
Characterizing and Understanding Software
Developer Networks in Security Development

Song Wang
York University, Toronto, Canada

wangsong@yorku.ca

Nachiappan Nagappan§
Microsoft Research, Redmond, USA

nnagappan@acm.org

Abstract—To build secure software, developers often work
together during software development and maintenance to find,
fix, and prevent security vulnerabilities. Examining the nature
of developer interactions in security development can provide
valuable insights for improving current practices.

In this work, we first conduct a large-scale empirical study to
mine developer interactions in security development regarding
their security introducing and fixing activities on a benchmark
dataset, which involves more 1.8M commits from nine large-
scale open-source software projects. We then build software
developer networks with the identified developer interactions and
conduct network analysis to characterize and understand security
development. For our analysis, we first study the interaction
patterns between developers. Second, we characterize the nature
of developer interaction in security development in comparison
to developer interaction in non-security development. Then, we
explore the relation between developer interaction and the quality
of projects regarding security. Among our findings we identify
that: the dominating interaction patterns among developers in
the security and non-security development are different, which
may suggest the needs of differing social and communication
support for security and non-security development; the distribu-
tion of interaction patterns has a correlation with the quality of
software projects; different from general software development,
most of the projects are non hero-centric regarding security
development. We believe the findings from this study can help
developers understand how vulnerabilities originate and evolve
under the interaction of developers and further improve software
maintenance.

Index Terms—Security analysis, social network analysis, de-
veloper network, developer interaction

I. INTRODUCTION

Building reliable and secure software becomes more and
more challenging in modern software development. As vul-
nerabilities can have catastrophic and irreversible impacts,
e.g., the recent Heartbleed vulnerability (CVE-2014-0160) cost
more than US$500 million to the global economy [1].

Developing secure software is a team effort, developers
work together to find, fix, and prevent security vulnerabilities
and during which they form implicit collaborative developer
networks [2]–[6]. Understanding the structure of developer
interaction in security development can be helpful for accel-
erating security development management tasks and further
building more secure software.

§Dr. Nachiappan Nagappan was with Microsoft Research when this work
was done. He is currently at Facebook.

Along this line, many developer network-related analysis
studies have been proposed to deal with problems in real-
world security practice such as vulnerabilities prediction [2],
[6], exploring the impact of human factors on security vul-
nerabilities [3], [7], and monitoring vulnerabilities [8], [9].
Most of the existing studies build developer social networks
with a single type of developer interactions, e.g., develop-
ers have co-changed/co-commented files that contain security
vulnerabilities [2], [3], [6], [9]. However, during the life
cycle of a security vulnerability, developers interact with each
other via multiple ways. For example, as shown in Figure 1,
developers d1 and d2 introduced the security vulnerability
s1 via commits c1 and c2; s1 was later fixed by developer
d3 and d4 via commits f1 and f2. Security vulnerability
s2 was introduced via commit c3 and fixed via commit f3
by the same developer d5. Examining the nature of developer
interactions in security development including both security
introducing and security fixing activities can provide insights
for improving current security practices.

In this paper, to characterize and understand developer
interactions in security development, we first conduct a large-
scale empirical study to mine developer interactions in security
development regarding security introducing and fixing activ-
ities on a benchmark dataset about developers’ interactions
during their security, which involves 1.8M commits from nine
large-scale open-source projects including operation systems,
compilers, PHP interpreter, Android platform, and JavaScript
engine, etc. We further build software developer networks
with the identified developer interactions and conduct network
analysis to characterize and understand security development.
For our analysis, we first explore whether there exist dom-
inating interaction patterns between developers across our
experimental projects, after that we study how the distribution
of developer interaction patterns changes in different projects
over time. Second, we characterize the nature of developer
interaction in security development in comparison to developer
interaction in non-security development (i.e., introducing and
fixing non-security bugs). We then explore the potential rela-
tion between developer interaction patterns and software qual-
ity regarding security aspect. Following existing studies [10],
[11], we use “security density” (i.e., dividing the number of
security vulnerability by the number of submitted commits) to
measure software quality regarding security. In addition, we
also examine whether the prevalent hero-centric development



Fig. 1: An example security developer network.

phenomenon (i.e., 80% or more of the contributions are made
by the 20% of the developers) in general software development
also holds in security development. This paper makes the
following contributions:
• We conduct the first study to analyze developer interac-

tions in developer networks built on different types of
developer interactions in security development.

• We show that developers do share common interaction
patterns in the security and non-security development,
while the dominating interaction patterns are different,
which may suggest the needs of differing social and
communication support for security and non-security
development.

• We examine that developer interaction is correlated with
the quality of a software project regarding security vulner-
ability density, which shows the potential practical value
of developer interactions in monitoring software quality.

• We confirm that all experimental projects are hero-centric
regarding non-security activities, while most (eight out
of nine) experimental projects are non hero-centric in
security development.

• We provide a benchmark dataset1 about developer in-
teraction during their security and non-security develop-
ment, which involves 1.8M commits from nine large-scale
open-source projects and could be used to facilitate future
research.

The rest of this paper is organized as follows. Section II
presents the background. Section III describes the method-
ology to collect security and non-security related commits
for building developer networks. Section IV describes our
approach to building developer networks. Section V discussed
our research questions. Section VI presents the result of our
empirical studies. Section VII discusses the threats to the
validity of this work. Section VIII presents related studies.
Section IX concludes this paper.

II. BACKGROUND

A. Version-Control Systems

Version-control systems (VCS) are widely used in modern
software development to coordinate developers’ incremental
contributions to a common software system. A VCS stores
the entire source-code change history in the form of atomic
change sets, called commits, which contain information about

1https://zenodo.org/record/4744903

the changed code, the committers, and the timestamp of
commits, etc. Git is one of the most popular VCSs, which
has been adopted by more than 57M open-source projects and
used by more than 20M developers2 globally. Git’s unique
features make it especially appropriate for mining invaluable
information to better understand software process [12], [13].
For example, Git can track the history of lines as they are
modified. By using the git blame feature, we can track the
modification history of each line in a commit.

In this work, we collect software security history data
from nine projects that are maintained by Git to explore the
developer interaction structures during their security activities
(see Section III).

B. Developer Security Network

Developer interactions during developers’ security devel-
opment (including security fixing and introducing activities)
enable us to identify collaborative relationships between de-
velopers. The developer relationships can be described by
a network, in which nodes represent developers and edges
represent interactions between developers.

In this study, a network can be formalized as a graph G =
(V,E), where V is a set of vertices and E is a set of edges,
denoted by V (G) and E(G), respectively. An edge e ∈ E
is denoted as e = v, u, where v is the origin node and u is
the destination node from V . Graph edges are directed with
different meanings.

Different from most of existing developer social network
studies [14], [15], in which v ∈ V is a developer, and e ∈ E
represents a particular form of developer interactions, e.g.,
fixed bugs together [16]–[19], co-changed files [2], [6], [8],
[9], [20], [21], worked on the same project [22], or have
communicated via email [23], etc., we consider a v ∈ V in a
developer security network may have three different types, i.e.,
developer, security-fixing commit, and security-introducing
commit. Consequently, a e ∈ E has also have three different
types of meanings, i.e., a developer introduces a security
vulnerability via a security-introducing commit, a developer
fixes a security vulnerability via a security-fixing commit, a
security-fixing commit fixes the vulnerability introduced by a
security-introducing commit.

III. DATA COLLECTION METHODOLOGY

A. Subject Projects

We selected nine open-source projects from existing stud-
ies [14], [24]–[27], listed in Table I, to explore developer
interaction in security activities. The projects vary by the
following dimensions: (a) size (lines of source code from 20K
to over 17M, number of developers from 604 to 19K), (b) age
(days since first commit), (c) programming language (C/C++,
Java, PHP, and JavaScript), (d) application domain (operating
system, compiler, PHP interpreter, Android platform, and
JavaScript engine, etc.), and (e) VCS used (Git, Subversion).
For each project, we extracted its code repository, and all

2https://en.wikipedia.org/wiki/GitHub

https://en.wikipedia.org/wiki/GitHub


TABLE I: Experimental projects in this study. Dev is the number of developers. Fix is the number of commits that fixed security or
non-security issues. Intro is the number of commits that introduced security or non-security issues.

Project Language LastCommitDate #Commit #Dev #CVE Security Vulnerability Non-Security Bugs
Fix Intro Dev Fix Intro Dev

FFmpeg C/C++ 2018/11/05 92.3K 1.7K 308 810 1.0K 199 (11.62%) 16.0K 26.5K 1.1K (66.43%)
Freebsd C/C++ 2018/11/05 255.9K 766 341 2.6K 4.1K 386 (50.39%) 35.7K 66.5K 604 (78.85%)
Gcc C/C++ 2018/11/05 165.5K 604 6 575 1.3K 200 (33.11%) 15.8K 29.9K 506 (83.77%)
Nodejs JS 2018/11/05 24.4K 2.6K 48 252 402 105 (3.98%) 4.7K 10.5K 1.3K (49.32%)
Panda C/C++ 2018/11/05 52.6K 1.2K 24 557 1.1K 230 (18.85%) 9.1K 17.1K 838 (68.69%)
Php C/C++ 2018/11/05 109.4K 911 588 979 1.3K 165 (18.11%) 25.6K 48.2K 663 (72.78%)
Qemu C/C++ 2018/11/05 64.8K 1.5K 261 789 1.5K 263 (18.03%) 12.1K 23.9K 1.0K (70.12%)
Linux C/C++ 2018/11/05 796.0K 19.4K 2.2K 10.3K 17.1K 3.7K (19.04%) 174.6K 313.8K 14.0K (72.54%)
Android Java 2018/11/05 377.8K 2.9K 1.7K 2.4K 2.5K 496 (16.88%) 70.1K 128.9K 2.1K (72.57%)

the historical code commits hosted in GitHub on Nov. 5th
2018. Details of our approach to collecting the commits that
introduce or fix security vulnerabilities and non-security bugs
are as follows.

B. Vulnerabilities Related Commits Collection

1) Collecting Security Vulnerability Fixing Commits:
Our data collection of security vulnerability fixing commits
starts from the National Vulnerability Database (NVD) [28],
a database provided by the U.S. National Institute of Stan-
dards and Technology (NIST) with information pertaining
to publicly disclosed software vulnerabilities. NVD contains
entries for each publicly released vulnerability. These vulner-
abilities are identified by CVE (Common Vulnerabilities and
Exposures) IDs [29]. When security researchers or vendors
identify a vulnerability, they can request a CVE Numbering
Authority to assign a CVE ID to it. Upon public release of the
vulnerability information, the summarization the vulnerability,
links to relevant external references (such as security fixing
commits and issue reports), list of the affected software, etc.,
will be added to the CVEs. We first extracted all the public
CVEs of each experimental subject on Nov. 5th 2018. We
then crawled the Git commit links to identify and clone
the corresponding Git source code repositories and collected
security fixes using the commit hashes in the links. Note
that, we also find that some of the external references only
contain the bug/issue report links, e.g., the external reference
of security vulnerability CVE-2018-146093 does not contain
the security fixing commits instead it shows the bug report ID4.
For these security vulnerabilities, we used the fixing commits
of these bugs as the security fixing commits. To collect the
fixing commits of these bugs, we consider commits whose
commit messages contain the bug report ID as the fixing
commits by following existing studies [27], [30].

As reported in existing studies [31], [32], not all security
vulnerability have CVE identifiers, around 53% of vulnerabil-
ities in open source libraries are not disclosed publicly with
CVEs [33], [34]. To cover all possible vulnerabilities, we used
the heuristical approaches proposed by Zhou et al. [33], to
identify the security fixing commits. Specifically, we used the

3https://nvd.nist.gov/vuln/detail/CVE-2018-14609
4https://bugzilla.kernel.org/show bug.cgi?id=199833

Algorithm 1 Grouping Fixing Commits

Require:
Fixing commit set C;
Query fixing commit q;
Commit message similarity threshold thress;
Fixing location overlap rate threshold modifo;

Ensure:
A list of grouped fixing commit D;

1: for each commit r in C and q do
2: Extract commit messages and compute the similarity

messages;
3: Extract modified files and compute the overlap rate modifo;
4: if messages > thress and modifo > 0 then
5: put r in D
6: end if
7: end for

regular expression rules listed in their Table 1, which included
possible expressions and keywords related to security issues.

2) Grouping Security Fixing Commits: We find that some
of the security fixing commits are made for fixing the same
security vulnerability. For example, to fix security vulnerabil-
ity CVE-2018-108835, developers have made two commits.
Identifying fixing commits that belong to the same security
vulnerability could provide us valuable information about
how vulnerabilities are fixed through developer interactions.
To group fixing commits, first, for fixing commits that have
CVE identifiers in their commit messages, we consider fixing
commits that contain the same CVE identifiers belong to
the same security vulnerabilities. Second, for fixing commits
that do not have CVE identifiers in their commit messages,
we propose a heuristical algorithm to group them, which
is described in Algorithm 1. Specifically, given two fixing
commits, we group them together if the similarity of their
commit messages is larger than a threshold (i.e., messages)
and the modification location has overlaps. Following existing
study [35]–[38], we use the Cosine similarity to measure
the similarity between two commit messages. We employ tf-
idf [39], stop words removal (e.g., “is”, “are”, and “in” since
these words are used in most commit messages and thus have
little discriminative power) and stemming (e.g., “groups” and
“grouping” are reduced to “group”.) to extract string vectors

5https://nvd.nist.gov/vuln/detail/CVE-2018-10883

https://nvd.nist.gov/vuln/detail/CVE-2018-14609
https://bugzilla.kernel.org/show_bug.cgi?id=199833


from the commit messages. For the threshold thress, we
assume the ratios of collaborative fixing commits (i.e., fixing
the same vulnerability) are similar between commits which
have CVEs and commits that do not have CVEs. Thus for each
project, we use the ratio of the collaborative fixing commits
among the fixing commits that have CVEs to specify its
threshold thress. We set the maximum interval between two
collaborative fixing commits as six months, which is the typic
length of fixing a security vulnerability [40].

3) Collecting Security Vulnerability Introducing Com-
mits: With the above security-fixing commits, we further
identify the security-introducing commits by using a blame
technique provided by a Version Control System (VCS), e.g.,
git or SZZ algorithm [30]. Following existing studies [41]–
[44], we assume the deleted lines in a security-fixing commit
are related to the root cause and considered as faulty lines.
The most recent commit that introduced the faulty line is
considered a security-introducing commit. The details of the
security-introducing commits as listed in Table I. The average
number of security-introducing commits of a security-fixing
commit ranges from 1.03 (Android) to 2.41 (Nodejs).

C. Non-Security Bugs Related Commits Collection

To explore the difference of developer interaction structures
between developers’ security activities and non-security activ-
ities, we also collect general bugs (i.e., non-security).

Typically software bugs are discovered and reported to an
issue tracking system such as Bugzilla and later on fixed by
the developers. A bug report usually records the description,
the opening and fixing date, type (bug, enhancement, feature,
etc.), etc. We consider a bug report in the Bugzilla database
that is labelled as a “bug” to be a general bug. However, not
all the projects have well-maintained bug tracking systems, in
this work, following existing studies [42]–[44] if a project’s
bug tracking system is not well maintained and linked, we
consider changes whose commit messages contain the word
“fix” and “bug” as bug-fixing commits. If a project’s bug
tracking system is well maintained and linked, we consider
commits whose commit messages contain a bug report ID
as bug-fixing commits. For each of the bug-fixing commit,
we adopt the same approach as we used to identify security-
introducing commits in Section III-B3. The details of non-
security fixing commits and their corresponding non-security
introducing commits are showed in Table I. The average
number of non-security introducing commits of a non-security
fixing commit ranges from 1.66 (FFmpeg) to 2.21 (Nodejs).

In Section III-B2, we group security-fixing commits that fix
the same security vulnerability. For non-security bugs, we also
found the same phenomenon, i.e., some of the non-security
fixing commits are made for fixing the same non-security bugs.
For grouping these non-security fixing commits, we reuse
Algorithm 1. As described in Section III-B2, for grouping
security fixing commits, we use the ratio of collaborative
fixing commits (i.e., fix the same security vulnerability) that
have CVE identifiers to set the threshold thress of a specific
project. However, for non-security fixing commits, not all

FFmpeg Freebsd Gcc Nodejs Panda Php Qemu Linux Android

0

2

4

6

8

Fig. 2: The overlap rate (in percentage) of non-security intro-
ducing commits and security introducing commits.

projects have well-maintained bug tracking systems, for some
projects (e.g., Linux), we cannot use bug report ID to specify
thress. Thus, we randomly pick and manually check 100 pairs
of collaborative fixing commits on each the subject project,
we use the average Cosine similarity value to set thress in
Algorithm 1 to group non-security fixing commits.

With the above non-security fixing commits, we further
identify the non-security introducing commits by using a
blame technique as we described in Section III-B3. For non-
security introducing commits and security introducing com-
mits, we do not handle the overlaps, since it’s possible that a
security vulnerability and non-security bug can be introduced
by the same introducing commit. In this work, we use overlap
rate to measure the overlap level between two datasets. We
define the overlap rate between datasets A and B as A∩B

A∪B .
Figure 2 shows the overlap rates of non-security introducing
commits and security introducing commits in the experimental
projects. As we can see from the figure, the overlap rates of
all experimental projects are lower than 10%, which suggests
that security vulnerability and non-security bugs usually have
different introducing commits.

On average, the ratio for security fixing commits is 7.2%
and the ratio for non-security fixing commits is 8.3%, which
is consistent with the finding from an existing study [45], that
9% of bug fixes were bad across three Java projects.

D. Identifying Distinct Developers

To build the developer security network, we need to obtain
the developer information of security-fixing and security-
introducing commits. In Git, for every pushed commit, Git
maintains the user who did the commit, i.e., committer. Git
computes the committer out of the Git configuration parame-
ters ‘user.name’ and ‘user.email’. Thus, by retrieving a com-
mit, we can easily obtain its committer information. However,
Git also allows users to change their profiles, which introduces
the alias issue of developers in mining open-source [23], [46],
i.e., a developer may have different emails/names. To solve this
challenge, we use the aliases unmasking algorithms proposed
in [23] to identify distinct developers.

In total, we have around 45K distinct developers from
the nine experimental projects, details are listed in Table I.
Overall, the percentage of developer that involved in security
activities ranges from 3.98% to 50.39%, while the percentage
of developer that involved in non-security activities ranges
from 49.32% to 83.77%.



(a) P1: CoIntro (b) P2: CoFix

(c) P3: IntroFix (d) P4: SelfIntroFix

(e) P5: SelfIntro (f) P6: SelfFix
Fig. 3: The meta interactions between developers during their
security activities.

IV. BUILDING SOFWARE DEVELOPER NETWORK

With the collected security-fixing, security-introducing com-
mits, and corresponding developers, in this section we present
our approach to building developers networks.

In this study, we only focus on meta patterns between
developers during their security activities, i.e., at most one
node exists between a developer and a security vulnerabil-
ity. We first identify developer’s meta interactions during
the security activities including both introducing and fixing
security vulnerabilities. Specifically, in order to explore devel-
oper interactions, we capture three possible meta interactions
between two developers, i.e., two developers introduce the
same security vulnerability (CoIntro), two developers fix the
same security vulnerability (CoFix), a security vulnerability
is introduced by a developer and fixed by another developer
(IntroFix), which are showed in Figure 3 from 3a to
3c. In addition, we also collect the meta interactions of a
single developer, i.e., a security vulnerability is introduced
and fixed by a single developer (SelfIntroFix), a security
vulnerability is introduced by multiple commits of a single
developer and fixed by other developers (SelfIntro), and
a security vulnerability is fixed by multiple commits of a single
developer and is introduced by other developers (SelfFix),
which are showed in Figure 3 from 3d to 3f.

For each subject project listed in Table I, we collect all these
meta paths and then build a security network by connecting
meta paths together.

V. RESEARCH QUESTIONS

Our experimental study is designed to answer the following
research questions.

RQ1. What are the distributions of developers in security
and non-security activities?

Software security vulnerability and bugs are introduced
and fixed by developers, in this RQ, we aim to explore the

basic distribution of developers in security and non-security
activities regarding fixing and introducing. For example, what
is the overlap rate between developers that have ever involved
in security activities and developers that have ever involved in
non-security activities? What is the overlap rate between de-
velopers that have fixed security vulnerabilities and developers
that have introduced security vulnerabilities?

RQ2. What are the common meta interaction patterns
between two developers in security activities?

Developers interact with each other during the development
of a software project. In software development, the social
and organizational aspects have an impact on the individual
and collective performance of the developers [47]. Along this
line, in this RQ, we aim to explore the common interaction
structures among developers during their security and activi-
ties regarding security fixing and security introducing across
different projects, which we believe can help us gain insight
into distinct characteristics of developers’ security activities.

RQ3. Are the distributions of developer interaction pat-
terns in security and non-security activities different?

To understand the difference of developers’ interaction
patterns during their security and non-security activities. In this
RQ, we explore the nature of interaction between developers
in their security activities regarding introducing and fixing se-
curity vulnerabilities in comparison to non-security activities.

RQ4. How do interaction structures among developers
evolve over time?

Software team organization evolves over time [17], [48], i.e.,
developers may leave a project and new developers may join
during the life cycle of a project, which causes the evolution
of developer community. Along this line, in this RQ, we aim
to explore whether the interaction structure among developers
changes over time and how it evolves.

RQ5. Does the change of interaction structures have a
correlation with the quality of software?

Developer social network and its evolution information have
been examined could be used to predict new vulnerabilities
and bugs [2], [6]. Along this line, in this RQ, we investigate
whether the change of interaction structure has a correlation
with the quality of software regarding the density of security
vulnerabilities.

VI. ANALYSIS APPROACH AND RESULTS

A. RQ1: Distributions of Developers in Security and Non-
Security Activities

To answer this RQ, we obtain unique developers from
different activities, i.e., fixing security vulnerabilities, intro-
ducing security vulnerabilities, fixing non-security bugs, and
introducing non-security bugs. Given the developer sets of
two activities, we calculate their overlap rates via dividing
the overlapping data points by all the unique data points.
Table II shows the basic overlaps between developers that have
been involved in different activities. As we can see from the
table, in all the projects, developers from secFix and secIntro



TABLE II: The overlap rates between developers that have been involved in different activities. secFix denotes developers
that have made security fixing commits, secIntro denotes developers that have made security introducing commits, nonSecFix
denotes developers that have made non-security fixing commits, nonSecIntro denotes developers that have made non-security
introducing commits, and secFix-secIntro means the overlap rate between secFix and secIntro. The higher values with statistical
significance (p-value < 0.05) are shown with an asterisk (*).

Project secFix-secIntro (*) secFix-nonSecFix secFix-nonSecIntro secIntro-nonSecFix secIntro-nonSecIntro sec-nonSec
FFmpeg 60.0 10.7 10.4 14.9 19.6 10.7
Freebsd 89.0 30.2 32.2 49.1 43.2 40.2
Gcc 88.1 25.6 24.5 38.8 38.4 25.6
Nodejs 63.0 5.0 5.8 7.6 10.5 5.0
Panda 65.9 17.0 18.9 21.5 32.1 17.0
Php 70.5 15.5 16.9 21.7 29.3 15.5
Qemu 67.1 16.6 18.1 20.6 28.9 16.6
Linux 66.6 16.1 18.0 21.6 29.6 16.1
Android 69.6 15.6 18.1 19.9 27.1 15.6
Average 71.1 16.9 18.1 24.0 28.8 18.0

have higher overlap rates, i.e., range from 60.0% to 89.0%
and on average is 71.1%, which indicates that most of the
security vulnerabilities are introduced and fixed by a core
group of developers. We can also see that the overlap rates of
developers from security activities and non-security activities
are lower, e.g., the overlap rate of developers from secFix
and nonSecFix ranges from 5.0% to 30.2% and is 16.9%
on average, the overlap rate of developers from secIntro and
nonSecIntro ranges from 19.6% to 38.4% and on average is
28.8%. Overall, the overlap rate from sec and nonSec is 18.6%
on average, which indicates that most of the developers that are
involved in security activities are different from developers that
are involved in non-security activities. This may be because
security issues are critical to software that require non-trivial
domain expertise. Thus only a small group of developers is
capable of handling security vulnerabilities, which makes the
overlap rates of developers from security activities and non-
security activities lower. We further conduct the Wilcoxon
signed-rank test (p < 0.05) to compare the overlap rates
among different pairs. The results suggest that the overlap rates
of secFix and secIntro are significantly higher than those of
other pairs.

Developers that are involved in security and non-security
activities are different. Non-security bugs usually were
introduced and fixed by different developers. However,
security vulnerabilities were likely introduced and fixed by
the same set of developers.

B. RQ2: Common Developer Meta Interaction Patterns in
Developer Security Activities

For each subject project, with the security activity network
built in Section IV, we collect the numbers and calculate
the percentages of the six meta patterns, which are showed
in Table III. As we can see from the figure, the six meta
interaction patterns among developers exist in each of the
experimental projects. The CoIntro and IntroFix patterns
are dominating (i.e., the accumulated percentage is larger than
80%) across all the experimental projects. Other patterns take
up around 20% of developer interactions, for example, the

TABLE III: The distribution of developer interaction patterns
during security activities (in percentage).

Project CoIntro CoFix IntroFix SelfIntroFix SelfIntro SelfFix
FFmpeg 52.3 1.9 36.6 5.2 3.0 1.0
Freebsd 66.1 0.2 28.8 3.1 1.6 0.1
Gcc 58.0 10.4 18.7 9.9 2.8 0.1
Nodejs 50.9 7.4 23.4 10.7 7.3 0.3
Panda 70.3 0.7 19.6 5.1 4.0 0.3
Php 73.1 1.4 18.0 3.8 3.3 0.4
Qemu 68.0 1.8 19.3 6.6 3.9 0.5
Linux 67.1 0.5 21.9 5.8 4.5 0.2
Android 55.4 8.1 25.3 3.2 7.4 0.6
Average 62.4 3.6 23.5 5.9 4.2 0.4

P1 P2 P3 P4 P5 P6

−20

0

20

Fig. 4: The difference of the percentages of interaction patterns
between security activities and non-security activities.

percentages ofSelfFix are lower than 1% in all experimental
projects. Although CoIntro and IntroFix are dominating,
the percentages of them in different projects are different,
i.e., range from 74.3% (Nodejs) to 94.9% (Freebsd). In ad-
dition, the percentage of interactions between developers (i.e.,
CoIntro, CoFix, and IntroFix) is much larger than that
of interactions of the same developers (i.e., SelfIntro,
SelfFix, and SelfIntroFix), which indicates the nature
of software security development is teamwork.

The percentages of meta patterns among developers vary
dramatically in different projects. However, CoIntro and
IntroFix patterns are dominating across all the experi-
mental projects in developers’ security activities.

C. RQ3: Comparison of Developer Interaction Patterns be-
tween Security and Non-Security Activities

In this RQ, we try to explore the difference of developer
interactions between developers’ security activities and non-
security activities, which we believe can help us gain insight



TABLE IV: The distribution of developer interaction during
non-security activities (in percentage).

Project CoIntro CoFix IntroFix SelfIntroFix SelfIntro SelfFix
FFmpeg 30.4 14.8 31.5 3.2 19.7 0.4
Freebsd 40.4 11.4 30.3 2.6 15.1 0.2
Gcc 37.3 26.1 22.4 2.4 11.7 0.2
Nodejs 59.0 26.3 9.7 1.5 3.4 0.1
Panda 39.4 4.2 35.6 3.9 16.6 0.3
Php 42.7 16.2 25.3 3.7 12.0 0.1
Qemu 35.4 19.7 28.4 4.5 11.9 0.1
Linux 32.1 15.5 33.0 3.5 15.8 0.1
Android 29.1 20.8 27.9 5.7 16.4 0.1
Average 38.4 17.2 27.1 3.4 13.6 0.2

into distinct characteristics of developers’ security activities.
For each subject project, we first build a non-security devel-
oper network following our approach in Section IV, then we
further collect the ratios of the six meta patterns (as shown in
Figure 3) in the non-security developer networks. For each
meta pattern, we calculate the difference between its ratio
from non-security developer network and developer network
of a project. We show the detailed difference of interaction
patterns between security activities and non-security activities
in Figure 4. Specifically, the percentages of patterns CoIntro
and CoFix, and SelfIntro vary dramatically across the
projects in this work.

Table IV shows the distribution of the six developer inter-
action patterns in developers’ non-security activities. Different
from security activities, the dominating patterns (i.e., the
accumulated percentage is larger than 80%) in non-security
activities include three patterns, i.e., CoIntro, IntroFix,
and CoFix. Note that in security activities, the percentage of
CoFix pattern ranges from 0.2% to 10.4% and on average
is 3.5%, while in non-security activities it ranges from 4.2%
to 26.1% on average is 17.2%. This may indicate that fixing
security vulnerability requires more domain expertise and only
a small number of developers are capable to fix security
vulnerabilities, thus results in less teamwork. In addition,
we also find that the dominating patterns are more balanced
in developers’ non-security activities compared to security
activities. For example, the difference of the percentages of
dominating patterns in security activities ranges from 15.7%
to 55.1% and on average is 38.8%, while in non-security
activities, the difference ranges from 8.3% to 35.2% and on
average is 21.2%.

The different dominating patterns may indicate the differ-
ence of developers’ communication and social activities in
security and non-security development, however neither cur-
rent security or non-security development methodologies [49]
could reflect such difference.

Developers have different dominating patterns in security
and non-security activities, which might suggest the needs
of differing social and communication support for security
and non-security development.

TABLE V: The correlated patterns in each project.
Project Correlated Patterns
FFmpeg P1, P3, P5
Freebsd P1, P3, P4
Gcc P1, P2, P3, P4
Nodejs P1, P2, P3, P4
Panda P1, P3
Php P1, P3, P4, P5
Qemu P1, P3, P5
Linux P1, P3
Android P1, P2, P3, P4, P5

D. RQ4: Evolution of Developer Interaction in Developer
Security Activities

To explore the evolution of developer interactions, for each
project, we collect the numbers and calculate the percentages
of the six patterns that only appear in a specific year from 2007
to 2017. Specifically, given a year n (2006 < n < 2018),
we first use the proposed approach in Section III-B and
Section III-C to collect security fixing commits that happened
in the year. Since the security introducing commits are derived
from fixing commits, we then use the available security
information in the year n + 1 to find the fixing commits
between the years n and n + 1. After that, we further obtain
the corresponding security introducing commits in the year n.
When security fixing and introducing commits are ready, we
build the developer network as described in Section II-B and
further obtain the number of each interaction pattern between
developers listed in Figure 3.

In total, for each pattern, we have 10 different percentage
values in each project. Figure 5 shows the boxplots of the
percentages of each interaction pattern in each project. Overall,
the percentage of a specific pattern varies dramatically in a
project over time, for example, in FFmpeg, the percentage of
pattern CoIntro ranges from 22.7% to 63.1% in 10 years,
which may be because there exist significant changes on the
adopted software development processes or the project’s de-
veloper team that yield dramatically different software quality.
Despite the evolution of the percentages of patterns, we can
observe that there exist dominating patterns in each of the
projects over the 10 years. Specifically, we find that patterns
CoIntro and IntroFix are dominating on each project
over time.

The percentages of developer interaction patterns vary over
time. While all the projects do not witness a change in
terms of the dominating patterns.

E. RQ5: Relation between Developer Interaction and Soft-
ware Quality

To explore the relation between developers’ interactions in
security development and software quality regarding security
(i.e., security density), we use the data of the years from
2007 to 2017 collected in RQ4 (see Section VI-D). Following
existing studies [6], [50], [51], we use the Spearman rank
correlation [52] to compute the correlations between the per-
centages of patterns and the density of security vulnerability
appeared in each year from 2007 to 2017. The closer the value



P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(a) FFmpeg

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(b) Freebsd

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(c) Gcc

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(d) Nodejs

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(e) Panda

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(f) Php

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(g) Qemu

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(h) Linux

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(i) Android
Fig. 5: The distribution of the number of different patterns in each project from 2009 to 2018. P1 denotes CoIntro, P2 denotes CoFix,
P3 denotes IntroFix, P4 denotes SelfIntroFix, P5 denotes SelfIntro, and P6 denotes SelfFix.

of a correlation is to +1 (or -1), the higher two measures
are positively (or negatively). A value of 0 indicates that two
measures are independent. Values greater than 0.10 can be
considered a small effect size; values greater than 0.30 can be
considered a medium effect size [6]. In this work, we consider
the values larger than 0.10 or smaller than -0.10 as correlated,
others are uncorrelated.

Table V shows the correlated patterns in each project. As
we can see, five of the six patterns are selected as correlated
in at least one project. In addition, the dominating patterns
CoIntro and IntroFix are selected across all projects,
which suggests the practice values of using these patterns to
predict the quality of projects regarding security.

Developers’ interaction in security activities is correlated
with the density of security vulnerabilities.

VII. DISCUSSION

A. Heroism in Security Development
Recent studies [26], [53]–[57] show that most software

projects are hero-centric projects, where 80% or more of the

contributions (e.g., the number of commits) are made by the
20% of the developers. Most of existing studies explore the
heroism of projects from developers’ code contribution and
social communication perspectives, e.g., Agrawal et al. [53]
used the number of commits made by each developer to
represent its contribution to a project. In this work, we try
to explore the heroism in security development of a project.
Specifically, we assess developers’ contribution by using a
specific type of commits, e.g., security fixing and security
introducing, non-security fixing, and non-security introducing
commits. Following existing studies [53], [54], we define a
project to be hero-centric when 80% of the contributions are
done by about 20% of the developers in this study.

We first examine whether a project is hero-centric when only
considering a specific type of commits e.g., security fixing
commits. To assess the contribution of a developer, following
Agrawal et al. [53], we count the number of a specific type of
commits made by each developer to represent his/her contribu-
tion to a project. We then rank developers ascendingly based
on their contributions. Finally, we accumulate developers’
contributions and record developers involved until 80% of



TABLE VI: The percentages of developers involved when contribut-
ing 80% of a specific type of commits. Values with a red diamond
(�) indicate that a project is non hero-centric project. All denotes the
combination of the four types of commits.

Project secFix secIntro nonSecFix nonSecIntro All
FFmpeg 23.1 (�) 20.2 (�) 3.6 5.5 3.5
Freebsd 32.1 (�) 26.0 (�) 13.4 11.3 11.1
Gcc 33.1 (�) 21.1 (�) 17.5 16.3 15.6
Nodejs 34.0 (�) 24.7 (�) 13.5 6.6 5.1
Panda 36.5 (�) 25.8 (�) 10.6 10.1 7.5
Php 21.6 (�) 23.7 (�) 6.3 8.2 5.7
Qemu 30.1 (�) 22.3 (�) 8.6 9.8 6.8
Linux 30.9 (�) 21.6 (�) 11.0 11.4 8.5
Android 32.7 (�) 21.3 (�) 11.5 11.0 8.3

the contributions are done. In addition, we also evaluate a
developer’s contribution via the combination of the four types
of commits, i.e., security fixing, security introducing, non-
security fixing, and non-security introducing.

Table VI shows the percentages of developers involved
when contributing 80% of a particular type of commits. As we
can see from the table, when assessing developers’ contribu-
tion by using non-security fixing or non-security introducing
commits or all commits together, all the projects are hero-
centric, i.e., the percentages of developers involved are smaller
than 20%. However, all the experimental projects are non hero-
centric projects when assessing developers’ contribution by
using security fixing or security introducing commits, e.g., the
percentage of developers involved are 36.5%, when evaluating
developers’ contribution by using security fixing commits in
project Panda. Our finding indicates that although general
software development has “heroes”, i.e., a small percentage
of the staff who are responsible for most of the progress on a
project, software security does not have typical “heroes”.

We further calculate the overlap rates of “core developers”
(i.e., the set of developers that contribute 80% of a specific
type of commits) between different types of commits, which
are shown in Table VII. As we can see, the “core developers”
from security fixing and security introducing have high overlap
rates that range from 47.7% to 71.1% and on average is 63%,
which is consistent with our findings in Sec VI-A. The overlap
rates of the “core developers” from security commits and
non-security commits, i.e., “core developers” from secFix and
nonSecFix, “core developers” from secIntro and nonSecFix
are lower than the rates of “core developers” only from
security activities, i.e., secFix and SecIntro. This indicates that
the “core developers” of security and non-security activities
are different in most of the experimental projects.

All experimental projects are hero-centric regarding non-
security activities, while most (eight out of nine) experi-
mental projects are non hero-centric in security develop-
ment.

B. Threats to Validity

a) Internal Validity: Threats to internal validity are re-
lated to experimental errors. Following previous work [30],
[42]–[44], the process of collection security introducing or
non-security introducing commits is automatically completed

TABLE VII: The overlap rates of “core developers” between differ-
ent types of commits. The higher values with statistical significance
(p-value < 0.05) are shown with an asterisk (*).

Project secFix-secIntro (*) secFix-nonSecFix secIntro-nonSecIntro
FFmpeg 71.1 50.0 68.9
Freebsd 69.9 55.6 67.8
Gcc 69.2 32.9 43.5
Nodejs 66.7 24.4 29.2
Panda 67.0 48.0 62.5
Php 48.5 54.3 66.7
Qemu 64.6 50.0 63.8
Linux 64.8 38.0 45.3
Android 47.0 34.3 45.8
Average 63.2 43.0 55.0

with the annotating or blaming function in VCS with keyword
searching (e.g., “fix” and “bug” for non-security changes). It is
known that this process can introduce noise [30]. The noise in
the data can potentially affect the result of our study. Manual
inspection of the process shows reasonable precision and recall
on open source projects [44], [58]. To mitigate this threat, we
use the noise data filtering algorithm introduced in [58] to
remove potential noisy data.

b) External Validity: Threats to external validity are
related to the generalization of our study. The examined
projects in this work have a large variance regarding project
types. We have tried our best to make our dataset general
and representative. However, it is still possible that the nine
projects used in our experiments are not generalizable enough
to represent all software projects. Our approach might generate
similar or different results for other projects that are not used in
the experiments. We mitigate this threat by selecting projects
of different functionalities (operating systems, servers, and
desktop applications) that are developed in different program-
ming languages (C, Java, and JavaScript).

In this work, all the experimental subjects are open source
projects. Although they are popular projects and widely used
in security research, our findings may not be generalizable to
commercial projects or projects in other languages.

VIII. RELATED WORK

A. Developer Social Network

There has been a body of work that investigated aspects of
developer social networks built on developers’ activities during
software development [14], [59]–[66].

Lopez-Fernandez et al. [64], [65] first examined the social
aspects of developer interaction during development, where
developers were linked based on contributions to a common
module. Bird et al. [23] investigated developer organiza-
tion and community structure in the mailing list of four
open-source projects and used modularity as the community-
significance measure to confirm the existence of statistically
significant communities. Wolf et al. [21], [67] introduced an
approach to mining developer collaboration from communica-
tion repositories and they further use developer collaboration
to predict software build failures. Toral et al. [66] applied
social-network analysis to investigate participation inequality
in the Linux mailing list that contributes to role separation
between core and peripheral contributors. Hong et al. [17]



and Zhang et al. [68] explored the characteristics of devel-
oper social networks built on developer interactions in bug
tracking systems and how these networks evolve over time.
Surian et al. [69] extracted developer collaboration patterns
from a large developer collaborations network extracted from
SourceForge.Net, where developers are considered connected
if both of them are listed as contributors to a project. Jeong
et al. [16] and Xuan et al. [18] leveraged network metrics
mined from social networks built in bug tracking systems
to recommend developers for fixing new bugs. Surian et
al. [22] used developer collaboration network extracted from
Sourceforge.Net to recommend a list of top developers that are
most compatible based on their programming language skills,
past projects and project categories they have worked on before
for a developer to work with. Researchers have also built social
networks based on developers’ security activities, i.e., have
co-changed files that contain security vulnerabilities to predict
new vulnerabilities [2], [6], exploring the impact of human
factors on security vulnerabilities [3], [7], and monitoring
vulnerabilities [8], [9].

Most of the above studies construct developer networks
based on a particular form of developer collaboration e.g.,
co-changed files, co-commented bugs, and co-contributed
projects, etc., from bug tracking systems, mailing lists, or
project contribution lists. These developer networks are ho-
mogeneous, which have merely one type of node (developers)
and one type of link (a particular form of developer collab-
oration). Wang et al. [19] and Zhang et al. [70] leveraged
heterogeneous network analysis to mined different types of
developer collaboration patterns in bug tracking system and
further used these different collaborations to assist bug triage.

Our work differs in two ways from most of these prior
studies: (1) We study developers’ social interactions in security
activities. (2) We explore different types of developer interac-
tions during their security activities, which is more complex
and with richer information.

B. Security Vulnerability Analysis

There are many studies to explore, analyze, and understand
software security vulnerabilities [40], [41], [71]–[80].

Frei et al. [81] examined how vulnerabilities are handled
with regard to information about discovery date, disclosure
date, as well as the exploit and patch availability date in
large-scale by analyzing more than 80,000 security advisories
published between 1995 and 2006. Walden et al. [82] pro-
vided a vulnerability dataset for evaluating the vulnerability
prediction effectiveness of two modelling techniques, i.e.,
software metrics based and text mining based approaches.
Medeiros et al. [78] examined the performance of software
metrics on classifying vulnerable and non-vulnerable units
of code. Yang et al. [79] leveraged software network to
evaluate structural characteristics of software systems during
their evolution. Decan et al. [74] and Shahzad [75] presented
a large scale study of various aspects associated with software
vulnerabilities during their life cycle. Ozment et al. [77]
investigated the evolution of vulnerabilities in the OpenBSD

operating system over time, observing that it took on average
2.6 years for a release version to remedy half of the known
vulnerabilities. Perl et. al. [41] analyzed Git commits that fixed
vulnerabilities to produce a code analysis tool that assists in
finding dangerous code commits. Xu et. al. [80] developed
a method for identifying security patches at the binary level
based on execution traces, providing a method for obtaining
and studying security patches on binaries and closed-source
software. Li et al. [40] conducted an analysis of various
aspects of the patch development life cycle. There also existed
some other studies that explored the characteristics of software
general bugs [83]–[85].

In this work, we propose the first study to characterize
and understand developers’ interaction by considering their
activities in introducing and fixing security vulnerabilities by
analyzing developer networks built on their security activities.

IX. CONCLUSION

This work conducts a large-scale empirical study to mine
and build developer networks for characterizing and under-
standing developer interaction in security development, which
involves 1.8M commits from nine large-scale open-source
software projects. For our analysis, we first study the inter-
action patterns between developers. Second, we characterize
the nature of developer interaction in security activities in
comparison to developer interaction in non-security activities
(i.e., introducing and fixing non-security bugs). Then, we ex-
plore the relation between developer interaction and the quality
of projects regarding security. In addition, we also examine
whether the prevalent hero-centric development phenomenon
(i.e., 80% or more of the contributions are made by the 20%
of the developers) in general software development also holds
in security development. Our empirical studies show that:
the dominating interaction patterns among developers in the
security and non-security developments are different, which
might suggest the needs of differing social and communica-
tion support for security and non-security development; the
distribution of interaction patterns has a correlation with the
quality of software projects; different from general software
development, most of the projects are non hero-centric re-
garding security development. We believe the findings from
this study can help developers understand how vulnerabilities
originate and evolve under the interaction of developers and
further improve software maintenance.

As future work, we plan to leverage developer interaction
information to further improve software security practice by
predicting future potential vulnerabilities, estimating the effort
(e.g., number of developers) required to fix new security
vulnerabilities, and recommending appropriate developers to
fix new security vulnerabilities.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feed-

back which helped improve this paper. This work is supported
by the Natural Sciences and Engineering Research Council of
Canada (NSERC).



REFERENCES

[1] “Heartbleed,” http://heartbleed.com/, 2018.
[2] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating

complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” TSE’11, vol. 37, no. 6, pp. 772–787, 2011.

[3] A. Meneely and L. Williams, “Secure open source collaboration: an
empirical study of linus’ law,” in CCS’09, 2009, pp. 453–462.

[4] ——, “Socio-technical developer networks: Should we trust our mea-
surements?” in ICSE’11, 2011, pp. 281–290.

[5] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in ESEM’13, 2013, pp. 65–74.

[6] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,” in
ICST’10, 2010, pp. 421–428.

[7] A. Meneely and L. Williams, “Strengthening the empirical analysis of
the relationship between linus’ law and software security,” in ESEM’10,
2010, p. 9.

[8] S. Trabelsi, H. Plate, A. Abida, M. M. B. Aoun, A. Zouaoui, C. Mis-
saoui, S. Gharbi, and A. Ayari, “Mining social networks for software
vulnerabilities monitoring,” in NTMS’15, 2015, pp. 1–7.

[9] A. Sureka, A. Goyal, and A. Rastogi, “Using social network analysis
for mining collaboration data in a defect tracking system for risk and
vulnerability analysis,” in ISEC’11, 2011, pp. 195–204.

[10] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in ICSE’05, 2005, pp. 284–292.

[11] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in
source code files with decision tree learners,” in MSR’06, 2006, pp.
119–125.

[12] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in MSR’09, 2009,
pp. 1–10.

[13] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,” in MSR’14,
2014, pp. 92–101.

[14] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, “From
developer networks to verified communities: a fine-grained approach,”
in ICSE’15, 2015, pp. 563–573.

[15] A. Jermakovics, A. Sillitti, and G. Succi, “Mining and visualizing
developer networks from version control systems,” in CHASE’11, 2011,
pp. 24–31.

[16] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in FSE’09, 2009, pp. 111–120.

[17] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding a developer
social network and its evolution,” in ICSM’11, 2011, pp. 323–332.

[18] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug
repositories,” in ICSE’12, 2012, pp. 25–35.

[19] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “Devnet: exploring
developer collaboration in heterogeneous networks of bug repositories,”
in ESEM’13, 2013, pp. 193–202.

[20] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in FSE’08, 2008, pp. 2–12.

[21] T. Wolf, A. Schröter, D. Damian, L. D. Panjer, and T. H. Nguyen,
“Mining task-based social networks to explore collaboration in software
teams,” IEEE Software’09, vol. 26, no. 1, pp. 58–66, 2009.

[22] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos, “Rec-
ommending people in developers’ collaboration network,” in WCRE’11,
2011, pp. 379–388.

[23] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in MSR’06, 2006, pp. 137–143.

[24] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A replication
case study of open source development,” TSE’05, vol. 31, no. 6, pp.
481–494, 2005.

[25] C. Izurieta and J. Bieman, “The evolution of freebsd and linux,” in
ISESE’06, 2006, pp. 204–211.

[26] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” TOSEM’02,
vol. 11, no. 3, pp. 309–346, 2002.

[27] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
ICSE’12, 2012, pp. 386–396.

[28] U. N. I. of Standards and Technology, “National vulnerability database,”
https://nvd.nist.gov/home.cfm, 2018.

[29] M. Corporation, “Common vulnerabilities and exposures,” https://cve.
mitre.org/, 2018.

[30] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic
identification of bug-introducing changes,” in ASE’06, 2006, pp. 81–90.

[31] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining
bug databases for unidentified software vulnerabilities,” in ICHSI’12,
2012, pp. 89–96.

[32] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in MSR’19, 2019.

[33] Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in FSE’17, 2017, pp. 914–
919.

[34] “Sourceclear,” https://www.sourceclear.com/, 2018.
[35] J. Wang, M. Li, S. Wang, T. Menzies, and Q. Wang, “Images don’t lie:

Duplicate crowdtesting reports detection with screenshot information,”
IST’19, 2019.

[36] J. Wang, Q. Cui, Q. Wang, and S. Wang, “Towards effectively test report
classification to assist crowdsourced testing,” in ESEM’16, 2016, p. 6.

[37] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE’07, 2007, pp.
499–510.

[38] H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy, “An
empirical study on recommendations of similar bugs,” in SANER’16,
vol. 1, 2016, pp. 46–56.

[39] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[40] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in CCS’17, 2017, pp. 2201–2215.

[41] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in CCS’15, 2015, pp. 426–437.

[42] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in MSR’05, vol. 30, no. 4, 2005, pp. 1–5.

[43] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E.
Hassan, “A framework for evaluating the results of the szz approach for
identifying bug-introducing changes,” TSE’17, vol. 43, no. 7, pp. 641–
657, 2017.

[44] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
ASE’13, 2013, pp. 279–289.

[45] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been
fixed?” in ICSE’10, 2010, pp. 55–64.

[46] G. Robles and J. M. Gonzalez-Barahona, “Developer identification
methods for integrated data from various sources,” in MSR’05, 2005,
pp. 1–5.

[47] K. Ehrlich and M. Cataldo, “All-for-one and one-for-all?: a multi-
level analysis of communication patterns and individual performance in
geographically distributed software development,” in CSCW’12, 2012,
pp. 945–954.

[48] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in FSE’08, 2008, pp. 24–35.

[49] H. Keramati and S.-H. Mirian-Hosseinabadi, “Integrating software de-
velopment security activities with agile methodologies,” in ICCSA’08,
2008, pp. 749–754.

[50] E. Giger, M. Pinzger, and H. C. Gall, “Can we predict types of code
changes? an empirical analysis,” in MSR’12, 2012, pp. 217–226.

[51] S. Wang, C. Bansal, N. Nagappan, and A. A. Philip, “Leveraging change
intents for characterizing and identifying large-review-effort changes,”
in PROMISE’19, 2019, pp. 46–55.

[52] A. D. Well and J. L. Myers, Research design & statistical analysis.
Psychology Press, 2003.

[53] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies,
“We don’t need another hero?: the impact of heroes on software
development,” in ICSE-SEIP’18, 2018, pp. 245–253.

[54] S. Majumder, J. Chakraborty, A. Agrawal, and T. Menzies, “Why
software projects need heroes (lessons learned from 1100+ projects),”
arXiv preprint arXiv:1904.09954, 2019.

[55] S. Koch and G. Schneider, “Effort, co-operation and co-ordination in an
open source software project: Gnome,” Information Systems Journal’02,
vol. 12, no. 1, pp. 27–42, 2002.

[56] S. Krishnamurthy, “Cave or community?: An empirical examination of
100 mature open source projects,” 2002.

[57] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of the
core team of developers in libre software projects,” in MSR’09, 2009,
pp. 167–170.

http://heartbleed.com/
https://nvd.nist.gov/home.cfm
https://cve.mitre.org/
https://cve.mitre.org/
https://www.sourceclear.com/


[58] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in ICSE’11, 2011, pp. 481–490.

[59] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The rise
and fall of a central contributor: dynamics of social organization and
performance in the gentoo community,” in CHASE’13, 2013, pp. 49–
56.

[60] H. Jiang, J. Zhang, H. Ma, N. Nazar, and Z. Ren, “Mining authorship
characteristics in bug repositories,” SCIS’17, vol. 60, no. 1, 2017.

[61] M. Zhou and A. Mockus, “Who will stay in the floss community?
modeling participant’s initial behavior,” TSE’15, vol. 41, no. 1, pp. 82–
99, 2015.

[62] ——, “What make long term contributors: Willingness and opportunity
in oss community,” in ICSE’12, 2012, pp. 518–528.

[63] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, “Developer
initiation and social interactions in oss: A case study of the apache
software foundation,” EMSE’15, vol. 20, no. 5, pp. 1318–1353, 2015.

[64] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, and I. Her-
raiz, “Applying social network analysis techniques to community-driven
libre software projects,” IJITWE’06, vol. 1, no. 3, pp. 27–48, 2006.

[65] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona et al., “Ap-
plying social network analysis to the information in cvs repositories,”
in MSR’04, 2004, p. 101–105.

[66] S. L. Toral, M. d. R. Martı́nez-Torres, and F. Barrero, “Analysis of virtual
communities supporting oss projects using social network analysis,”
IST’10, vol. 52, no. 3, 2010.

[67] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
ICSE’09, 2009, pp. 1–11.

[68] W. Zhang, L. Nie, H. Jiang, Z. Chen, and J. Liu, “Developer social net-
works in software engineering: construction, analysis, and applications,”
SCIS’14, vol. 57, no. 12, 2014.

[69] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a
large developer network,” in WCRE’10, 2010, pp. 269–273.

[70] W. Zhang, S. Wang, Y. Yang, and Q. Wang, “Heterogeneous network
analysis of developer contribution in bug repositories,” in CSC’13, 2013,
pp. 98–105.

[71] W. Bu, M. Xue, L. Xu, Y. Zhou, Z. Tang, and T. Xie, “When program
analysis meets mobile security: an industrial study of misusing android

internet sockets,” in FSE’17, 2017, pp. 842–847.
[72] N. Munaiah, “Assisted discovery of software vulnerabilities,” in

ICSE’18, 2018, pp. 464–467.
[73] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow

vulnerabilities?: a study of the chromium project,” in MSR’15, 2015,
pp. 269–279.

[74] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in MSR’18,
2018, pp. 181–191.

[75] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in ICSE’12, 2012, pp.
771–781.

[76] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in USENIX Security’18), 2018, pp. 919–936.

[77] A. Ozment and S. E. Schechter, “Milk or wine: does software security
improve with age?” in USENIX Security Symposium’06, 2006.

[78] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics as
indicators of security vulnerabilities,” in ISSRE’17, 2017, pp. 216–227.

[79] Y. Yang, J. Ai, X. Li, and W. E. Wong, “Mhcp model for quality
evaluation for software structure based on software complex network,”
in ISSRE’16, 2016, pp. 298–308.

[80] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain: security
patch analysis for binaries towards understanding the pain and pills,” in
ICSE’17, 2017, pp. 462–472.

[81] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in SIGCOMM’06, 2006, pp. 131–138.

[82] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in ISSRE’14, 2014, pp.
23–33.

[83] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in ICSE’11, 2011, pp. 491–500.

[84] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
and bug-fixing in open source projects: Desktop vs. android vs. ios,” in
EASE’15, 2015, p. 7.

[85] D. M. German, “The gnome project: a case study of open source, global
software development,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 201–215, 2003.


	Introduction
	Background
	Version-Control Systems
	Developer Security Network

	Data Collection Methodology
	Subject Projects
	Vulnerabilities Related Commits Collection
	Collecting Security Vulnerability Fixing Commits
	Grouping Security Fixing Commits
	Collecting Security Vulnerability Introducing Commits

	Non-Security Bugs Related Commits Collection
	Identifying Distinct Developers

	Building Sofware Developer Network
	Research Questions
	Analysis Approach and Results
	RQ1: Distributions of Developers in Security and Non-Security Activities
	RQ2: Common Developer Meta Interaction Patterns in Developer Security Activities
	RQ3: Comparison of Developer Interaction Patterns between Security and Non-Security Activities
	RQ4: Evolution of Developer Interaction in Developer Security Activities
	RQ5: Relation between Developer Interaction and Software Quality

	Discussion
	Heroism in Security Development
	Threats to Validity

	Related Work
	Developer Social Network
	Security Vulnerability Analysis

	Conclusion
	References

