
Domain Adaptation for Code Model-Based Unit Test Case
Generation

Jiho Shin
jihoshin@yorku.ca
York University

Toronto, Ontario, Canada

Sepehr Hashtroudi
sepehr.pourabolfathh@ucalgary.ca

University of Calgary
Calgary, Alberta, Canada

Hadi Hemmati
hemmati@yorku.ca
York University

Toronto, Ontario, Canada

Song Wang
wangsong@yorku.ca

York University
Toronto, Ontario, Canada

ABSTRACT
Recently, deep learning-based test case generation approaches have
been proposed to automate the generation of unit test cases. In
this study, we leverage Transformer-based code models to generate
unit tests with the help of Domain Adaptation (DA) at a project
level. Specifically, we use CodeT5, a relatively small language model
trained on source code data, and fine-tune it on the test generation
task. Then, we apply domain adaptation to each target project data
to learn project-specific knowledge (project-level DA). We use the
Methods2test dataset to fine-tune CodeT5 for the test generation
task and the Defects4j dataset for project-level domain adaptation
and evaluation. We compare our approach with (a) CodeT5 fine-
tuned on the test generation without DA, (b) the A3Test tool, and (c)
GPT-4 on five projects from the Defects4j dataset. The results show
that tests generated using DA can increase the line coverage by
18.62%, 19.88%, and 18.02% and mutation score by 16.45%, 16.01%,
and 12.99% compared to the above (a), (b), and (c) baselines, respec-
tively. The overall results show consistent improvements in metrics
such as parse rate, compile rate, BLEU, and CodeBLEU. In addition,
we show that our approach can be seen as a complementary so-
lution alongside existing search-based test generation tools such
as EvoSuite, to increase the overall coverage and mutation scores
with an average of 34.42% and 6.8%, for line coverage and mutation
score, respectively.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Empirical software validation.

KEYWORDS
Test generation, Transformers, LLM, GPT, Code Model, Domain
Adaption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA 2024, 16-20 September, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Jiho Shin, Sepehr Hashtroudi, Hadi Hemmati, and SongWang. 2024. Domain
Adaptation for Code Model-Based Unit Test Case Generation. In ISSTA ’24:
ACM SIGSOFT International Symposium on Software Testing and Analysis,
September 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Code models that are pre-trained on a large corpus of source code
have been introduced to automate numerous software development
tasks such as comment generation, code translation, and code gen-
eration [3, 17, 34, 35]. Among these downstream tasks, unit test
generation, which can be seen as a neural machine translation task,
has started gaining its spotlight recently [4, 39].

There are several reasons for the challenges in unit test case
generation: (a) The robustness of the code generation model is
more challenging to achieve, as slight miss generation would lead
to an error. Unit test case generation, in particular, might be more
challenging than regular code generation as test cases tend to have
more minor differences between code. For example, a line of as-
sertion statements or a couple of statements to instantiate objects
might drive the program into an interesting and testable state. (b)
Properly evaluating the generated test cases requires executing
the generated tests to calculate test adequacy metrics, which is
time-consuming and typically requires non-trivial manual labor,
e.g., resolving dependencies. (c) Domain shift problem [46] occurs
when the pre-trained models cannot transfer their code knowledge
to a new target project due to different code distributions in various
domains of projects.

Despite these shortcomings, test case generation based on deep
neural code models has advantages. The generated tests from neural
models are similar since the models are trained on human-written
code. Therefore, they are more readable and maintainable than the
alternative automatically generated test cases. As previous litera-
ture suggests [39], developers prefer neural model-generated tests
over other automatically created test cases since they are more
readable and understandable. They also target different faults (the
same as those targeted by the developer-written tests) compared
to tests generated by, e.g., search-based approaches, which usually
focus on maximizing code coverage.

To address the shortcomings of pre-trained code models for test
case generation, i.e., low performance, insufficient evaluation, and

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

domain shift, we propose a simple yet novel technique by adopt-
ing two different levels of fine-tuning/domain adaptation: task and
project. In our approach, first, we fine-tune the CodeT5 pre-trained
model with a task-specific dataset to customize the model for gen-
erating unit test cases, given a method under test. Then, we apply
domain adaptation with the project-specific dataset to learn the
proper code knowledge and create higher-quality test cases for
mitigating the impact of the domain shift problem. We also con-
duct a more thorough investigation by evaluating test adequacy
and textual similarity metrics to address the insufficient evalua-
tion problem. Regardless of the simplicity of the idea, we note
that this approach is 1) novel and 2) effective as it enables the
relatively smaller model (CodeT5 with 220M parameters) to out-
perform much bigger models (GPT-4 with 1.76T). Our framework
uses automated post-processing of simple heuristics to mitigate
compilability/executability issues. We use the Methods2test dataset
[38] for fine-tuning the test case generation task. We apply domain
adaptation to the models by leveraging human-written unit test
cases for each project. For evaluation and domain adaptation, we
use the Defects4j dataset [16]. We compare the effectiveness of our
approach with and without domain adaptation. We also investigate
two other baselines, namely GPT-4 (the largest and the state-of-the-
art LLM) and A3Test (state-of-the-art neural test case generation
method which exploits task-knowledge domain adaptation). Our
model with project-level domain adaptation outperforms all the
baselines on all the studied metrics, except for the parse rate of
GPT-4. Furthermore, our approach can be used alongside search-
based test generation to increase their line coverage and mutation
score.

We show that using domain adaptation, we can improve the
line coverage with an average of 18.62%, 19.88%, and 18.02% and
mutation score by 16.45%, 16.01%, and 12.99% compared to CodeT5
without DA, A3Test, and GPT-4 baselines, respectively. We also
show that our approach can increase the overall coverage and
mutation scores of EvoSuite when used alongside each other, with
an average of 34.42% and 6.8% for line coverage and mutation score,
respectively.

In summary, our main contributions are as follows:

(1) We propose a line-level neural test case generation frame-
work leveraging domain adaptation, which creates high-
quality unit test cases (compilable, similar to human-written,
and test-adequate).

(2) We conducted an empirical study on Defects4j benchmark
dataset [16], which shows our approach improves the per-
formance of the most related work AthenaTest, A3Test, and
GPT-4) from the literature.

(3) We also show that our approach can cover lines that neither
developer-written tests nor a baseline search-based testing
tool can cover. We also showed that we can kill new mutants
compared to the search-based tools.

(4) Unlike most related work, we execute the generated test
cases and evaluate them with proper test adequacy metrics
(i.e., code coverage and mutation score), which require much
more effort to calculate compared to BLEU/CodeBLEU. We
also report the BLEU and CodeBLEU scores, which are much
used in the literature for automated evaluation metrics.

The code for our proposed approach and the experiment’s scripts
and raw data are publicly available for replication1.

We organized the rest of this paper as follows. Section 2 in-
troduces the background of neural models for code and unit test
generation. Section 3 presents the approach of our test case genera-
tion framework. Section 4 shows the experimental setup. Section 5
presents the evaluation results. Section 6 discusses the possible
threats in our study. Section 7 concludes this paper.

2 BACKGROUND AND RELATEDWORK
2.1 Search-based Software Testing
In search-based software testing (SBST), the problem of test case
generation is translated into an optimization problem over a test ad-
equacy criterion such as code coverage [21]. For instance, EvoSuite
[11] is an SBST tool that generates test cases to optimize state-
ment or branch coverage of the generated tests. It uses a genetic
algorithm to evolve a test suite toward a higher quality set (more
coverage with minimum tests). While SBST tools have shown great
effectiveness, studies report their limitation in understandability
or readability [6, 14, 30], quality [13, 24], and their performance in
detecting actual bugs from the generated unit test cases. [5, 27]

2.2 Domain Adaption
Domain adaptation is a technique for modifying a model trained on
one domain to perform well on a different but related domain. The
goal is to leverage the knowledge gained from the source domain
to improve the performance of the target domain, mainly when
the target domain has limited labeled data. Domain adaptation is a
type of transfer learning which aims to transfer knowledge from
one task to another.

Nam et al. [22] proposed a novel transfer defect learning ap-
proach, TCA+, which applies a transfer learning technique to reduce
the data distribution difference between source and target projects
for cross-project defect prediction. TCA+ also selects a suitable nor-
malization option based on the similarity of data set characteristics
between the source and target projects and significantly improves
prediction performance. Patel et al. [26] did a survey about domain
adaptation methods for visual recognition. The paper discusses the
challenges, assumptions, and formulations of domain adaptation
and categorizes the existing methods into feature augmentation,
feature transformation, parameter adaptation, dictionary learning,
and others. It also highlights the advantages and limitations of
each category and identifies some promising directions for future
research in this field. Farahani et al. [9] have briefly reviewed do-
main adaptation. It introduces the main categories, challenges, and
domain adaptation approaches, focusing on unsupervised domain
adaptation. Zirak et al. [46] propose a domain adaptation framework
for automated program repair (APR) models that can improve their
effectiveness on new and different projects. The framework uses
three methods: full fine-tuning, tuning with lightweight adapter
layers, and curriculum learning. It also employs a data synthesis
method to create artificial bugs for zero-shot learning.

1https://github.com/shinjh0849/unit_tc_generation

https://github.com/shinjh0849/unit_tc_generation


Domain Adaptation for Code Model-Based Unit Test Case Generation ISSTA 2024, 16-20 September, 2024, Vienna, Austria

2.3 Neural Models for Unit Test Generation
Deep neural models of code for unit test case generation are limited
and relatively new. They can be grouped into two categories, i.e.,
test oracle generation and unit test case generation.

2.3.1 Test Oracle Generation. Test oracle generation aims to gen-
erate oracles, e.g., meaningful assertion statements when the focal
context (method under test together with its class information, i.e.,
class method signature and class fields) and the corresponding test
prefix are given [33]. Test prefixes are statements in a unit test
case with the oracles (assertion statements, try-catch clause, etc.)
removed. Test prefixes drive the program into a desired testable
state. In general, the problem of oracle generation is a subset of the
whole test case generation.

ATLAS (AuTomatic Learning of Assert Statements) [42] is the
first to utilize deep neural models for assertion generation. They
could generate assertions with the BLEU-4 score of 61.85%. Yu et
al. [44] introduced an approach to integrate information retrieval
techniques, using Jaccard coefficient [37], Overlap [43], and Dice
coefficient [7] with the deep neural approach ATLAS. With their
approach, they could boost the BLEU score up to 78.86%. TOGA
(a neural method for Test Oracle GenerAtion) [8] was proposed
to use a unified transformer-based neural model to generate both
try-catch clause and assertion statements for unit test case oracles.
For generating the try-catch clause, they had 86% of exact match
accuracy and 69% for assertion statements. Tufano et al. [40] pro-
posed to apply the BART pre-training model trained with natural
language and source code corpus and then fine-tune on ATLAS
dataset. They achieved an exact match accuracy of 62.47% with a
beam size of one.

Themain difference between our work and test oracle generation
is that test oracle generation models only focus on the oracle part
of the test case. Generating test prefixes is a non-trivial task, which
calls into the need to generate whole unit test cases.

2.3.2 Unit Test Case Generation. There have not beenmany studies
related to automating the generation of whole test cases. Liu et al.
[20] exploited deep learning models to generate relevant text inputs
to test user interfaces for mobile applications. Saes [31] generated a
test suite for Java projects by identifying the connections between
focal methods and their corresponding tests. They have gathered
more than 780K pairs of focal and test methods utilizing the JUnit
testing framework from GitHub. They could generate test cases
with a parsability of 86.69%. However, they did not evaluate how
correct or effective the generated test cases were in identifying bugs
or covering code. Tufano et al. [39] proposed AthenaTest which
exploits the BART pre-trained model on both natural language and
source code corpora then fine-tune onMethods2Test [38] dataset, to
generate whole unit test cases when a focal method and its context
is given. They have found that their method could correctly test
43% focal methods, with 16% of the candidates being correct. Ala-
garsamy et al. [4] proposed A3Test, which is a test case generation
approach that is augmented by a test oracle generation task and
includes a mechanism to verify naming consistency and test signa-
tures. It performs domain adaptation at a task level, i.e., test oracle
generation task to whole test case generation task, achieving more
correct test cases andmethod coverage thanAthenaTest. Lemieux et

al. [19] proposed CodaMOSA, an SBST approach that leverages LLM
for escaping the coverage plateau for Python code bases. Schafer
et al. [32] proposed TestPilot, a test cases generation approach that
leverages LLM, usage examples mined from package documenta-
tion, and error logs for npm packages (JavaScript). Yuan et al. [45]
proposed ChatTester, which is a LLM-based test case generation
model that exploits ChatGPT and iterative generate-and-validate
prompt engineering strategy with execution feedback. Nie et al.
[23] proposed TeCo, a deep encoder-decoder test completion model
that learns different levels of code semantics and re-ranking by
execution. A test completion model generates the following state-
ment of a unit test case when the previous line and method under
test are given. Our study continues in this direction and proposes
domain adaptation at a project level to improve AthenaTest and
A3Test as our most related work. Unlike these papers, we evalu-
ate based on classic software testing criteria (i.e., code coverage
and mutation testing). Most existing approaches only report BLUE
scores or similar NLP-based metrics that do not correlate with the
effectiveness (adequacy) of the generated test cases. Although there
is literature regarding test case generation, it has shown that we
still have challenges in generating correct and effective test cases
that reveal bugs for practical usage.

3 TEST CASE GENERATIONWITH PROJECT
LEVEL DOMAIN ADAPTATION

Figure 1 illustrates our proposed test case generation framework.
Our approach contains two major steps: (a) fine-tuning the CodeT5
model on a task-level dataset and then (b) applying domain adap-
tation (DA) on a project-level dataset. The following sections ex-
plain the two steps in detail. The framework aims to generate
high-quality test cases with adequate test efficacy learned from
developer-written test cases.

3.1 Fine-tuning on Test Case Generation Task
Our framework assumes the project under test has an initial test
suite. We aim to improve the project by generating new tests using
code models. Although we use developer-written test suites as our
initial set, they can also be automatically generated (e.g., using
ChatGPT). We explain each option’s limitation in the threats to the
validity section.

The first step is to create a coverage database from the existing
test suite. We use the line-level coverage in our framework and
evaluation for simplicity. However, this can be extended to other
code metrics or mutation scores. The coverage database keeps the
information on which unit test covers which lines of source code.
In the next step, our line2test mapping approach converts the
coverage data to map each line in the source code to its covering
tests. Line2test mapping extracts the classpath of all test cases.

Next, we fine-tune the CodeT5 model on the “test case genera-
tion” downstream task. We fine-tune the CodeT5 model since they
are not specifically trained on test generation tasks. We use “condi-
tional code generation” proposed by the original CodeT5 paper to
optimize the model for fine-tuning. Conditional code generation
generates code similar to conventional natural language processing.
They adapt the conventional Sequence-to-Sequence framework for
learning the task-specific data [36].



ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

Figure 1: Overview of our approach.

The dataset to fine-tune the code model for the test generation
downstream task is the Methods2Test dataset [38] (henceforth test
generation data). It consists of tuples of a focal method, focal
context (e.g. class name, class fields, public method signatures), and
the associated unit test method. Our framework maps between the
input source method, the context of the input source method, and
a test method that covers the source method.

The final step in the framework is post-processing the test
cases. Since the model accepts data input and output in one line, we
replaced the new line ("\n") characters with the “[EOL]” token. The
first step in post-processing is to replace “[EOL]” with “\n”. Then,
we make a list of generated test cases. We add a unique number at
the end of the duplicate test names to prevent compile errors due
to duplicate definitions of the same test case. The next step is to
select compilable tests because not all the model-generated tests are
compilable. We include another step to automate the inclusion/ex-
clusion process. Since compiling all the tests is time-consuming, we
first use a Java parser to select the tests without syntax errors. We
use tree-sitter [2] for the implementation, a parser that supports
multiple programming languages. Since the parser does not compile
the code, we can identify all parsing issues in a class in less than
a second. Some generated tests are truncated due to the model’s
token limitation, thus will result in a parse error. To make them
parsable, we apply a simple bug-fix pattern to them. These tests
generally follow the same pattern, i.e., they do not match brackets
or have a missing “;” at the end of the last line. Using an automated
script, we fix these issues by deleting the last line (usually, the test
ends in the middle of a line) and adding a closing bracket. Then,
we parse the test again. If it is still not parsable, we add another
closing bracket and re-parse. After selecting the final parsable tests,
we add each test to its corresponding test class to compile them in
the project environment. We use the classpath for each test from
the line2test mapping step. The test class has the required de-
pendencies and other test helpers that the test case may need to
be compilable. We add each test case to the corresponding file and
compile it individually to ensure it’s also compilable. Some tests
may not pass this step for several reasons, such as calling undefined
or unreachable objects or functions. To fix these compile issues, we
add the test cases to their corresponding test class file consisting of
test helpers and other dependencies (saved in the line2test step).

Finally, we remove all the developer-written tests and add each
model-generated unit test to its corresponding test class. Even with

one test with a compilation error, the build would not succeed. Thus,
we add one test case at a time and compile the project using the
Defects4j framework. If the test is compilable, we add it to the list of
parsable and compilable tests; if it does not compile, we exclude it
from our test set. Using this fully automated post-processing step,
we now have a set of compilable model-generated test cases.

3.2 Domain Adaptation on Project Specific
Knowledge

The main downside of a test case generation model is its inability to
adapt to potential domain shifts when the model is inferring a new
project. This phenomenon (domain shift) is not limited to the test
case generation task and applies to all machine learning tasks. The
structural difference in each project may cause a drastic change
in the context generated by the framework making it harder for
the model to generate compilable tests. We leverage the existing
developer-written tests for each project to mitigate this threat.
Usually, a well-maintained project already has a test suite covering
most of the code. We use the existing test suite to generate a project-
specific dataset for domain adaptation. Alternatively, one can start
with a set of automatically generated test cases and further improve
them with our approach.

As demonstrated in Figure 1, the first step for applying domain
adaptation is to generate a dataset using developer-written tests.
Since a target line can be as simple as a return statement or an arith-
metic operation of two variables, it is hard for a model to generate
a meaningful test case. To help the model generate meaningful unit
tests, we append the target line as extra context/information. Con-
text extraction provides three different outputs. The first output is
a set of files identical to the files seen in the project source code
structure, but in each file, instead of the full implementation, we
only include the method names in that file. The second output is
the same set of files, but it includes the method bodies. We also
save each method’s initial and last line numbers in each file. The
third output is all the other parts of the context for each class, con-
sisting of the class name, signatures of the constructor methods,
public variables and fields, all other method names, etc. This context
design strictly follows the baseline work from the Methods2Test
dataset, which we used for fine-tuning downstream tasks. After
extracting the three context outputs, we iterate over the Line2test
mapping and concatenate each line with its corresponding focal
method and context.

An example of the input of the dataset is demonstrated in Figure
2. When lines are mapped to tests, we can end up with multiple test
cases covering the same lines. We don’t include all the covering test
cases because the input data is the same, and the model will have
difficulty optimizing if we provide different outputs for identical
inputs. So, we select one test per line.We use the naming convention
as a typical solution in the literature to map unit tests to source code.
We have the test name and path in our line2test mapping and
the class name to which the input line belongs. So, we search for
the class name of the input line in different tests that have covered
the line; if we have a match, we will select that test as the covering
test for the input line. If no tests have the same class name as the
input line, we include the first test in the list as the unit test. We



Domain Adaptation for Code Model-Based Unit Test Case Generation ISSTA 2024, 16-20 September, 2024, Vienna, Austria

Figure 2: An example method and its context.

select the first match as the mapped unit test if there are multiple
matches.

After creating the dataset consisting of the input line, the context
on the input side, and the corresponding test that covers the line, we
use them to apply domain adaptation to the fine-tuned model. The
domain adaptation enables the model to adapt to the new domain
(project) and generate more accurate tests with a higher compilation
ratio. The domain adaptation technique we have used is training
the model for a few epochs on the generated dataset (much less
than a full training). Other options could be freezing the model and
adding extra layers (which we did not see a significant benefit in
performance from our preliminary experiment). However, this part
of our approach can be easily replaced with other techniques in
future work.

Note that the computation cost of domain adaptation per project
is affordable since it is a one-time cost. If the project tends to change
over time, we can re-train the model per sprint. Generating infer-
ences requires significantly less time than classic test case genera-
tion approaches, i.e., SBST tools. However, it is worth mentioning
that SBST approaches do not require this non-trivial training time.
So, deciding which approach is more time-effective is worth inves-
tigating for future work.

4 EXPERIMENT SETTINGS
4.1 Research Questions
This study aims to evaluate the effectiveness of code models in
generating unit test cases. In addition, we also study the effect of
project-level domain adaptation. To address these objectives, we
design and study the following three Research Questions (RQs):

4.1.1 RQ1 (Performance). How effectively doesCodeT5 generate
unit test cases without domain adaptation?

Motivation: Code models such as CodeBERT and CodeT5 have
been successfully applied to automated software engineering tasks
such as comment generation, defect prediction, and program repair.
However, not many studies apply them to test case generation tasks.
The few existing studies, such as [4, 40], mainly rely on the static
evaluation of the generated test cases using metrics such as BLEU.

The problem with this approach is that the generated test may be
(a) uncompilable and (b) not effective since they are measured by
execution. Therefore, we replicate a state-of-the-art study in this
domain and adequately evaluate them by running test cases and
calculating their test adequacy metrics. We take AthenaTest [39] as
our baseline. However, they have not published their model publicly,
and our attempt to access it privately was also unsuccessful (due
to confidentiality). Also, they have not reported the test adequacy
metrics (e.g., line coverage and mutation score). So we replicated
their work the best we could, using a similar model CodeT5 [41]
and evaluated it on our dataset.

4.1.2 RQ2 (Effectiveness). How effective is project-level domain
adaptation in improving the generation quality of test cases using
CodeT5?

Motivation: As we show in Section 5.1, the results of RQ1 are
not promising. One potential explanation is the inability of the
models to learn project-specific patterns or knowledge. It is a typical
problem in most software engineering tasks where “domain shift”
is extreme when a trained model is applied on a brand new project
[46]. In most well-maintained real-world projects, the code base
already includes developer-written test cases that may cover most
of the code. In RQ2, we propose to leverage this data to adapt the
domain in RQ1 results to each project. In this RQ, we compare the
results to other baselines, namely, GPT-4 and A3Test. We added
GPT-4 as a method to represent the current state-of-the-art LLM
and A3Test as the state-of-the-art technique specially designed for
unit test case generation exploiting domain adaptation from test
oracle generation task.

4.1.3 RQ3 (Impact). Can our proposed test generation approach
augment search-based test case generation?

Motivation: Given that search-based test case generation ap-
proaches are state-of-the-art techniques for test case generation,
in RQ3, we compare our approach with EvoSuite as a well-known
and influential search-base approach[12]. One of the motivations
for using our approach compared to a technique like EvoSuite is
the speed of test generation. Given that test generation in our ap-
proach only requires one single “inference”, the run-time per test
case should be substantially lower than search-based baselines. On
the other hand, those techniques do not need a lengthy (one-time)
training phase beforehand. Our objective for the proposed test
generation framework is not to replace search-based approaches
but to complement them. We argue that search-based approaches
and our Transformer-based methods can target different types of
tests to generate. Therefore, using both tools together will be most
beneficial. In particular, we envision applying EvoSuite once per
class to reach a certain level of coverage. Then, running our models
(domain adapted on the developer-written tests), we can generate
extra test cases covering some new lines on top of the coverage
achieved by EvoSuite and developer-written tests combined. After
the initial round of test generation, our model can be run after
each small commit to cover those few new source code lines. We
will discuss the complementary nature of the two approaches in
Section 5.3. We also compare the mutation score of both methods
and report how many new mutants our method can kill compared
to EvoSuite.



ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

4.2 Datasets
Weuse two datasets in this study namelyMethods2Test andDefects4j.
The Methods2Test dataset is used to fine-tune our model for test
generation downstream tasks. Defects4j projects are then used to
adapt the fine-tuned model at a project level and test their final
output per project. In the following, we provide more details about
each of these datasets.

Methods2Test [39] is the “test generation data” in Figure 1,
which consists of Java methods mapped to their corresponding
focal methods. It was built on data from 9,410 unique reposito-
ries (91,385 original repositories analyzed). The dataset consists of
780,944 instances, divided into training (80%), validation (10%), and
test (10%) sets. Since running all the tests, getting the coverage, and
mapping the tests to the methods they cover require a lot of manual
work and execution time, they have used the naming convention
as a heuristic to map each test to its focal method. They search for
method names in the test case and map the method mentioned to
the test that calls it. They provide the context data as the following:
the focal method (FM), focal class name (FC), signatures of the con-
structor methods of the focal class (C), signatures of other public
methods in the focal class (M), and public fields of the focal class (F)
– FM+FC+C+M+F. The reason behind these additional contexts is to
provide enough information for the model to generate meaningful
and compilable tests. For example, a test case may need to instan-
tiate an object of the focal class. The model requires the proper
context to generate a statement to instantiate them. Providing the
constructor’s signature and the focal class’s class methods helps
the model generate correct instantiating code that does not throw
compilation errors. Based on their results, this combination of con-
texts has shown the best results. We have used all the data provided
per method to fine-tune our model for test case generation tasks.

Defects4j [16] is a dataset of Java projects consisting of a collec-
tion of reproducible bugs and a supporting infrastructure to advance
software engineering research. The initial version of Defects4J con-
tains 357 real bugs from 5 real-world open-source projects. Each
project also has a comprehensive test suite that can expose each
bug in each version of the project. Each version can be accessed
using the provided scripts to check out different commits. The up-
dated version of Defects4j has 17 projects. In our experiments, we
used 5 out of the 17 projects. Section 5 provides more details on the
selection criteria of projects.

4.3 Pre-Trained Code Model
In our study, we have chosen CodeT5 as our code model for the
following reasons:

Firstly, we did not choose the recent LLMs, e.g., GPT-4, PaLM,
and LLaMA, as they are too large to cost-effectively fine-tune down-
stream tasks and adapt the domain for the project data. Even though
CodeT5 is much smaller than the recent models, its size gave us a
reasonable cost while beating the large LLMs, i.e., GPT-4.

Secondly, out of the smaller models, we have chosen CodeT5
as it is based on T5 [28]. T5 is a Transformer that uses denois-
ing sequence-to-sequence (Seq2Seq) pre-training and has shown
promising results for understanding and generation tasks. T5-based
models are better for our use case than BERT or GPT -based models,

given that they are not encoder-decoder models. Despite their suc-
cess, BERT -based models are encoder-only, and GPT -based models
are decoder-only architectures. Encoder models are usually best
suited for understanding tasks, and decoder models are suitable for
generation tasks. However, the test case generation task requires
both understanding and generation skills. For instance, prior work
that leverages BERT for a generation task (code summarization)
[10] had to add a separate decoder, which does not benefit from
pre-training.

Lastly, CodeT5 considers the token type information in the code
data. Most other code-aware models use the conventional NLP
pre-training techniques. However, code data has rich structural
information essential for fully understanding code functionality.

Therefore, given the resources and the application we needed to
train our method, we used CodeT5 as our code model.

CodeT5 has two main configurations: CodeT5-small with 60M
parameters and CodeT5-base with 220M parameters. The maxi-
mum source and target sequence lengths are 512 and 256, respec-
tively. There are different downstream tasks that CodeT5 can be
fine-tuned on, such as summarize, CONCODE (text-to-code gener-
ation), translate(Code-to-code translation), code refinement, code
defect detection, and code clone detection. Two of the tasks men-
tioned above can be used for test generation, which consists of code
and test as input. Based on our initial experimental results, the CON-
CODE task generated better test cases than the code-translation
task. It seems rational as the code translation model generates code
in a different programming language with the same semantics as
the original code. However, the input and output do not have the
same structure and semantics in test generation. Therefore, in our
experiments, we have selected the CONCODE sub-task for training
the CodeT5 model with the CodeT5-base (the larger) configuration.
We have used the default hyperparameters for the CodeT5-base
model. The only change we made in the configuration was the
batch size due to the limited GPU memory. We used four as our
batch size, the batch data that fit most in our GPU memory.

4.4 Baselines
We chose the following two baselines to compare our results to
other methods.

(1) GPT-4 is a highly advanced LLM that can mimic human-like
speech and reasoning by training on a vast library of existing
human communication. It can solve complex problems more
accurately, generate creative content, and exhibit human-
level performance on various professional and academic
benchmarks.

(2) A3Test is a test case generation method that exploits domain
adaptation at a task level, i.e., test oracle generation, in which
they transfer the knowledge learned from oracle generation
to a whole unit test case generation.

By adding these two methods as our baseline, we aim to assess
how our project-level domain adaptation works compared to the
state-of-the-art LLM and a novel test case generation method that
exploits a task-level domain adaptation.



Domain Adaptation for Code Model-Based Unit Test Case Generation ISSTA 2024, 16-20 September, 2024, Vienna, Austria

4.5 Evaluation Metrics
In this paper, we use seven different evaluation criteria to evaluate
the performance of test generation, i.e., parse rate, execution rate,
line-level code coverage, mutation score, adapted mutation score,
BLEU score, and CodeBLEU score.

4.5.1 Parse and Compile Rate. We report the ratio of parsable and
compilable test cases generated by each baseline. We use Tree-sitter
2 parser to evaluate the syntax correctness of the generated test
case. Within the parsable test cases, we inject them and compile
the project to assess the compilability of the generated test cases.

4.5.2 Line-Coverage and Mutation Score. We use line coverage and
mutation score for the test case adequacy metric. From a practical
point of view, a useful metric for evaluating a test case is a test
adequacy metric such as code coverage or mutation score. Other
metrics are provided for comparison with baseline literature and
their simplicity. Although most studies use BLEU score [25] or
CodeBLEU [29] for evaluating the quality of generated code or test
case, these metrics are sub-optimal for evaluating testing efficacy.
For instance, both BLEU and CodeBLEU are calculating the simi-
larity of the generated output with the ground truth. So, different
identifier tokens in the generation will significantly affect its scores
while not affecting the functionality of the code or test case. The
model can generate a compilable, meaningful, and effective test
case that is not similar to the ground truth. Therefore, we picked
a simple and basic coverage metric (line coverage) and standard
mutation score as our evaluation metrics. In the future, the study
can be extended with other adequacy metrics.

To calculate line coverage, we select only the compilable gen-
erated test cases, inject them into the project, and run them. For
RQ1 and RQ2, we calculate the line coverage of the total project,
excluding the lines in the test project, i.e., src/main/test. For RQ3,
we calculate the exact code line from the input the generated test
case covers. Clover [1] calculates the exact mapping between each
test case and its covered lines in the code. To use Clover, we need
to add instrumentation scripts to the build system of each project
under study. Since different projects in Defects4j may use other
build systems, we included 5 out of 17 projects compatible with
Clover.

To emphasize the practical usefulness of our work, we also report
mutation score, a fault-based adequacy metric, to demonstrate that
our approach can find bugs that the developer-written test, the
most related work, and the search-based baseline method can not.
Using their defined mutation operators, we report the standard
mutation score (the number of killed mutants divided by the total
number of mutants) reported by the Major mutation testing tool.
For RQ3, we also report (when applicable) the adapted mutation
score, which is the number of killed mutants divided by the covered
mutants.

4.5.3 BLEU and CodeBLEU. These two metrics calculate the simi-
larity of the generated code compared to the ground truth. Since
integrating test adequacy metrics in the training loop is not fea-
sible (it requires execution, which is very costly), we used BLEU
to select the best model during the training. We also provide the

2https://tree-sitter.github.io/tree-sitter/

BLEU and CodeBLEU scores to compare the model before and after
domain adaptation. BLEU calculates the similarity of two texts by
calculating their N-Gram co-occurrence. Since BLEU only evaluates
the textual similarity, it is not considered optimal in calculating the
similarity of two code snippets. While BLEU solely calculates the
co-occurring n-grams of tokens, CodeBLEU leverages a weighted n-
gram to encapsulate different importance of keywords (i.e., 𝑝𝑢𝑏𝑙𝑖𝑐 ,
𝑖𝑛𝑡 , 𝑟𝑒𝑡𝑢𝑟𝑛). It uses syntactic matching via AST and semantic match-
ing via data-flow [15].

4.6 Configurations and Environment Setup
We have used the CONCODE downstream task with CodeT5-base
configuration as our model. We fine-tune the model on the Meth-
ods2Test dataset and evaluate the results using Defects4j projects
and EvoSuite-generated tests. All the model hyperparameters are
set as the default for the CONCODE configuration of CodeT5. The
batch size is set to 4, the maximum that can fit our setup’s GPU
memory. We fine-tune all the model layers for 20 epochs for the
domain adaptation step.

We have used a single ComputeCanada (Beluga) node for all
experiments, with 4 32GB V100 GPUs, 10 CPU cores, and 80GB
RAM. However, with minor changes in batch size and training time,
all experiments can be executed with 16GB GPU, 1 CPU core, and
10 GB RAM.

5 RESULTS AND ANALYSIS
5.1 RQ1: Effectiveness of CodeT5 without DA
Experiment Design. First, we explain how we split Defects4j data
into training and evaluation sets per project. In RQ1, we only use
the evaluation set to assess the base model CodeT5 without Domain
Adaptation (DA).

There are two ways to split the train and evaluation set on
Defects4j. We can randomly select 20% of the lines andmove the line-
test tuples to the evaluation set. The problem with this approach is
that we may have a data leak between the train and the evaluation
set. For example, in a method with five lines, each line is mapped to
a test. In some cases, all five lines are mapped to the same test case.
If we randomly pick 2 of 5 lines for the evaluation set, the model
will have access to the other three lines, which consist of the same
output test that we expect the model to generate in the evaluation.
Since this constitutes a data leak, we divided the data at the test
case level.

In this approach, a leave-one-out evaluation [18], we first make
a set of all unique test cases in the dataset per project. We randomly
select 20% of them for the evaluation set per project. Finally, the
evaluation set is created using the line-test tuples of those 20%
test cases. This way, the dataset will not have identical test cases
between the evaluation and training sets, i.e., no data leaks. Note
that some test cases might still cover some lines in the evaluation
set in the training test. However, those test cases in the training set
are not the same as the main test cases in the test set, which was
selected in the 1-to-1 mapping procedure for that given line, which
the model tries to generate. We do not consider the following a
data leak since the target test cases generated will no longer be the
same as those seen in the training.

https://tree-sitter.github.io/tree-sitter/


ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

Table 1: Evaluation metrics scores for CodeT5 without Domain Adaptation (DA) (RQ1). Comparison of Code-T5 with DA) versus
GPT-4 and A3Test is also shown for RQ2. Bold values denote the best metric score for each project compared to the baselines.

Baselines Metrics compress gson jksnCore jksnDB jsoup AVG
Parse Rate 20.75 24.01 14.21 18.26 39.27 23.30

Compile Rate 1.66 3.67 0.70 0.92 22.51 5.89
BLEU 11.59 18.64 16.39 18.34 25.56 18.10

CodeBLEU 9.15 16.64 16.98 16.78 22.10 16.33
Line Coverage 2.00 25.60 2.10 31.40 63.10 24.84

CodeT5
without

DA

Mutation Score 0.55 12.26 0.07 11.95 32.78 11.52
Parse Rate 89.29 100.00 93.33 94.46 100.00 95.42

Compile Rate 39.29 47.67 38.33 28.37 62.50 43.23
BLEU 40.84 42.06 28.41 36.74 44.36 38.48

CodeBLEU 22.37 35.12 30.06 31.70 44.10 32.67
Line Coverage 32.80 52.20 21.20 43.10 68.00 43.46

CodeT5
with
DA

Mutation Score 20.53 35.61 8.70 28.60 46.42 27.97
Parse Rate 99.28 98.55 98.37 98.08 99.40 98.74

Compile Rate 2.90 17.15 4.20 7.52 22.75 10.90
BLEU 18.53 26.39 18.29 22.43 27.11 22.55

CodeBLEU 18.73 28.19 23.32 23.87 25.65 23.95
Line Coverage 0.70 32.40 4.10 33.20 56.80 25.44

GPT-4

Mutation Score 0.10 15.93 0.98 14.44 43.45 14.98
Parse Rate 53.70 64.61 44.98 68.16 56.25 57.54

Compile Rate 1.93 6.85 1.27 1.07 17.14 5.65
BLEU 11.33 16.44 13.08 15.75 18.79 15.08

CodeBLEU 7.42 15.61 13.32 15.58 18.11 14.01
Line Coverage 2.00 29.50 2.00 31.60 52.80 23.58

A3Test

Mutation Score 0.00 12.85 0.01 11.95 34.98 11.96

For RQ1, we investigate the ability of Code-T5 to generate test
cases by only applying fine-tuning on downstream tasks. We use
the Methods2test dataset to fine-tune the test generation task. After
training the model on the Methods2test dataset, we directly evalu-
ate the model on the evaluation set split, as mentioned above for
splitting Defects4j. To generate test cases for Defects4j projects, we
need to extract a context similar to the structure of theMethods2test
dataset. After generating the tests, we calculate the line coverage
on each project. The line coverage is the number of covered lines
divided by the total number of lines in the src/main/java folder.
The line coverage on the CodeT5 without DA baselines shows the
line coverage by the tests generated by the model without domain
adaptation on the evaluation project. We only use test cases that
pass for calculating the mutation scores, as we need a green test
suite to set up the mutation testing process.
Results. As demonstrated in Table 1, we calculate the evaluation
metrics of model-generated tests on five Defects4j projects using
CodeT5 without DA.

We have two findings in this RQ: (a) In most cases, the model-
generated test cases were not compilable due to the inability to infer
the correct dependencies, which led to the generation of undefined
objects. Also, the model generated truncated test cases to the limited
output length per sample inCodeT5 (512 tokens). (b) Existing studies
such as [39] only reported the coverage (a high coverage in this case

for a small (18) set of sample methods), which is not representative
of the actual quality of the model. Most other studies only report
generic static metrics, such as the BLEU score, which fails to capture
the test adequacy. However, our results revealed that the generated
test cases’ test adequacymetrics (line coverage andmutation scores)
are not as promising as the BLEU or CodeBLEU. They are also much
lower than the reported coverage in the original AthenaTest paper
for the 18 small sample codes they have assessed.

Answer to RQ1: The results of CodeT5 without DA show that
fine-tuning with only task-specific data is insufficient to generate
test cases that are compilable or test-adequate.

5.2 RQ2: Effectiveness of CodeT5 with DA
Experiment Design. In this subsection, we explain the details of
the experiment procedure used in RQ2.

We use the same splits of Defects4j as mentioned in the previ-
ous RQ. To apply domain adaptation, we use the training set of
Defects4j to train the fine-tuned model, i.e., CodeT5 with DA. Then,
we generate test cases using the same evaluation set to calculate
the metric scores.

We have two state-of-the-art baselines to compare our approach:
GPT-4 and A3Test. To generate test cases by GPT-4, we had to de-
velop a new style of feeding the input, as our dataset has a lot of



Domain Adaptation for Code Model-Based Unit Test Case Generation ISSTA 2024, 16-20 September, 2024, Vienna, Austria

prompt = [

{"role": "system",

"content": f"You are a unit test case generator

with meaningful assertions for Java project: {prj}."},

{"role": "user", "content": f"""Given a focal method

surrounded by ???, generate unit test case methods

that cover maximum line coverage. Only create new

tests if they cover new lines of code. Only generate

the Java code part of test methods. Use [TCS] to

separate the multiple test cases. Input text:

???{method}???"""},

{"role": "user", "content": """Remove all comments

(e.g. line starts with // and surrounded by /* and */),

NL description and @Test annotations. New lines

should be substituted with [EOL]."""}

]

Figure 3: Prompt used for GPT-4

redundancy due to its granularity being at the line level. Asking
the model to create tests for each line individually wastes resources.
To mitigate this issue and optimize prompting cost (to make this
solution more practical), we ask GPT-4 to create as many tests as it
needs to maximize line coverage for a given method.

The prompt template is shown in Listing 3. First, we query the
model with a system prompt that defines the model’s role, a unit
test case generator with meaningful assertions (a nontrivial require-
ment for generating unit test cases [42]). For the actual task, we
provide the focal method and its context and ask the model to gen-
erate a unit test case that covers the maximum line coverage for the
focal method. We let the model generate as many tests as it needs
(since other baselines of comparisons create multiple tests as well),
but to avoid redundant tests, we ask to generate new tests only if
they cover new lines of code. We also added minor instructions to
the prompt to make our post-processing easier, i.e., only generat-
ing Java code, using [TCS] tokens to separate multiple test cases,
removing natural language comments and @Test annotations, and
substituting new lines with [EOL] tokens.

For A3Test, we use their already fine-tuned model and their
testing script provided in their replication package. Since A3Test is
also a token-to-token generation model that receives a structure
similar to ours in the input, i.e., focal method + focal context. We
use the same evaluation set splits from our Defects4j dataset (from
RQ1). All the hyper-parameter settings were used according to
what was reported in their paper or the default values suggested in
their replication package.
Results. Table 1 reports the evaluation metrics to compare CodeT5
with DA and the studied baselines. CodeT5 without DA refers to the
CodeT5 model fine-tuned on test generation downstream task using
the Methods2test dataset, without any domain adaptation. CodeT5
with DA refers to the model after applying project-level domain
adaptation. The results show that using project-specific data for
domain adaptation significantly increases the model’s performance.
The average improvement of percentage points over all projects
is 72.12% for parse rate, 37.34% for compile rate, 20.38% for BLEU,
and 16.34% for CodeBLEU, 18.62% for line coverage, and 16.45% for
mutation score.

The results of test adequacy metrics are new and promising. As
discussed, most related work does not report these metrics due to

the effort required to make all test cases executable. Our results
reveal that without project-specific domain adaptation, the metrics
are low, with line coverage between 2% to 63%, with a median of
25.6% and a mean of 24.84%. For mutation score, it ranged between
0.07% to 32.78%, with a median of 11.95% and a mean of 11.52%.
However, the metrics improve significantly after applying the do-
main adaptation, with line coverage to a range between 21.20% and
68%, a median of 43.10%, and a mean of 43.46%. For the improved
mutation score, it ranged between 8.70% and 46.42%, with a median
of 28.60% and a mean of 27.97%. In other words, there was a 17.5%
improvement over the median and an 18.62% improvement over
the mean for line coverage; 16.65% improvement over the median,
and 16.45% over the mean for mutation score in percentage points.
From the result, we can observe that applying domain adaptation to
transfer project-specific knowledge has a substantial improvement
in unit test generation, both in static textual similarity and test
adequacy metrics. The reason could be that unit test generation
heavily relies on the internal knowledge of the software under test.
Just tuning the models at a task level without enough knowledge
of the software will have a marginal effect on the testability of the
generated unit tests.

We also compare our approach with two state-of-the-art base-
lines, i.e., GPT-4 and A3Test. As shown in Table 1, none of the
baselines could outperform CodeT5 with DA in all metrics except
for the parse rate of GPT-4. GPT-4 showed better overall perfor-
mance than A3Test in all metrics. A3Test and CodeT5 without DA
showed the least performance. A3Test had the lowest performance
in compile rate, line coverage, BLEU, and CodeBLEU. CodeT5 with-
out DA showed the least parse rate andmutation score performance.
The performance difference between the two least-performing base-
lines was not very big. However, the difference between their parse
rate scores was significant, with +34.24% points for A3Test. The
results suggest that transferring Oracle generation knowledge has
a positive impact in generating syntactically correct test cases.

One interesting observation is that CodeBLEU scores are rela-
tively higher than BLEU for GPT-4. Even though it generates dif-
ferent n-gram tokens than the ground truth, the AST-matching
and dataflow matching scores are relatively higher. Even though
GPT-4 generates different tokens, e.g., different identifier names,
it generates similar code in terms of syntax (AST) and semantics
(dataflow). Generating different identifier tokens can be an inher-
ent trait of GPT-4 as it is trained on a much more diverse dataset
with much larger parameters. However, there is more than one
way of naming an identifier in source code. What determines the
function of a code is its syntax and semantics. Also, GPT-4 shows
the best performance in parse rate, meaning that it generates the
most syntactically correct test cases. However, they could not beat
CodeT5 with DA in other metrics as they lack the domain-specific
knowledge to make the code locally correct for compilation and
effective test adequacy. From this observation, we foresee good
potential on GPT-4 if paired with the proper tuning strategy, e.g.,
prompt-tuning, fine-tuning, domain adaptation, etc.



ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

Table 2: Line Coverage comparison between EvoSuite and
model generated tests. The NewCL has covered lines that
neither EvoSuite nor the developer-written tests from the
training set have covered.

Project Model CL EvoSuite CL New CL Total Lines
compress 216 58% 87 23% 174 46.70% 372
gson 458 69% 539 82% 31 4.70% 657

jksnCore 399 30% 674 51% 82 6.20% 1307
jksnDB 1357 50% 136 5% 1246 48% 2595
jsoup 192 82% 39 16% 157 66.50% 519
AVG 524.4 58% 295 35% 338 34.42% 1090

Answer to RQ2: Overall, the results suggest that applying
project-specific domain adaptation improves CodeT5 by 72.12%
in parse rate, 37.34% in compile rate, 20.38% in BLEU, 16.34% in
CodeBLEU, 18.62 in line coverage, and 16.45% in mutation score
over the one without DA. It also significantly outperforms all the
other baselines, except for the parse rate of GPT-4.

5.3 RQ3: Augmentation with SBST
Experiment Design. In RQ3, we compare our approach with Evo-
Suite, a well-known search-based approach for test case generation.
First, we run EvoSuite with the default settings (10 minutes per
class) to generate tests for all classes in the project. We use the
same train-test split as RQ1 and RQ2. We calculate the line cover-
age and the mutation scores using the EvoSuite framework. The
purpose of our proposed framework is not to compete with or
replace EvoSuite but to complement or augment such existing ap-
proaches. Therefore, we also report the number of “new lines” our
test cases can cover compared to what was covered already by the
EvoSuite-generated test suite. Also, note that these “new lines” are
not covered by the developer-written test cases of the training sets
either. Thus, the study emphasizes the tool’s impact by compar-
ing existing automated testing tools and manual test generation
practices.
Results. Table 2 reports the line coverage of the test cases generated
by EvoSuite and our framework. The model-covered lines (Model
CL) column shows the number and percentages of lines of code
covered by model-generated tests. EvoSuite-covered lines (EvoSuite
CL) show the number and percentages of lines covered by EvoSuite.
Finally, the new covered lines (New CL) column shows the extra
lines covered by model-generated tests that EvoSuite can not cover.
Note that these lines are not covered by the developer-written test
cases of the training sets either.

The results indicate that EvoSuite line coverage is higher than our
framework in 2 projects, and ours is higher in 3 projects. Overall,
EvoSuite’s median and mean coverage are 23% and 35.4% vs. ours,
which are 58% and 57.8%. However, the motivation of our work is to
augment existing test generation systems and not to replace them.
If our model generates tests that can cover new uncovered lines
compared to EvoSuite, we say our model augments EvoSuite; the
total coverage will be more than both individually. Looking at the
New CL column, we see that in 5 out of 5 projects, we can augment
EvoSuite by covering extra lines.

Table 3: Mutation and adapted mutation scores for model
generated (Model MS and Model AMS) and EvoSuite (Evo MS
and Evo AMS) tests. The New MK column shows the number
of mutants not killed by EvoSuite but by model-generated
tests.

Project Model MS Evo MS Model AMS Evo AMS New MK
compress 0.00% 55.90% 0.00% 69.50% 0 0%
gson 13.50% 64.90% 50.00% 100.00% 0 0%

jksnCore 14.80% 87.20% 50.70% 100.00% 0 0%
jksnDB 22.40% 0.00% 54.20% 0.00% 26 22.40%
jsoup 32.00% 0.00% 47.10% 0.00% 8 32%
AVG 16.54% 41.60% 40.40% 53.90% 6.8 11%

Table 3 reports the mutation score of model-generated unit tests
compared to the EvoSuite tests. We used defects4j to calculate the
mutation score. The lowmutant coverage of our approach is because
we are using only 20 percent of each project as our test set, but
mutants are everywhere. Since the data is divided in a line-level
manner and EvoSuite needs the whole class for test generation, we
could not use EvoSuite to only generate tests for the test set portion
of the dataset (the portion that was given to the trained model for
test generation). So, a direct comparison is not straightforward.

The same problem also exists in the coverage calculation since
EvoSuite generates a test suite for the whole project. However, we
could select only the lines in our test set for coverage comparison us-
ing Clover coverage reports, which we cannot do with the mutation
tool. To better reflect the mutation-killing power of our approach,
we calculated the Adapted Mutation Score, which compares the
model’s ability to kill the covered mutants.

Comparing the two techniques, the mutation score of model-
generated tests is higher than EvoSuite for 2 (Jacksondatabind,
Jsoup) out of 5 projects. For example, in jksnDB, we kill 26 new
mutants.

As mentioned, all the above results for EvoSuite are collected
with the default EvoSuite setup, which is 10 minutes timeout per
class. One can argue that EvoSuite might generate more new lines
if we set a higher time. Although this is true in theory, first, the
default values are chosen based on hyper-parameter tuning, which
means that, on average, one won’t get much more coverage by
simply giving more time for test generation per class. Second, we
also noticed that most projects would converge even before 10
minutes.

As explained before, we recommend using our approach in addi-
tion to a tool like EvoSuite. Our suggested use case in practice is to
start with EvoSuite (with a default budget). Then, identify lines not
covered by EvoSuite and pass them to our framework to generate
test cases instantly. Note that one test case generation in our frame-
work takes around 2 seconds (including all post-processing steps)
compared to 153 seconds per test case on average for EvoSuite on
these projects. Our approach provides a fast add-on to EvoSuite,
especially for new commits, since otherwise, one would need to
rerun EvoSuite for the whole class with every minor change.



Domain Adaptation for Code Model-Based Unit Test Case Generation ISSTA 2024, 16-20 September, 2024, Vienna, Austria

public void testHashCode1609() {

ArcDialFrame f1 = new ArcDialFrame();

ArcDialFrame f2 = new ArcDialFrame();

assertTrue(f1.equals(f2));

int h1 = f1.hashCode();

int h2 = f2.hashCode();

assertEquals(h1, h2);

}

Figure 4: An example of model-generated tests.

Finally, note that in addition to improving performance and being
faster than the alternative search-based approach, the other attrac-
tion of our work is to focus on generating readable and more main-
tainable test cases, given that they are derived based on developer-
written test cases rather than predefined templates of search-based
approaches. Although we did not study this aspect in detail in
this paper and only showed an example 4, our baseline paper [39]
provides some evidence based on their user study.

Answer to RQ3: In general, our approach can increase the cov-
erage and mutation score of the existing state-of-the-art test
generation techniques such as EvoSuite and thus is recommended
to be used together with such tools.

6 LIMITATIONS AND THREATS TO VALIDITY
One of the limitations of our approach is that it might depend
on developer-written test cases. Although training our model on
automatically generated tests is possible, it could hinder the benefits
we were targeting, such as better fault detection and readability.
Therefore, our approach’s use case is to extend existing tests so that
new lines are covered, and new faults are detected. However, in
practice, this is not a considerable hindrance since, except for newly
created projects, most reasonable projects come with some tests
already in their regression test suite. Thus, our approach can start
with those test suites and improve and augment them. Alternatively,
suppose the project does not have any test cases. In that case, the
next best option is using automatically generated test cases that
are generated by an LLM such as GPT-4 so that the initial tests are
still readable and have a relatively high quality, to begin with.

Regarding construct validity threats and the effectiveness of the
metrics, we made sure we went beyond code coverage and looked
at the mutation score. New mutants killed by our approach mean
potentially new faults can be detected by the model-generated tool
compared to what the developers have detected. However, we did
not provide a systematic study for the readability of test cases
and only showed an example. We neglected this part since the
baseline paper [39] already has done a user study and reported the
readability as a benefit of model-generated tests.

Regarding the threat to external validity, one closely related
study we failed to compare with was ChatTester. We couldn’t prop-
erly run their tool on the five Defects4j projects used in this study,
mainly due to their data-pair collection component. The component
collected 20 pairs of data instances from one project and no pairs
for the other four projects, which was insufficient for comparison.
To mitigate this, we compared our work with GPT-4 to investigate

the test case generation performance of state-of-the-art LLM. Since
in our comparison, we did not employ advanced prompt engineer-
ing strategies such as those used on ChatTester, future studies are
needed to compare our work with advanced prompt-engineered
LLMs for test generation.

Also, we agree that the selected projects can threaten this study’s
external validity. However, Defects4j is a well-known and widely
used dataset with quality unit test cases. Using a limited number of
projects is mainly due to the considerable resource cost of calcu-
lating the test adequacy metrics. Due to the same reason, some of
the previous studies that evaluate test adequacy metrics (i.e., line
coverage or mutation score) on test or test oracle generation also
experimented with a small number of projects like us, e.g., TOGA
[8] and A3Test [4]. Also, it is worth noting that running GPT-4 per
each extra project is very costly, hindering the experiments’ size.

7 CONCLUSION
This study showed that code models can be fine-tuned on test gener-
ation downstream tasks. However, their performance is ineffective
on a new project compared to search-based approaches due to
domain shift. To mitigate the problem, we proposed a domain adap-
tation framework that leverages existing developer-written tests.
We showed that applying project-level domain adaptation improves
the quality of the generated test cases w.r.t. compilability, similar to
human-written and test-adequate. Our approach outperforms the
largest state-of-the-art LLM, GPT-4 on all metrics except the parse
rate and all metrics for A3Test, the deep test case generation method
that exploits task-level domain adaption. Finally, we compared our
proposed framework with state-of-the-art search-based approaches
and showed that our approach could complement and increase
line coverage and mutation score. In the future, we will explore
other code models and expand the experiment on new datasets. We
will also run our user study to evaluate better the generated tests’
readability.

ACKNOWLEDGMENTS
This work was partially supported by the NSERC Discovery Grant
(RGPIN/04552-2020), and theNSERC andAlberta Innovates Alliance
Grant (ALLRP/568643-2021).

REFERENCES
[1] 2023. OpenClover code coverage platform for Java and Groovy. https://openclover.

org/
[2] 2023. Tree-sitter is a parser generator tool and an incremental parsing library.

https://tree-sitter.github.io/tree-sitter/
[3] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for ProgramUnderstanding and Generation. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou (Eds.). Association for Computational
Linguistics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

[4] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. 2023.
A3Test: Assertion-Augmented Automated Test Case Generation. arXiv preprint
arXiv:2302.10352 (2023).

[5] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. 2008. On the effectiveness
of manual and automatic unit test generation. In 2008 The Third International
Conference on Software Engineering Advances. IEEE, 252–257.

[6] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. 107–118.

https://openclover.org/
https://openclover.org/
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.18653/v1/2021.naacl-main.211


ISSTA 2024, 16-20 September, 2024, Vienna, Austria Shin et al.

[7] Lee R Dice. 1945. Measures of the amount of ecologic association between species.
Ecology 26, 3 (1945), 297–302.

[8] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022.
TOGA: A Neural Method for Test Oracle Generation. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2130–2141.
https://doi.org/10.1145/3510003.3510141

[9] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. 2021.
A brief review of domain adaptation. Advances in data science and information
engineering: proceedings from ICDATA 2020 and IKE 2020 (2021), 877–894.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[11] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[12] Gordon Fraser andAndrea Arcuri. 2016. Evosuite at the sbst 2016 tool competition.
In Proceedings of the 9th International Workshop on Search-Based Software Testing.
33–36.

[13] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019),
312–327.

[14] Giovanni Grano, Simone Scalabrino, Harald C Gall, and Rocco Oliveto. 2018. An
empirical investigation on the readability of manual and generated test cases. In
Proceedings of the 26th Conference on Program Comprehension. 348–351.

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCode{BERT}: Pre-training Code Representations
with Data Flow. In International Conference on Learning Representations. https:
//openreview.net/forum?id=jLoC4ez43PZ

[16] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[17] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and evaluating contextual embedding of source code. In International
conference on machine learning. PMLR, 5110–5121.

[18] Ekrem Kocaguneli and Tim Menzies. 2013. Software effort models should be
assessed via leave-one-out validation. Journal of Systems and Software 86, 7
(2013), 1879–1890.

[19] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. Codamosa: Escaping coverage plateaus in test generation with pre-trained
large language models. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 919–931.

[20] Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques, and
Lingfei Zeng. 2017. Automatic text input generation for mobile testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
643–653.

[21] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[22] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning.
In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 382–
391.

[23] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos
Gligoric. 2023. Learning deep semantics for test completion. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2111–2123.

[24] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic test case generation: What if test code quality mat-
ters?. In Proceedings of the 25th International Symposium on Software Testing and
Analysis. 130–141.

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[26] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. 2015.
Visual domain adaptation: A survey of recent advances. IEEE signal processing

magazine 32, 3 (2015), 53–69.
[27] Gustavo HL Pinto and Silvia R Vergilio. 2010. A multi-objective genetic algorithm

to test data generation. In 2010 22nd IEEE International Conference on Tools with
Artificial Intelligence, Vol. 1. IEEE, 129–134.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[29] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297 (2020).

[30] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-
Enhancer: Improving the readability of automatically generated tests. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 287–298.

[31] Laurence Saes. 2018. Unit test generation using machine learning. Universiteit
van Amsterdamg (2018).

[32] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

[33] Jiho Shin, Hadi Hemmati, MoshiWei, and SongWang. 2023. Assessing Evaluation
Metrics for Neural Test Oracle Generation. arXiv preprint arXiv:2310.07856 (2023).

[34] Jiho Shin and Jaechang Nam. 2021. A survey of automatic code generation from
natural language. Journal of Information Processing Systems 17, 3 (2021), 537–555.

[35] Jiho Shin, Clark Tang, Tahmineh Mohati, Maleknaz Nayebi, SongWang, and Hadi
Hemmati. 2023. Prompt Engineering or Fine Tuning: An Empirical Assessment
of Large Language Models in Automated Software Engineering Tasks. arXiv
preprint arXiv:2310.10508 (2023).

[36] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. Advances in neural information processing systems 27
(2014).

[37] Taffee T Tanimoto. 1958. Elementary mathematical theory of classification and
prediction. (1958).

[38] Michele Tufano, Shao KunDeng, Neel Sundaresan, andAlexey Svyatkovskiy. 2022.
Methods2Test: A dataset of focal methods mapped to test cases. In Proceedings of
the 19th International Conference on Mining Software Repositories. 299–303.

[39] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit Test Case Generation with Transformers and Focal
Context. arXiv preprint arXiv:2009.05617 (2020).

[40] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2022.
Generating accurate assert statements for unit test cases using pretrained trans-
formers. In Proceedings of the 3rd ACM/IEEE International Conference on Automa-
tion of Software Test. 54–64.

[41] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[42] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. 1398–1409.

[43] Wikipedia Contributors. 2023. Overlap — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530 [Online;
accessed 18-January-2023].

[44] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan Hao, Ying Li, Ge Li, and
Qianxiang Wang. 2022. Automated Assertion Generation via Information Re-
trieval and Its Integration with Deep Learning. ICSE.

[45] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No more manual tests? evaluating and improving chatgpt
for unit test generation. arXiv preprint arXiv:2305.04207 (2023).

[46] Armin Zirak and Hadi Hemati. 2022. Improving Automated Program Repair with
Domain Adaptation. arXiv preprint arXiv:2212.11414 (2022).

Received 15 December 2023; revised 9 February 2024; accepted 2 March
2024

https://doi.org/10.1145/3510003.3510141
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Search-based Software Testing
	2.2 Domain Adaption
	2.3 Neural Models for Unit Test Generation

	3 Test Case Generation with Project Level Domain Adaptation
	3.1 Fine-tuning on Test Case Generation Task
	3.2 Domain Adaptation on Project Specific Knowledge

	4 Experiment Settings
	4.1 Research Questions
	4.2 Datasets
	4.3 Pre-Trained Code Model
	4.4 Baselines
	4.5 Evaluation Metrics
	4.6 Configurations and Environment Setup

	5 Results and Analysis
	5.1 RQ1: Effectiveness of CodeT5 without DA
	5.2 RQ2: Effectiveness of CodeT5 with DA
	5.3 RQ3: Augmentation with SBST

	6 Limitations and threats to validity
	7 Conclusion
	Acknowledgments
	References

