
Automatic Static Vulnerability Detection for
Machine Learning Libraries: Are We There Yet?

Nima Shiri harzevili∗, Jiho Shin∗, Junjie Wang†, Song Wang∗, Nachiappan Nagappan‡
∗York University; †Institute of Software, Chinese Academy of Sciences; ‡META

{nshiri,jihoshin,wangsong}@yorku.ca; junjie@iscas.ac.cn; nachiappan.nagappan@gmail.com

Abstract—Automatic detection of software security vulnera-
bilities is critical in software quality assurance. Many static
analysis tools that can help detect security vulnerabilities have
been proposed. While these static analysis tools are mainly
evaluated on general software projects call into question their
practical effectiveness and usefulness for Machine Learning (ML)
libraries. In this paper, we address this question by analyzing
five popular and widely used static analysis tools, i.e., Flawfinder,
RATS, Cppcheck, Facebook Infer, and Clang static analyzer, on a
curated dataset of software security vulnerabilities gathered from
four popular ML libraries, including Mlpack, MXNet, PyTorch,
and TensorFlow, with a total of 410 known vulnerabilities. Our
research categorizes these tools’ capabilities to understand better
the strengths and weaknesses of the tools for detecting software
security vulnerabilities in ML libraries. Overall, our study shows
that static analysis tools find a negligible amount of all secu-
rity vulnerabilities accounting for 5/410 unique vulnerabilities
(0.01%), Flawfinder and RATS are the most effective static
checkers for finding software security vulnerabilities in ML
libraries. We further identify and discuss opportunities to make
the tools more effective and practical based on our observations.

Index Terms—Software vulnerabilities, static detection, ma-
chine learning libraries

I. INTRODUCTION

Programming inevitably involves dealing with vulnerabil-
ities in software, which is an aspect that can be frustrating
for many developers since detecting and fixing vulnerabilities
is time-consuming [1], [2]. To help developers find software
vulnerabilities, many static analysis tools have been developed
and are now frequently employed by many industries and
open-source projects [3]–[6]. Error Prone from Google [7],
Infer from Facebook [8], and SpotBugs [9], the successor to
the widely used FindBugs tool [10], are examples of popular
static analysis tools. These tools are usually developed as an
analytical framework based on static analysis and are capable
of scaling to large applications.

Previous research has examined static analysis tools on
traditional projects from different aspects [11]–[16]. The major
limitation of previous studies is that the datasets used for the
empirical evaluation of static analysis tools are not real-world
examples, they are not able to replicate new and sophisticated
security vulnerabilities patterns. Recently, Lipp et al. [16]
addressed the limitations by proposing an empirical evalua-
tion of static analysis tools on real-world datasets collected
from CVE records gathered from 27 projects containing 1.15
million lines of code. Their results showed that state-of-
the-art tools can detect in-between 20% and 53% of the

vulnerabilities in a benchmark set of real-world programs.
However, it has not been determined if the findings of these
studies on conventional projects are applicable to ML libraries.
Finding real-world security vulnerabilities in ML libraries
is critical for a couple of reasons. First, ML libraries have
been widely used in many fields in the past decades, such as
image classification [17], [18], big data analysis [19], pattern
recognition [20], autonomous driving [21]–[23], and natural
language processing [24]–[26]. Failure to detect vulnerabilities
in these ML libraries might have devastating implications, such
as traffic accidents [27]. Second, gaining an understanding
of the benefits and drawbacks of the static analysis tools
that are currently in use will direct future work toward the
design of new methodologies or tools for detecting ML-
specific vulnerabilities.

In this paper, we set out to investigate the effectiveness of
five popular static analysis tools on ML libraries. Specifically,
we conduct an empirical analysis utilizing 410 real-world se-
curity vulnerabilities collected from four widely-used popular
ML libraries to address the issue of how many vulnerabilities
from these ML libraries can be detected by static analysis tools
and why they miss detecting real-world security vulnerabilities
of ML libraries. The granularity of our collected dataset is at
the commit level in which each commit may contain multiple
files involved in fixing the vulnerability. We select five popular
and open-source static analysis tools as the research subjects,
i.e., Flawfinder [3], [16], [28]–[34], RATS [3], [33], [35],
Cppcheck [3], [29], [34], [36], Facebook Infer [8], [37], [38],
[38], and Clang static analyzer [3], [39]–[42]. We run these
tools on the modified files from the collected commits in
our dataset. For each of these modified files, we extract two
versions, i.e., the source code before the security vulnerability
was introduced and the source code after the vulnerability was
fixed. Next, we run the static analysis tools on the source
code before the vulnerability was introduced to identify any
warnings or issues present in that version. We follow the diff-
based mapping technique used in previous research [43] to
identify the warnings that fall within the code changes made
during the vulnerability-fixing commit. After that, we proceed
to perform a manual inspection of the identified vulnerability
candidates. The purpose of this manual inspection is to avoid
any potential coincidental matches or false positives. By
carefully reviewing the vulnerability candidates, we ensure the
accuracy and reliability of our vulnerability detection process.



In addition, we have also investigated static analysis tools
given a set of program analysis criteria such as input rep-
resentation, pattern matching techniques, and source code
element sensitivity. Specifically, we manually examined the
documentation as well as the source code of these static
analysis tools to understand how they function. We also study
the characteristics of security vulnerabilities in ML libraries
and understand their patterns. As a result, we provide future
directions to improve existing static checkers to deal with
specific security vulnerabilities in ML libraries.

This paper has the following contributions:
• We present the first empirical study on the investigation of

current static analysis tools on four widely-used machine
learning libraries.

• We identify gaps between existing static analysis tools
techniques and software security practices on machine
learning libraries.

• We explore the capabilities and limitations of each static
analysis tool, as well as suggest future ideas for enhanc-
ing the effectiveness of these tools in real-world settings
to detect software security vulnerabilities specific to ML
libraries.

• We release the dataset of our experiments to help other
researchers replicate and extend our study1.

II. BACKGROUND & MOTIVATION

ML libraries and traditional software differ in various as-
pects such as complexity, data dependency, and performance
characteristics. Overall, ML libraries tend to be more com-
plex than traditional software as ML often involves complex
mathematical models and algorithms [44]–[47]. In addition, as
ML models are heavily dependent on the quality and quantity
of the data used in their training process, most ML libraries
provide tools for data pre-processing, cleaning, and normaliza-
tion that are not available in traditional software. ML libraries
are designed to take advantage of modern hardware, including
GPUs and specialized processors, to optimize performance.
Traditional software, on the other hand, is generally optimized
for general-purpose CPUs.

These differences introduce different vulnerability patterns
compared to traditional software. Figure 1a and Figure 1b
show two examples of buffer overflow in TensorFlow library2

and Linux kernel3 respectively. The root cause of buffer
overflow in Figure 1a is lack of proper input validation when
getting a non-scalar resource tensor while the root cause of
buffer overflow in Figure 1b is using snprintf() instead of using
scnprintf() as snprintf() is not a secure built-in C API. We can
see that there are two instances of the same vulnerability (i.e.,
buffer overflow) that have distinct root causes. To detect a heap
buffer overflow example in the TensorFlow library as shown in
Figure 1a, existing static analysis tools must follow two crucial
steps. Firstly, these tools need to recognize the TensorFlow-
specific macro checkers (CHECK EQ) by incorporating the

1https://anonymous.4open.science/r/ISSRE2023SATS-E255/README.md
2https://github.com/tensorflow/tensorflow/commit/13ef0af4867477cdda7e0b294e61560c2952df42
3https://github.com/torvalds/linux/commit/5549af7f42916c0d7e78a0e423ac667e27eaac3e

macro call signature into their internal database of risky APIs.
Secondly, they must conduct data flow analysis to trace the
flow of data from client APIs to the backend implementation.
In this example, the vulnerable parameter is ndims which has
been coming from the client API usage. Unfortunately, we
discovered that the current tools lack the capability to perform
these essential steps, rendering them inadequate for detecting
ML-specific vulnerabilities.

The different symptoms and root causes of the same type
of security vulnerabilities from ML libraries and traditional
software motivate us to look deeper into understanding the
performance of current static analysis tools on ML libraries.

III. STUDY DESIGN

In this section, we first discuss the criteria for ML library
selection(Section III-A). Then we elaborate on how we cu-
rated a dataset of real-world vulnerabilities of ML libraries
(Section III-B). Afterward, we introduce the static analysis
tools used in this paper (Section III-C), finally, we describe the
procedure of applying the static analysis tools to our curated
real-world data (Section III-D).

A. ML Library Selection

Our study is on the basis of four widely used ML libraries
selected based on a set of inclusion criteria: 1) libraries
should be open source and available to the public, 2) they
should be under active development, 3) libraries should have
the implementation of classical ML as well as state-of-the-
art DL models, 4) libraries should support different tasks
in the common ML workflow. The outcome of applying
these criteria is the following ML libraries; TensorFlow [48],
PyTorch [49], MXNet [50], and Mlpack [51]. Our filters also
exclude some well-known libraries including Caffe, Theano,
and Keras due to the fact that the data extraction mechanism
utilized in this work did not retrieve enough real-world security
vulnerabilities from their repositories due to a lack of suffi-
cient vulnerability records in the GitHub repository of these
libraries.

B. Collection of Vulnerabilities from ML Libraries

For each of the studied ML libraries, we followed the
approach proposed by Zhou et al [52] to extract vulnerability-
related commits. Note that we extract all commits in the
default branch of each library since the starting date of the
development. Specifically, we use their regular expression
rules, including expressions and keywords related to secu-
rity issues, to collect security vulnerability-fixing commits.
As a result, we collected around 5k commits. Note that,
the collected commits might contain noises due to the fact
that there may be coincidental matches between vulnerability
keywords and the keywords inside the commit message and
title [52]. To remove noises, we further conducted a manual
inspection on each commit. In our manual inspection, two
authors began evaluating extracted commits simultaneously.
The authors analyzed the title, message, merged pull requests,



43 gtl::InlinedVector<npy_intp, 4> dims(ndims);
44 if (TF_TensorType(tensor) == TF_RESOURCE) {
45 dims[0] = TF_TensorByteSize(tensor);
46 CHECK_EQ(ndims, 0)}
47 << "Fetching of non-scalar
48 resource tensors is
49 not supported.";
50 dims.push_back(TF_TensorByteSize(tensor));
51 *nelems = dims[0];
52 } else {
53 *nelems = 1;

(a) An example of buffer overflow in TensorFlow library.

chip = get_chip_info(sdev->pdata);
for (i=0; i<HDA_EXT_ROM_STATUS_SIZE; i++){
value = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
chip->rom_status_reg + i * 0x4);
len += snprintf(msg+len, sizeof(msg)-len,

" 0x%x", value);
len += scnprintf(msg+len, sizeof(msg)-len,

" 0x%x", value);
}

dev_printk(level, sdev->dev,
"extended rom status: %s", msg);

(b) An example of buffer overflow in Linux kernel.

Fig. 1: This figure shows two examples of buffer overflow from the TensorFlow library and Linux kernel.

TABLE I: Characteristics of bug fixing commits (BFCs) used
in this paper.

Library Language LOC(∼) # BFCs
Mlpack C++ 340K 47
MXNet C++/Python 362K 60
PyTorch C++/Python 3.8M 58
TensorFlow C++/Python 567K 245
Overall 5M 410

and linked issues4 of each vulnerability fixing commit and
remove the commits that are not related to a registered security
vulnerability in CWE website5. As a result, we collected 410
vulnerability-fixing commits across the four projects that were
investigated(shown in Table I).

In this paper, we use the term vulnerability in a general
sense to refer to any kind of software defect, including se-
curity vulnerabilities, logical vulnerabilities, and performance
vulnerabilities.

C. Running Static Analysis Tools

In this paper, we select five widely used and open source
static analysis tools including Facebook Infer [8], Clang static
analyzer [39], Cppcheck6, Flawfinder (Flawfinder [53], and
RATS7). The selection of five tools used in our study is based
on a comprehensive review of recently published papers on
the empirical evaluation of static analysis tools [14], [16].
Please note that three of the tools are under active development
including Facebook Infer [8], Clang static analyzer [39],
and Cppcheck8. The two remaining tools (Flawfinder [53]
and RATS9) are not actively developing but they have been
frequently used in software vulnerability detection [3], [54],
[55].

The static analysis tools used in this work have several
common characteristics. For example, Flawfinder and RATS
treat the input source code as a text sequence while Cppcheck,

4Some vulnerability fixing commits fix opened issues. Thus, the authors
further analyzed them for noise removal.

5https://cwe.mitre.org/
6https://cppcheck.sourceforge.io/
7https://github.com/andrew-d/rough-auditing-tool-for-security
8https://cppcheck.sourceforge.io/
9https://github.com/andrew-d/rough-auditing-tool-for-security

Infer, and Clang static analyzers convert the source code into
an intermediate representation. All tools use a built-in database
of patterns that are used to detect security vulnerabilities. For
instance, RATS, Flawfinder, and Cppcheck all use a database
of C/C++ system functions that are known to have security
vulnerabilities such as buffer overflow or format string issues.
while Infer uses a bi-abduction inference and analysis in
order to find vulnerable source code statements. Clang static
analyzer work by parsing the source code and checking it
against a set of predefined checks, or linters.

For the capabilities of these five static analysis tools used
in this paper, following existing work [15], we take into
consideration the following three different types of program
analysis features, i.e., input representation, matching strate-
gies (intraprocedural and interprocedural), and sensitivity to
program elements including flow, context, field, object, path,
and field. We investigated the tools in relation to the afore-
mentioned analytical program analysis features. During this
procedure, we manually evaluated the tools’ source code and
documentation, which demonstrated several types of behaviors
to check the tools’ capabilities and limits. In the following
paragraphs, each tool is explained in detail. Table II shows
the capabilities of static analysis tools investigated.

Flawfinder [28]: is a static analysis tool that scans a pro-
gram for potential security bugs by using a database of known
unsafe C/C++ functions. Flawfinder can detect problems with
race conditions and system calls in addition to printf() and
normal string manipulation operations, based on an internal
database that contains C/C++ routines that are known to have
security bugs in their design.

RATS [35]: An open-source static analyzer that is able to
analyze code bases written in C, C++, Perl, PHP, and Python.
Similar to Flawfinder, it uses an internal database of risky
C/C++ API signatures and uses a keyword-matching approach
to find and mark them as vulnerable in the target source code.

Cppcheck [36]: Cppcheck offers one-of-a-kind code anal-
ysis to find defects and focuses on finding undefined behavior
as well as risky coding structures. The objective is to generate
an extremely low number of false positives.

Infer [8]: is a static analysis tool that is developed by
Facebook. It searches for a wide variety of vulnerabilities



TABLE II: Characteristics of tools based on different program analysis factors.

Tool Version Input representation Pattern matching Sensitivity
Text AST Other Intraprocedural Interprocedural Context Field Object Data Flow Control Flow

Flawfinder 2.0.19 ✓ - - × × × × × × ×
RATS 2.4 ✓ - - × × × × × × ×
Cppcheck 2.7 - ✓ - ✓ × ✓ × × ∗ ∗
Infer 1.1.0 - - ✓ ✓ ✓ ✓ ✓ N.A ✓ ✓
Clang static analyzer 14.0.0 - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓

in programs written in Java, C/C++, and Objective-C. Bi-
abduction analysis is one of the methods that Infer employs
in order to locate vulnerabilities such as deadlocks, memory
leaks, and null pointer dereference. In order to perform analy-
sis, Infer requires a set of compilation commands for each
file. Infer is an interprocedural analysis tool which means
that it allows keeping track of objects and variables between
methods, and also global variables.

Clang static analyzer [39]: Clang static analyzer is built
on top of the LLVM project, which offers a set of modular
and reusable compiler and toolchain technologies. It is an
extensible framework for C/C++ code linting that may be
used to enforce coding standards, conduct static analysis, and
discover probable errors. It operates by scanning the source
code and comparing it to a collection of predefined checks,
known as linters. The checks are built as separate modules,
making it simple to add new checks or modify current ones.

Note that the static analysis tools used in this paper have
capabilities to report non-vulnerable related warnings, e.g.,
styling or refactoring issues, as well as reporting general
vulnerabilities which are not related to software vulnerabilities
that have a unique id in CWE website10. In order to reduce
false positive rates and prevent static checkers to produce
related warnings to vulnerabilities, we have configured them
to merely report warnings that are strongly related to software
security vulnerabilities. Configuring the tools to report all
types of vulnerabilities can introduce a large number of
false positives (non-security-related code), which require much
more time for manual verification. Please note that RATS does
not generate styling issues. In addition, we manually studied
Flawfinder’s built-in database and discovered that all rules
have a unique id associated with CWE records. As a result,
we solely used this setup for Infer, Cppcheck, and Clang static
analyzer.

D. Identification of Vulnerable Candidates

One of the main challenges in the identification of vulner-
able candidates is to check whether the reported warnings
by static analysis tools are corresponding with the issued
vulnerability class or not. To identify vulnerable candidates,
we use the following steps. First, we performed automatic
filtering based on the commits’ diff information as used in
existing studies [14], [15]. Afterward, we further analyzed
the reported warnings that involve the commit using manual
inspection.

10https://cwe.mitre.org/

1) Automatic filtering: We filter reported warnings by using
a diff-based mapping technique which uses code diffs between
vulnerable and fixed programs in a fixing commit [43]. First,
it computes a set of lines in the vulnerable program that is
flagged with at least one warning. Then, it checks whether
the flagged line numbers overlap with the changed lines in
the fixing commit. If the flagged lines overlap with the code
change, the warning is considered a vulnerability candidate.
Otherwise, it is not a candidate for manual inspection. For
example, Figure 2 shows an example of a warning generated
by Flawfinder that is considered to be a vulnerable candidate
since the line number reported in the warning overlaps with
the line number in the code change of the vulnerability fixing
commit.

2) Manual verification: In this step, we manually scan
all candidates and check the warning messages against the
vulnerable and clean versions of the code to eliminate potential
accidental matches. The first two authors examine the warn-
ings and vulnerability-fixing commits simultaneously. They
manually analyze the warning message, the CWE-ID, and
the line number where the vulnerability is reported. Based
on the above information, they review the code changes to
confirm whether the warning is related to the vulnerability
being addressed in the commit. Note that, in the cases where
the static analysis tools reported a warning at a line outside
those changed lines in the vulnerability-fixing commit, we
manually checked the warning. In addition, we have also
performed a backward analysis in which we traced all variables
and function calls within the code changes up to the marked
line that was outside the code changes. If the marked line
was associated with the code changes, we considered the
corresponding warning as a potential vulnerability. If there is
any disagreement, they flag the commit and the corresponding
warning for further manual verification in the next round.
They repeat this process several times until all warnings and
commits have been reviewed.

During our manual inspection, we also audit the following
information: 1) True Positive (TP): the vulnerability described
in the warning precisely matches with the vulnerability re-
ported for the commit; False Negative (FN): a potential
warning mistakenly predicted to be a false alarm. In this paper,
we calculate True Positive Rate (TPR) and False Negative Rate
(FNR) as TPR = TP

TP+FN and FNR = FN
FN+TP respectively.

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss our analysis results
to address the following three research questions.
RQ1 (Detection Capability): How many warnings are re-
ported by the studied static analysis tools?



43 for (int i = 0; i < client->device_count(); ++i) {
44 se::StreamExecutorConfig config;
45 config.ordinal = i; config.device_options.non_portable_tags
46 ["host_thread_stack_size_in_bytes"] =
47 -absl::StrCat(2048 1024);
48 +absl::StrCat(8192 1024);
49 TF_ASSIGN_OR_RETURN(se::StreamExecutor * executor,
50 platform->GetExecutor(config));

(a) bug fixing commit.

Examining /cpu_device.cc
FINAL RESULTS:
cpu_device.cc:47:
[4] (buffer) StrCat:
Does not check for buffer overflows when
concatenating to destination
[MS-banned] (CWE-120).
absl::StrCat(2048 * 1024)

(b) reported warning by Flawfinder.

Fig. 2: An example of vulnerability fixing commit in TensorFlow library in which the developer has increased the thread stack
size from 2048 to 8192 to prevent buffer overflow vulnerability. Figure 2b shows the generated warning by Flawfinder in which
there is a possible buffer overflow at line 47.

TABLE III: Distribution of reported warnings.
Library Flawfinder RATS Cppcheck Infer Clang static analyzer

Mlpack 3 22 1 0 0
MXNet 10 6 7 0 0
PyTorch 5 1 2 4 16
TensorFlow 50 139 0 2 254
Overall 68 168 10 6 270

RQ2 (Detection Effectiveness): How effective are static
analysis tools at detecting real-world vulnerabilities in ML
libraries?

RQ3 (Root Cause): What are the root causes of missing real-
world vulnerabilities in ML libraries?

For answering these RQs, we execute Flawfinder, RATS,
Cppcheck, Infer, and Clang static analyzer on our dataset of
410 real-world bugs across the four studied ML libraries.
The output of bug detectors, i.e., generated warnings, are
automatically parsed to extract relevant information including
bug types, line numbers, and warning messages. All data and
scripts for conducting the experiments described in this section
are accessible to the public.

A. RQ1: Detection Capability

Experiment setup. To answer this question, we directly run
these five static analysis tools on the four ML libraries, we
record all the reported vulnerabilities (including the detailed
location and CWE information) by these tools for further
analysis. For each of the reported vulnerabilities, we further
manually check whether it’s a true vulnerability or a false
positive. Please note that the granularity of our collected
dataset is at the commit level in which each commit may
contain multiple files involved in fixing a vulnerability. For
each commit, we extract modified files, i.e., affected by
the vulnerability. For each modified file, we extracted two
versions, i.e., source code before the vulnerability and source
code after fixing the vulnerability. We then run the tools on the
source code before the vulnerability and generate the warnings.

Table III displays the number of vulnerability types ex-
tracted from warnings reported by each static analysis tool
across the four ML libraries. Specifically, among the four
ML libraries, TensorFlow has the highest number of reported
warnings, i.e., in total 445 warnings. Mlpack has the lowest
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Fig. 3: The top 10 vulnerability types in our dataset.

number of reported warnings overall, with only 26 warnings
across all tools. Among the static analysis tools, Clang static
analyzer reports the highest number of warnings for each
library. Infer only reports six warnings.

We further illustrate the top 10 vulnerability types and their
distribution in our curated dataset in Figure 3. The chart shows
that the most common vulnerability type is CWE-190 (Integer
Overflow or Wraparound), with 86 occurrences in the studied
ML libraries. The next most common types are CWE-362
(Race Condition), CWE-401 (Missing Release of Resource
after Effective Lifetime), and CWE-476 (NULL Pointer Deref-
erence), with 45, 43, and 34 occurrences, respectively. The
least common vulnerability type in the chart is CWE-122
(Heap-based Buffer Overflow), with only 16 occurrences.

Table IV also shows the number of false positive warnings
out of all warnings generated given each true vulnerability
type. Specifically, Flawfinder reported a total of 50 warnings
for CWE-120, but only 3 of them were accurate warnings. In
addition, it reported a single warning for CWE-190 that was
indeed accurate. For CWE-20, Flawfinder reported 5 true pos-
itive warnings. Regarding CWE-190, Flawfinder reports one
warning which is true positive. RATS produced 27 warnings
for CWE-121, but only 1 of them is a true warning. For CWE-
122, RATS flagged 8 warnings, but merely 3 of them are
true positive. All warnings generated by Cppcheck and Infer
are false positives suggesting that they are not effective at
detecting real-world security vulnerabilities in the studied ML
libraries.



TABLE IV: Distribution of vulnerability types reported by the
four static vulnerability detectors. The warnings generated by
Clang static analyzer do not have a CWE number, so we
exclude it in this table. Numbers in the brackets are false
positive warnings. The numbers outside of the brackets are
the total number of generated warnings.

CWE-ID # True Bugs Flawfinder RATS Cppcheck Infer Overall

CWE-120 - 50 (47) 0 0 0 50
CWE-121 25 0 27 (26) 0 0 27
CWE-122 24 0 8 (5) 0 1 (1) 9
CWE-362 45 7 (7) 2 (2) 0 0 9
CWE-327 - 7 (7) 0 0 0 7
CWE-367 - 7 (7) 0 0 0 7
CWE-20 7 5 (0) 0 0 0 5
CWE-476 34 0 0 5 (5) 0 5
CWE-807 - 4 (4) 0 0 0 4
CWE-126 - 3 (3) 0 0 0 3
CWE-330 - 0 3 (3) 0 0 3
CWE-457 1 0 0 0 2 (2) 2
CWE-563 - 0 0 0 1 (1) 1
CWE-667 - 0 0 1 (1) 0 1
CWE-758 - 0 0 1 (1) 0 1
CWE-190 86 1 (0) 0 0 0 1
CWE-398 - 0 0 1 (1) 0 1
CWE-119 - 1 (1) 0 0 0 1
CWE-833 15 0 0 0 1 (1) 1
CWE-401 43 0 0 0 0 0
CWE-908 27 0 0 0 0 0
CWE-835 26 0 0 0 0 0
CWE-1331 18 0 0 0 0 0
CWE-125 17 0 0 0 0 0
CWE-369 10 0 0 0 0 0
CWE-703 4 0 0 0 0 0
CWE-191 3 0 0 0 0 0
CWE-705 3 0 0 0 0 0
CWE-415 3 0 0 0 0 0
CWE-704 2 0 0 0 0 0
CWE-416 2 0 0 0 0 0
CWE-840 2 0 0 0 0 0
CWE-787 2 0 0 0 0 0
CWE-439 2 0 0 0 0 0
CWE-628 1 0 0 0 0 0
CWE-241 1 0 0 0 0 0
CWE-255 1 0 0 0 0 0
CWE-197 1 0 0 0 0 0
CWE-252 1 0 0 0 0 0
CWE-706 1 0 0 0 0 0
CWE-1006 1 0 0 0 0 0
CWE-561 1 0 0 0 0 0
CWE-475 1 0 0 0 0 0
Overall 410 85 40 8 5 138

Finding 1: The number of warnings produced by
the five static analysis tools varies significantly and
is mainly determined by their detection mechanisms.
While these tools can also generate false positives,
human review is still necessary to determine whether
reported warnings are real-world vulnerabilities that
require attention.

B. RQ2: Detection Effectiveness

Experiment setup. To address this question, the first two au-
thors of this paper manually reviewed the generated warnings
(vulnerability candidates identified using the automatic filter-
ing approach explained in subsection III-D1) per file for each
vulnerability-fixing commit. The team conducted a thorough
analysis of the warning message, the CWE-ID, and the specific

TABLE V: Performance of the studied static vulnerability
detectors on the four ML libraries.

Tool TPR FNR

Flawfinder 0.04 0.95
RATS 0.03 0.97
Cppcheck 0 1
Infer 0 1
Clang static analyzer 0 1

TABLE VI: Vulnerabilities detected by Flawfinder and RATS.

Tool Actual bug Reported bug(# warnings) Library Filename

Flawfinder CWE-125 CWE-20(4) PyTorch simd.h
Flawfinder CWE-197 CWE-120(2) PyTorch decode padded raw op.cc
Flawfinder CWE-122 CWE-20(1) MXNet image-classification-predict.cc
Flawfinder CWE-190 CWE-190(1) MXNet image iter common.h
Flawfinder CWE-121 CWE-120(1) TensorFlow cpu device.cc
RATS CWE-122 CWE-121(1) MXNet image-classification-predict.cc
RATS CWE-190 CWE-122(1) PyTorch THTensor.cpp
RATS CWE-197 CWE-122(2) PyTorch decode padded raw op.cc

line numbers that can indicate where the vulnerability was
identified. Using this information, they further examined the
code modifications to verify that the warning is indeed related
to the vulnerability being addressed in the particular update.
If any discrepancies arise, they highlighted the corresponding
warning and committed to additional examination in the sub-
sequent review cycle. This process is repeated until all the
warnings and code changes have been assessed.

Results. Table V shows the performance of each static analysis
tool regarding True Positive Rate (TPR) and False Negative
Rate (FNR) values. As we can see from the table, Flawfinder
has a TPR of 0.049, which means it correctly identifies only
4.95% of the actual vulnerabilities, and an FNR of 0.95,
indicating that it fails to detect 95.05% of actual vulnera-
bilities. RATS has a TPR of 0.030 meaning that it correctly
identifies only 3.07% of the actual vulnerabilities, and a FNR
of 0.97, which means it fails to detect 97.01% of the actual
vulnerabilities. The rest of the tools have a TPR of 0 which
states that they fail to detect any actual vulnerabilities, and
an FNR of 1, which means they incorrectly identify all actual
vulnerabilities as negatives. Overall, all the experimented tools
have relatively low performance in terms of identifying actual
vulnerabilities in ML libraries, as they all have very low TPR
values or fail to detect any real-world vulnerabilities at all.

Table VI shows the detailed characteristics of vulnerabilities
detected by Flawfinder and RATS. We can see that Flawfinder
and RATS can identify vulnerabilities in different code repos-
itories, including MXNet, TensorFlow, and PyTorch. The
vulnerabilities are categorized according to their types ( i.e.,
CWE numbers). For example, Flawfinder detected a CWE-122
and a CWE-190 in MXNet. RATS also detected a CWE-122
in MXNet, as well as a CWE-190 in PyTorch.



84 auto input_shape = c->input(0);
85 auto input_h_shape = c->input(1);
86 auto seq_length = c->Dim(input_shape, 0);
87 // assumes rank >= 2
88 auto batch_size = c->Dim(input_shape, 1);
89 // assumes rank >= 3
90 auto num_units = c->Dim(input_h_shape, 2);

Fig. 4: An example of heap buffer overflow in TensorFlow
library.

Finding 2: Overall, the effectiveness of the tools
is quite poor in discovering real-world ML software
vulnerabilities. Flawfinder and RATS, which are the
most effective static checker, discovered 4 unique
vulnerabilities out of a total of 410 vulnerabilities in
our dataset.

C. RQ3: Root Cause of Missing Real-world Vulnerabilities

To address this research question, we manually analyzed
and reviewed the documentation of tools as well as their code
base. Then, we organized the reasons why these tools miss
detect so many vulnerabilities.

1) Flawfinder and RATS: Since Flawfinder and RATS
manifest very similarly in vulnerability detection, Flawfinder’s
specific reasons also apply to RATS.
Issues with Soundness Strategy. Flawfinder and RATS have
a significant limitation in their approach to vulnerability detec-
tion, known as the soundness strategy. The soundness strategy
of Flawfinder and RATS is that they use pre-defined risky
C/C++ APIs in their internal databases to search the source
code and label every matched API call (already registered
in the database) as a potential vulnerability. Although ML
libraries often make extensive use of C/C++ APIs in their
backend implementation, the vulnerabilities in these libraries
do not primarily originate from these APIs. Instead, the
vulnerabilities in ML libraries tend to exhibit more complex
patterns (require a deeper source code analysis in order to be
detected), which are not effectively captured by the simplistic
approach of flagging all API calls as vulnerable [44], [45],
[45]–[47], [56]–[58].
Lack of ML-specific Vulnerable API Information. Even
though Flawfinder and RATS support more than 200 danger-
ous C/C++ APIs, they are still incapable of supporting ML-
specific vulnerable APIs. One of the reasons they miss detect-
ing real-world security vulnerabilities in ML libraries is that
they do not model library-specific API information [44], [47].
For example, to detect Memory Leak (CWE-401) in the Mlpack
library, the static detectors need to model CleanMemory()
or delete_mat which are Mlpack-specific APIs used for
cleaning allocated memories.

Lack of Data Flow and Control Flow Support. Flawfinder
and RATS face challenges in detecting numerous vulnerability
patterns specific to machine learning (ML) because they lack

the capability to model control flow and data flow. Instead,
these tools rely on a simplistic keyword-matching approach to
identify potentially dangerous C/C++ API calls and flag them
as vulnerabilities. This limitation hinders their effectiveness in
capturing the intricacies of ML-specific vulnerabilities [44],
[47] that involve complex control and data dependencies. For
example, lack of validation is a complex root cause pattern
that is the major root cause of data type vulnerabilities in
ML libraries [44]. In this particular vulnerability pattern,
vulnerabilities can arise when utilizing client APIs of ML
libraries. If the backend implementation fails to validate or
properly handle malicious inputs or malformed values received
through these APIs, vulnerabilities can occur. It is crucial to
perform appropriate validation and handling of such inputs
to mitigate potential issues and ensure the robustness and
security of the ML library. For example, Figure 4 is an example
of a lack of validation that causes a heap buffer overflow.
In this vulnerability, the code assumes input_shape and
input_h_shape have a specific rank, while the rank values
should be validated to avoid possible invalid memory access.
Flawfinder and RATS are not able to detect such vulnerabilities
because they are incapable of modeling data flow dependency
and keeping track of input_shape and input_h_shape
to check if these variables are validated or not.

2) Cppcheck: Limited Buffer or Stack Overflow Check-
ing Existing work [44] has shown that the root cause patterns
of buffer overflow or stack overflow in ML libraries are
significantly different compared to that of traditional software.
For example, in this commit11 from the TensorFlow library,
the root cause of stack overflow is a very big computation
graph of functions and edges. In this example, Each in-
stance of the class std::shared_ptr<Function> holds
a collection of Edge objects, and each Edge object, in
turn, holds a std::shared_ptr<Function>. Removing
a std::shared_ptr<Function> can lead to the cas-
cading deletion of other std::shared_ptr<Function>
instances, potentially resulting in a stack overflow if the
graph has a significant depth. However, Cppcheck performs
different strategies to detect buffer overflow and stack overflow
vulnerabilities which are not strong enough to detect ML-
related overflow vulnerabilities. For example, Cppcheck uses
array index checkers to detect buffer overflow which identifies
array index operations and performs various checks to detect
potential buffer overruns associated with array indexing. More
specifically, Cppcheck exhaustively searches for array index-
ing statements in the code snippet, even if the code is not
reachable, without any control flow analysis. This technique
is incapable of detecting overflow vulnerabilities which is due
to the large computation graph mentioned above. The second
technique to detect buffer overflow or stack overflow is to
search for C/C++ API calls, similar to Flawfinder and RATS
explained earlier. In this technique, Cppcheck examines the
API scopes and the corresponding arguments, analyzes the
buffer or stack sizes associated with the arguments, and detects

11https://github.com/tensorflow/tensorflow/commit/932c4c2364884af52609ea8a86c7232a926d958f



84 inline int MatchingDim(const RuntimeShape&
85 shape1, int index1, const RuntimeShape&
86 shape2, int index2) {
87 TFLITE_DCHECK_EQ(shape1.Dims(index1),
88 shape2.Dims(index2));
89 return shape1.Dims(index1);
90 }

Fig. 5: An example of hard-to-detect buffer overflow bug in
TensorFlow library.

potential buffer overflow or stack overflow vulnerabilities
based on specified minimum size requirements.
Limited Control Flow Analysis One major limitation of
Cppcheck is limited control flow analysis, while a strong
control flow analysis is required to detect very hard-to-
detect vulnerabilities In ML libraries, e.g., memory leaks that
have complicated vulnerability patterns. For example, this
memory leak vulnerability12 occurs in the TensorFlow library
when decoding malformed PNG image. The memory leak
occurs when certain errors in the function implementation
cause the execution to be abruptly terminated using the
OP_REQUIRES macro checker. This termination prevents the
proper freeing of allocated buffers stored in the decode value.
To release these allocated buffers, the function should call
png::CommonFreeDecode(&decode). However, due to
eager termination, the necessary memory-freeing process is
not allowed to occur. This vulnerability is very hard to detect
by Cppcheck for two main reasons. First, the TensorFlow-
specific API png::CommonFreeDecode(&decode); is
not registered in the internal database of API symbols which is
the firsts step toward detecting this leak. Second, the control-
flow analysis supported by Cppcheck is very simple and cannot
capture the complex flow analysis in this vulnerability pattern.

3) Infer: Limited Buffer Overflow checkers Compared to
Cppcheck, Flawfinder, and RATS, Infer has a stronger buffer
overflow checker. Infer uses symbolic intervals to handle the
range of index values and buffer sizes. Typically, interval
analysis involves working with intervals represented as [low,
high], where low and high are constants indicating the lower
bound and upper bound of the target buffer and indexing range.
However, this checker is not effective enough to detect ML-
related buffer overflow vulnerabilities. For example, Figure 5
shows an example of hard-to-detect buffer overflow13 in the
TensorFlow library where providing a tensor with larger di-
mensions as the second argument is critical. To address this
issue, the developer has modified the MatchingDim function
to return the minimum size between the two dimensions.

4) Clang static analyzer: Limited Rules. Although Clang
static analyzer provides a large number of predefined rules
(i.e., there are 25 families of rules implemented in the Clang
static analyzer database), it does not cover rules of security
vulnerabilities that are relevant to ML libraries. For example,

12https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23585
13https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d

the null pointer checker introduced in Clang static analyzer,
i.e., ore.NullDereference (C, C++, ObjC) is only able to
detect simple null pointer violations14. While, in a null pointer
vulnerability from TensorFlow library15, the root cause is
lack of checking null pointer Tensors as a function argument.
Specifically, the vulnerability traces back to the omission of
null pointer checks in relation to Tensors utilized as function
arguments. Within this instance, the implicated function lacks
a TensorFlow-specific mechanism to preempt the erroneous
passage of val to the (GetBundleEntryProto(key, entry)). In the
fixing commit, the developers add CHECK(val != nullptr); to
resolve the issue.

An additional instance of a constrained rule within the
Clang static analyzer is the unix.Malloc (C) checker. This
checker’s role is to identify memory leaks within codebases
developed in the C programming language. The mechanics
of this Clang static analyzer checker, elaborated upon in the
official documentation16, allow it to uncover memory leaks
by employing relatively straightforward patterns. Nevertheless,
an illustration of a memory leak within the MXNet library17

serves to underscore the complexity that can underlie memory
leak patterns. In this specific case, a memory leak arises due
to the usage of

This initial implementation is subsequently replaced by the
developer with

std::unique\_ptr <DType>
tmp(new DType[Super::WORKLOAD\_COUNT]);
std::unique\_ptr <DType[]>
tmp(new DType[Super::WORKLOAD\_COUNT]);

Finding 3: We identified a set of specific reasons that
help explain why the five static analysis tools examined
in this paper miss real-world security vulnerabilities in
ML libraries including ML software-specific reasons,
i.e., Lack of Implementation Support of Detection
Rules, Issues with Soundness Strategy, and Lack of
ML-specific Vulnerable API Information.

V. LESSONS LEARNED

Our study reveals several interesting findings that can serve
as applicable guidelines for improving static analysis tool for
ML libraries.

A. Implication for Improving Flawfinder and RATS

We find that Flawfinder and RATS flag every C/C++ API as
vulnerable regardless of whether they are actually vulnerable
or not. This behavior introduces many false alarms IV. In order
to reduce the false alarm rate, numerous extensions to these
checkers are required.

Extend the input representation. Flawfinder and RATS
represent the source code as a sequence of tokens. Unlike

14https://clang.llvm.org/docs/analyzer/checkers.htmlcore-nulldereference-c-c-objc
15https://github.com/tensorflow/tensorflow/commit/ca170f34d9174d6981850855190a398393aa921e
16https://clang.llvm.org/docs/analyzer/checkers.htmlunix-malloc-c
17https://github.com/apache/mxnet/commit/b1ad1619d8007dc7dfc0f4ba9cc8720b3e0dd32a



natural language, source code encodes structural information
[59], which needs to be considered with rich representation
techniques like Abstract Syntax Trees(AST), Control Flow
Graphs(CFG), or Data Flow Graphs(DFG) [60]. Having a con-
trol flow graph is vital in detecting many ML-related security
vulnerabilities including buffer overflow and memory leaks.
Control flow graphs allow the tool to model every possible ex-
ecution patch inside vulnerable programs. For example, to de-
tect the stack overflow bug in this commit 18, the checker needs
to traverse control graph to find out that the implementation
of DataTypeString function is vulnerable due to missing
return DataTypeStringInternal(dtype);.

Extend the pattern matching. The pattern-matching strategy
of Flawfinder and RATS follows naive text-based matching.
Text-based matching does not allow the detectors to perform
intraprocedural analysis, i.e. the analysis inside the boundary
of functions or any compilation units. The lack of performing
intraprocedural analysis introduces so many false alarms in
the case of detecting ML security vulnerabilities. For exam-
ple, in order to detect Memory Leaks (CWE-401) bug listed
in Table VI, the detector needs to perform analysis inside
_bsplmat() and catch the return value which is the root
cause of this bug.

B. Implication for Improving Cppcheck

Cppcheck has been shown to be the most effective static
checker for detecting real-world security issues. However,
it still lacks a plethora of weaknesses. Cppcheck may be
extended in two ways, as discussed in the subsections below.

Support ML Library-Specific Constructs. In order to extend
Cppcheck, the developers should handle any ML library-
specific constructs or macros within the backend implementa-
tion. This may involve extending Cppcheck’s macro handling
capabilities or creating additional checks to handle these
constructs effectively.
Extend the control flow graph. The control flow graph
analysis in Cppcheck is very limited, with the following
assumptions: all source code statements can be accessed, and
the state checkers in the if conditions are always either true
or false. As a result, a more advanced control flow graph is
required to be able to detect sophisticated vulnerabilities in
ML libraries.

C. Implication for Improving Infer

Improve Buffer overrun Checker. While Infer’s buffer over-
run checker can detect typical buffer overflow patterns, it may
not cover all conceivable variations and attacker approaches
in ML libraries. The tool may miss sophisticated or unique
exploitation methods explained in RQ3.
Isolate checkers. To begin with, the rules for identifying
integer overflow in Infer are still in an experimental stage
and lack sensitivity to function arguments. Additionally, Infer’s
dependency on buffer overrun rules to detect integer overflow

18https://github.com/tensorflow/tensorflow/commit/698bc996f7190f5cd836d48d29b8c1b3ddcd37c2

introduces a limitation. These buffer overrun rules themselves
tend to generate a significant number of false alarms, which
consequently raises the false alarm rate for identifying integer
overflow bugs. Given the intricate nature of the bug pattern
for integer overflow in ML libraries [44], it becomes crucial
for developers to separate the buffer overrun checkers from
the scope of integer overflow.

D. Implication for Improving Clang static analyzer

Extend the Checker for Null Pointer Dereference. Clang
static analyzer uses its internal checker core.NullDereference
(C, C++, ObjC) to detect null pointer dereference bugs
in C, C++, and Objective C programs. The checker works
well if function arguments take pointer parameters. If
the code attempts to dereference the pointer without
checking if it is null, it marks it as buggy. However,
in terms of ML libraries, null pointer dereference has
more sophisticated patterns. For example, in this commit
from the TensorFlow library19, the developer has removed
int64 id = ctx->session_state()->GetNewId();
since session_state() is vulnerable to have a null value
which results in denial of service via a null pointer
dereference. The developers should increase the null pointer
checker to cover more corner cases in terms of code elements
that may have null values.

VI. THREATS TO VALIDITY

As is the case with every empirical research, there are a few
factors that call into question the reliability of the inferences
we have taken from our data. One of the major limitations is
the choice of ML libraries and static analysis tools. In order
to protect ourselves against this risk, we have chosen four
extensively used ML libraries, each of which focuses on a
different facet of ML development. All ML libraries are open-
source projects that are always being developed and improved
upon. Regarding the selection of static analysis tools, our
major focus is on static detectors that are openly available
to the public and are in the process of being developed right
now. We used widely used and popular detectors which have
been cited by many previous studies in the field of software
vulnerability detection [3], [54], [55].

Another possible threat to this study is the mapping tech-
nique [14] used to find potential vulnerable candidates. The ap-
proach we used in the paper is subject to coincidental matches.
for example, the assumption is that if the line number produced
in warnings overlaps with the modified lines in a vulnerability-
fixing commit, the program will automatically recognize the
warning as a candidate for the vulnerability. This is not true in
practice since the reported warning may not be connected to
the actual vulnerability in the commit, or the changed line may
be refactoring the code and does not represent the vulnerability
being fixed. The ultimate determination of whether a warning
relates to a vulnerability is made by two authors involved in
manual inspection and is therefore subjective. To mitigate this

19https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1



risk, both authors reviewed every possibility for an identified
vulnerability when there is no clear evidence.

In this paper, we rely on the assumption that a source code
before a vulnerability fix is a vulnerable source code, and the
source code after the fix is considered as the vulnerability
is fixed. One may apply static analysis tools to source code
after the fix and find multiple vulnerabilities. As a result, this
assumption serves as the foundation for this paper’s goal of
determining how many real-world security vulnerabilities the
tools identify at the moment of committing modifications.

VII. RELATED WORK

A. Software Security Vulnerability Detection

There have been numerous studies focused on software
vulnerability detection in the literature [3]–[5], [54], [55], [61].
Cao et al. [4] proposed a deep learning-based vulnerability
detection model to detect memory-related statements on their
manually curated dataset extracted from 11 projects developed
in C/C++. Their proposed model can model structural infor-
mation which allows the detection of semantic vulnerabilities.
Their experiments indicate that the proposed model is superior
compared to cutting-edge models as well as static analysis
tools. Li et al. [61] developed SySeVR, a deep learning-
based vulnerability detector in which syntactic and semantic
information contained in source codes are merged as a rich
input representation and supplied into the model. They think
that this unique representation discovers subtle weaknesses in
the source code.

B. Studies on Static Detection Techniques

Habib and Pradel [14] investigated the static analyzers
including Infer, ErrorProne, and SpotBugs to figure out what
percentage of Defect4j’s total bugs can be located by using
the aforementioned tools. Both the code diff and the bug
report mapping approaches are utilized by the authors. Tomassi
[62] They carry out a study in which they examine the
similarities and differences between ErrorProne and SpotBugs
in order to determine the total number of vulnerabilities that
are discovered in a sample of 320 BugSWARM artifacts.
SpotBugs was only able to locate a single vulnerability, as the
author discovered. Rutar et al. [63] analyzed a small suite of
programs with a number of different static analyzers, including
PMD, FindBugs, JLint, Bandera, and ESC/Java 2. The authors
present a taxonomy of vulnerabilities discovered by each tool,
demonstrating that none of the tools can be considered to be
more comprehensive than the others. Runtime as well as the
total number of warnings generated are the primary focuses
of this study. Lipp et al. [16] argued that there are two main
limitations to the datasets used for testing static analysis tools.
Firstly, the datasets do not accurately represent real-world code
and cannot identify new and complex vulnerability patterns.
Secondly, the datasets do not classify vulnerabilities based on
the Common Weakness Enumeration (CWE) mapping. Hence,
they attempted to overcome these limitations by testing static
analysis tools on real-world datasets that were collected from

CVE records of 27 different projects, totaling 1.15 million
lines of code.

Static analysis tools often produce a large number of false
alarm warnings which makes manual inspection problematic.
To remove such false alarms, Several different approaches to
the detection of software security vulnerabilities have been
taken up by the industry. Bessey et al. [64] share their insights
gained from the process of bringing static analysis tools to the
market in their paper. Ayewah et al. [10], [65] discussed the
lessons learned via applying FindBug on Google’s codebase
in which numerous engineers involved through thousands of
FindBugs generated warnings, and addressed them by either
fixing them or filing reports. They find that most issues were
highlighted for fixing, but only a few of them were actually
causing significant problems in production. Understanding
real-world security vulnerabilities is a crucial first step in
enhancing vulnerability detection. Several studies have taken
different types of vulnerabilities into account, such as those in
the Linux kernel [66], vulnerabilities in concurrency [67], and
bugs in correctness [68] and performance [69] in JavaScript.

Our work is very different from the studies that have
been done before [14]–[16], [62]. In previous studies, the
primary focus has been on the automatic static detection of
general bugs in traditional software projects. On the other
hand, the primary focus of this paper is on the automatic
detection of software security vulnerabilities in widely used
ML projects. For example, Integer Overflow (CWE-190) is a
major vulnerability in ML libraries as found in [44]. A further
distinction lies in the fact that the focus of our work is on
the more recent and advanced generation of static analysis
tools specifically designed to detect security vulnerabilities in
projects written in C/C++.

VIII. CONCLUSION

This paper addresses the critical task of automatic detection
of software security vulnerabilities in ML libraries. The study
analyzes the effectiveness of five popular and widely used
static analysis tools, namely Flawfinder, RATS, Cppcheck,
Facebook Infer, and Clang static analyzer, on a curated dataset
of software vulnerabilities gathered from four popular ML
libraries. The research categorizes these tools’ capabilities,
highlighting their strengths and weaknesses in detecting soft-
ware security vulnerabilities. The study reveals that Flawfinder
and RATS are the most effective static checkers for finding
security vulnerabilities in ML libraries. However, the overall
findings show that the tools detect only a negligible amount
of vulnerabilities, accounting for 5/410 (0.01%) of known
security vulnerabilities. Based on these observations, the paper
also identifies and discusses opportunities to make the tools
more effective and practical.
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