 0.1509 ± 0.0357 0.2074 ± 0.0378 0.0848 ± 0.0392

Ant 0.3648 ± 0.0785 0.3478 ± 0.0206 0.1796 ± 0.0485 0.1726 ± 0.0428 0.1731 ± 0.0515 0.1695 ± 0.0491 0.1727 ± 0.0577 0.1693 ± 0.0555

Tomcat6 0.3654 ± 0.0695 0.3475 ± 0.0176 0.2118 ± 0.0380 0.1879 ± 0.0517 0.1417 ± 0.0557 0.1251 ± 0.0340 0.1131 ± 0.0431 0.0972 ± 0.0172
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than 5 years and accumulate a large number of resolved bug reports

with complete records of developers’ collaboration in their open bug

repositories. These are all the prerequisites to examine the effective-

ness of our proposed KSAP approach. We hold that if a closed-source

project has enough historical records of bug report resolution in bug

repository, KSAP can be generalized to this kind of cases without

difficulty.

For construct validity, the first threat comes from that the crite-

ria we set for experimental data inclusion are not rigorously exam-

ined. On the one hand, we merely investigate the bug reports whose

components and products are never changed since its submission. We

found only less than 5 percentages of all bug reports whose compo-

nents and products would be changed after its submission. Moreover,

if either component or product of a bug report was changed, then we

should rerun KSAP on this changed bug report. On the other hand,

we also removed those inactive developers (appearing only once in

the bug repository) for bug report resolution because it would also

be meaningless to recommend a developer who is absent from the

project.

The second threat is that our evaluation method may be biased.

We partitioned the collected bug reports into 11 folds according to

different time duration. We split each fold into two sets to evaluate

the KSAP approach. Different partitions and splits may yield different

precision and recall due to concept drift [27]. Other types of measure-

ments might yield different interpretation of the bug report triage

results.

The third threat comes from the problem of over- specialization

[36] of developers. As in indicated by our recent study [38], the time

difference between a developer’s latest activity in a project and the

submission of the bug report is an important factor in considering

whether or not the bug report will be handled by the developer.

Moreover, a diverse recommendation of developers may accelerate

the processing of bug report assignment.

7. Related work

The related work of the paper includes two aspects. The first as-

pect is network analysis of open source community. Singh [32] ar-

gued that open source community network of developers character-

ized by small-world properties have positive effect on the produc-

tivity of developers. They validated their assumption using the data

from SourceForge.net using 4279 projects. Their experimental results

showed that small-world properties closely correlated with the suc-

cess of success of open source projects. We also observed the power-

law phenomena on bug report-developer and comment-bug report

distribution as shown in Fig. 8. However, it is not the focus of the

paper to study the impact of small-world properties on success of

subject projects.

Lim et al. [33] developed StakeNet using social network analysis to

identify and prioritize stakeholders of RALIC project. Their network

was constructed by recommendation of stakeholders of the project

and an initial set of stakeholders and roles were identified by tra-

ditional search method. They reported that betweenness achieved
he highest accuracy among all the social network measures in pri-

ritizing stakeholder roles and PageRank produced the highest ac-

uracy in prioritizing stakeholders. Bird et al. [34] mined email so-

ial networks in the point view of communication and co-ordination

f OSS projects. Their analysis reported some interesting results.

or instance, the in-degree and out-degree distribution of the social

etwork exhibit typical long-tailed, small-world characteristics and

here is a strong relationship between the level of email activity and

he level of activity in the source code. Pinzger et al. [35] used so-

ial network measures to detect failure-prone modules of Microsoft

indows Vista. They reported that central modules are more failure-

rone than those in the surrounding areas of the network. Zhang and

ee [39] used concept profile and social network analysis for bug re-

ort assignment.

The difference between our study in this paper and theirs in the

bove related work lies in that firstly, we consider heterogeneous net-

ork, not the homogenous network as used in their work. Secondly,

e propose heterogeneous proximity to rank nodes in our heteroge-

eous network, not the traditional social network measures such as

egree, betweenness and PageRank.

The second aspect of our related work is bug report resolution.

any studies have been conducted with the goal of recommending

ppropriate developers for resolving new bug reports. These studies

an roughly be divided into two main streams. One is to assign bugs

o developers based on text categorization, such as the studies con-

ucted by Cubranic and Murphy [5] and Anvik et al. [4,28]. The other

ne is to model expertise of developers using historical to match bug

ontents such as activity records matching [29], noun phrase match-

ng [6], fuzzy expertise caching [37] and vocabulary-based matching

30], including our previous study topic-based matching as DRETOM

3]. In the former, machine learning techniques are used to catego-

ize new bug reports using historically assigned bug reports as train-

ng data. In the latter, historical bug report resolution records or (and)

hange history in source code repository are used to characterize the

xpertise of developers to match textual contents of new bug reports.

n this study, we also use information retrieval to match textual con-

ents of historical bug reports and the new bug report. Nevertheless,

e further model the developers’ collaboration using heterogeneous

etwork analysis on historical bug reports.

In our previous study [31], we conducted heterogeneous network

nalysis of developer contribution in bug resolution. We considered

types of developer contribution to bug resolution as reporting new

ugs, reopening bugs, making comments and changing source code.

hose developer contributions are very different from developer col-

aboration shown in Table 3. The reason is that two developers’ rela-

ion is considered when we talk about developer collaboration. How-

ver, we only consider what a developer has done for a bug report

hen we talk about developer contribution.

In another work [12], we proposed to use heterogeneous network

nalysis to improve bug report assignment. We firstly adopted super-

ised learning to produce candidate developers and then added other

evelopers who frequently collaborate with those candidate devel-

pers under common components. We admit that this paper has the
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imilar idea as our previous work [12] in using heterogeneous net-

ork for bug report assignment. However, the paper is different from

ur previous work in that on the one hand, we proposed a complete

olution to extract meta-path instances from heterogeneous network

utomatically, including heterogeneous network construction, meta-

ath extraction from schema and instance extraction from hetero-

eneous network. In [12], we only consider 5 types of collaboration

hereas 9 types of collaboration in this paper. On the other hand,

eterogeneous proximity is adapted entirely in the paper to recom-

end developers directly without any learning methods.

. Conclusion

In this paper, we propose an approach called KSAP to recommend

evelopers for bug report resolution using KNN search and hetero-

eneous proximity. When a new bug report is coming, KNN search is

sed to find historically-resolved similar bug reports in textual con-

ents and heterogeneous proximity is used to rank developers ex-

racted from similar historical bug reports. The main contribution of

he paper can be summarized in three aspects.

• Firstly, we propose a method to build heterogeneous network of

a bug repository using entities as developer (D), comment (T),

bug report (B), component (C) and product (P) and its relations

(see Sections 3.1 and 3.2). Then we present an algorithm to ex-

tract developers’ collaborative behavior in bug resolution within

bug repository based on graph traverse (see Section 3.3). We hold

that the proposed algorithm can be extended to other area related

with human collaboration provided that the behavior schema de-

picted in Fig. 2 can be come up with.

• Secondly, we propose heterogeneous proximity to rank develop-

ers’ contribution in historical bug resolution and combined KNN

search and heterogeneous proximity for bug triage (see Sections

4.1 and 4.2).

• Thirdly, we conduct extensive experiments to examine the pro-

posed KSAP approach compared with existing methods includ-

ing DREX [7], DRETOM [3], ML-KNN [19], BugZie [36] and DevRec

[24] and DP method [40] using the datasets from Mozilla, Eclipse,

Apache Ant and Apache Tomcat6 projects (see Section 5).

Experimental results demonstrate some promising aspects of

SAP. In the future, we will consider more entities in the bug reposi-

ory such as version and platform of bug reports to make use of more

eterogeneous information in recommending developers for bug re-

ort resolution. Also, we will plan to address the problem of over-

pecialization [36] in heterogeneous proximity ranking and we have

lready conducted an initial study on this topic [38].
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