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Abstract. Traditional centrality measures such as degree, betweenness, close-

ness and eigenvector ignore the intrinsic impacts of a node on other nodes. This 

paper proposes a new algorithm, called HIPRank, to rank nodes based on their 

influences in the network. HIPRank includes two sub-procedures: one is to pre-

define the importance of an arbitrary small number of nodes with users’ prefer-

ences, and the other one is to propagate the influences of nodes with respect to 

authority and hub to other nodes based on HIP propagation model. Experiments 

on DBLP citation network (over 1.5million nodes and 2.1million edges) 

demonstrate that on the one hand, HIPRank can prioritize the nodes having 

close relation to the user-preferred nodes with higher ranking than other nodes, 

and on the other hand, HIPRank can retrieve the authoritative nodes (with au-

thority) and directive nodes (with hub) from the network according to users’ 

preferences. 
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1 Introduction 

Recently, network-based search arises in both research and application areas. Those 

traditional algorithms, such as Google’s PageRank [5] and Kleinberg’s HITS [2], 

assumed a global view on the structure of the network to treat all the users’ prefer-

ences [9] in ranking nodes equally. However, in most cases, this assumption may be 

inappropriate because of the actual differences of users’ personal preferences in nodes 

ranking. Thus, PPR (Personalized PageRank) [8, 9, 11] has been proposed to solve the 

problem of personal preferences. 

Although most of the research endeavor has been invested in speeding up the PPR 

to make its computation practical [8, 9, 11], similar to Pei Li et al [1], we attempted a 

different treatment to considering users’ personal preferences by propagating the user-

predefined importance of nodes in the network. Inspired by the Hyperlink-Induced 

Topic Search (HITS) [2], which measures the importance of web pages in the web 

network using authority and hub, we believe that connected nodes in the network can 

influence each other and the influence of nodes should be propagated bidirectionally 

(forward and backward) rather than unidirectional propagation in Pei Li et al [1]. 



The main contributions of this paper can be summarized in two aspects. First, we 

argue that the user preference or prior knowledge of nodes should be taken into con-

sideration when ranking nodes in the network. Second, we propose a new influence 

propagation model called HIP to describe the bidirectional propagation of predefined 

importance of authority and hub over nodes accompanied with random walk paths. 

Based on these two aspects, we propose a new algorithm called HIPRank to rank 

individuals in the network. The computation complexity of our proposed algorithm 

HIPRank is much less than those proposed to solve the PPR problem. 

The remainder of this paper is organized as follows. Section 2 describes the moti-

vation. Section 3 proposes the HIP model and HIPRank algorithm for ranking nodes 

in the network. Section 4 conducts experiments. Section 5 presents the related work. 

Section 6 concludes the paper. Table1 lists the notations used in this paper. 

Table 1. Notations used in this paper. 

        G is a directed graph; V is the set of vertices of G; E is the set of edges 

of G. 

    The vector of predefined authority importance of all nodes 

    The vector of predefined hub importance of all nodes 

        The influence of authority received by node b on the i-th propagation 

step 

        The influence of hub received by node b on the i-th propagation step 

        The influence of authority propagated from node p to q through all the 

paths from node p to q 

        The influence of hub propagated from node p to q through all the paths 

from node p to q 

  The maximum propagation step in HIP model 

N The nodes size of  a directed graph 

M The edges size of  a directed graph 

  The number of edges traversed in the propagation process 

   The authority ranking vector of all nodes 

   The hub ranking vector of all nodes 

     The authority ranking vector of all nodes on the i-th iteration/step 

     The hub ranking vector of all nodes on the i-th iteration/step 

     The out-going neighbors of node   

2 The Motivation 

Let W be the adjacency matrix of a directed graph G, and T is the transpose of W. For 

the element at p-th row and q-th column of W, in HITS,        if (p  q)   E, other-

wise       . In HIPRank, we normalize W and T, each row of W and T is normal-

ized to one unless all elements in this row are zero,    and    denote the normalized 

W and T respectively. For the p-th row and q-th column element of   ,   
      if 



        E, otherwise   
           ∑             , where        is the weight 

of edge       in W, the same rule to   . 

 

 

 

                                 

Fig. 1. A directed network consists of five nodes and every node has predefined importance in 

two aspects, including authority and hub.  

    For the network depicted in Fig. 1, the HITS ranking of the nodes should be with 

authority vector as [0.202,0.095,0.335,0.166,0.202] and hub vector as 

[0.190,0.240,0.165,0.240,0.165]. HITS does not consider the initial importance of 

nodes. That is, the initialized authority and hub are not propagated in HITS algorithm 

to rank nodes. The basic idea behind HITS is to measure the centrality (importance) 

of web pages in the web network using authority and hub, authority estimates the 

value of the content of a web page, and hub estimates the value of its links to other 

pages. The matrix form of HITS can be formulated as below in Equation 1. 

               ;        
                                    (1) 

Here, k represents the k-th iteration,     and   
  are normalization factors. Based on 

Equation (1), the authority and hub scores of HITS can be computed iteratively, and 

this process is proved convergent if we normalize the two score vectors of authority 

and hub after each iteration [2]. 

When considering a case that a user has some prior knowledge or preference on 

some nodes in Fig. 1 and prefers to retrieve nodes like node b, thus the initial im-

portance, which represents the user’s preference, may cast a crucial influence on the 

result of the ranking. However, in this case, typical HITS algorithm will not work 

because HITS do not take the initial importance of nodes into account when ranking 

nodes in the network. In addition, HITS is originally designed to rank the web net-

work. Simply applying it to rank nodes in general network may result in unexpected 

results, because the “random jumping” behavior of web network is not suitable for 

modeling some friendship based social networks. 

To solve this problem, IPRank [1] is proposed to consider the initialized im-

portance of nodes in the network. However, in other cases, predefining importance of 

all the nodes in only one dimension is not enough. For instance, in a paper citation 

network, some papers, such as surveys and reviews, cite a large number of other pa-

pers because they focus on reviewing the recent advancements in a domain. We may 

call this kind of papers hub papers. Meanwhile, other papers have a large number of 

citations because they focus on presenting specialized algorithms or pioneering ap-

proaches to some difficult problems in a domain. We may call this kind of papers 

authority papers. Simply using only one dimension to measure the predefined im-

  

  

 



portance of these two kinds of papers in a citation network will cause a great loss of 

important information.   

Motivated by the problems of HITS and IPRank, we propose a new influence 

propagation model called HIP to model bidirectional propagation of influences in the 

network, and a new ranking algorithm called HIPRank to rank nodes, based on the 

global structural contexts of the network accompanied with predefined importance of 

authority and hub. Table2 shows the normalized HITS scores and HIPRank scores 

corresponding to different predefined importance    and   . The decay function is 

         . 

Table 2. Normalized HITS scores and HIPRank scores. 

   &    Normalized HIPRank Scores(%) 

  =[0.2,0,0.2,0.2,0.2] 

  =[0.2,0.2,0.2,0.2,0.2] 

authority:[20.63,8.75,31.97,18.02,20.63] 

hub:[17.92,23.43,17.61,23.43,17.61] 

  =[0.2,0.2,0.2,0.2,0.2] 

  =[0.2,0.2,0.2,0.2,0.2] 

authority:[20.38,9.23,32.58,17.41,20.38] 

hub:[18.58,23.58,17.13,23.58,17.13] 

  =[0.2,0.4,0.2,0.2,0.2] 

  =[0.2,0.2,0.2,0.2,0.2] 

authority:[20.16,9.68,33.14,16.86,20.16] 

hub:[19.20,23.72,16.68,23.72,16.68] 

HITS scores authority:[20.2,9.5,33.5,16.6,20.2] 

hub:[19.0,24.0,16.5,24.0,16.5] 

3 Related Work 

The related work of this paper can be categorized into two aspects. One is personal-

ized PageRank. The basic idea is that while the global network topology inducing the 

adjacent matrix in PageRank is the same for all users, the preference vector inducing 

users’ preference on nodes are different for different users. However, a difficult prob-

lem of PPR is its involved huge computation. To address this problem, many solu-

tions were proposed such as probabilistic random walk with external memory index-

ing [8], incremental computation [9] and top-K search with bounded accuracy [11]. 

Actually, in most cases, user preference is dependent on different domains and not a 

constant. Thus, it is very hard to capture user preference correctly due to its diversity 

and volatility. 

 
This problem brings about the other related work of the paper, i.e. influence-

propagation-based ranking methods. The basic idea is that for a search task in a given 

domain, a user has some prior knowledge of the influent nodes in the network. Thus, 

by propagating influence to other nodes based on the network topology, all the nodes 

in the work obtain their importance ranking. The methods in this aspect include 

IPRank with propagating influence based on PageRank [1], propagating relevance and 

irrelevance [12], propagating trust and distrust [10], etc. HIPRank is of the second 

aspect of the related work. However, we are different from the previous work, we 

propagate authority and hub of nodes in the network by introducing the idea of HITS 

algorithm [2]. 



4 HIPRank 

4.1 HIP propagation model 

Let    and    be two vectors to represent predefined importance of authority and hub 

of nodes in G respectively, while    represents the initialized authority values of 

nodes and    represents the initialized hub values of nodes, and all the elements in 

  and    are non-negative.  

In HITS algorithm, the authority of node c comes from the hub of its in-neighbors 

within 1-step hop and the hub of node c comes from the authority of its out-neighbors 

within 1-step hop. In HIP, the influence propagated bidirectionally. The authority of 

node c comes not only from the hub of its in-neighbors within 1-step hop, but also 

from the hub of its in-neighbors within k-step hop (     ,   is predefined as the 

maximum propagation step). The hub of node c comes not only from the authority of 

its out-neighbors within 1-step hop, but also from the authority of its out-neighbors 

within k-step hop (      ). For instance, assuming there is a path     
              , the hub       propagating from     to    in forward direction, 

contributes to the authority of   . Equation 2 shows the received influence of    

from   . 

                                                              ∏   
     

   
                              (2) 

The authority       propagating from    to    in backward direction, contributes to 

the hub of   . Equation 3 shows the received influence of    from   . 

                    ∏   
     

   
                              (3) 

We introduce a discrete decay function          to capture the retained influence 

on the k-th step hop. Here k             ,   is predefined as the maximum propa-

gation step, and      . Generally,       , and the lager k results in smaller 

    . In order to decide the maximum propagation step  , a threshold   that satisfies 

the following condition needs to be specified. 

        and                                             (4) 

Proposition 1: Without decay function, that means when      is a constant, influence 

also decays in HIP model. 

 

Proof: According to Equation (2) and (3), when      is a constant, here denoted by 

C, the authority influence propagating from    to    can be calculated by         
        ∏   

     
   
   , since each row in    is normalized to one, so each element 

in    is less than 1 when     ∏   
          

   , thus the propagated influence 

decays via the propagation path. Similarly, the same with hub influence. Proposition 1 

holds. 

The reason why we introduce decay function      in HIP model is that in HIP the 

decay of influence is determined by the topological structure of the network, which is 



uncontrolled by users. With a specified decay function, a user can control the propa-

gation of influence over nodes.  

4.2 HIPRanking Nodes 

Based on the HIP propagation model, the HIPRank scores of nodes in the network 

can be defined as follows. 

 

Definition 1. The HIPRank scores of a node in the network consist of a authority 

score and a hub score, and both scores are measured by the initialized importance of 

this node and the influence propagated to this node from other nodes. 

 

The basic idea behind HIPRank is that, the more influence of authority or hub a node 

receives from other nodes, the more authoritative or directive the node is in the net-

work. Different from IPRank [1], the influence propagation in HIPRank considers 

initial importance of a node in two dimensions: authority and hub. The initial authori-

ty and hub of nodes are represented by    and    respectively. Both    and    are 

propagated in HIP to impact authority and hub scores of nodes as shown in Table 2. 

The authority and hub of nodes in HIPRank can be computed in the same manner.  

The only difference between authority and hub lies in that, the authority of a node 

propagates in the backward direction, and the hub of a node propagates in the forward 

direction. For this reason, we use the computation of authority score of a node in 

HIPRank as an example to show how the HIPRank algorithm ranks nodes in the net-

work. 

With the decay during the propagation, the propagated influence of hub and author-

ity can be ignored after   steps. Therefore, we only need to collect the propagated 

influences that reach a node within   steps with random walk [6, 7].  

Considering the node a in the graph G in Fig. 1 and supposing    , that is, the 

influence of authority and hub propagates within 1 step. To compute the authority 

score of node a, we reverse all edges and traverse b and e starting from the node a. 

And two random walk paths (b  a) and (e  a) in G that reach node a within 1 step hop 

are collected. Thus, the 1 step authority propagation from node b and e to a as         

can be denoted in Equation 5, where       and       represent the hub scores of 

node b and e, respectively. 

              (      
 
           

 
   )                      (5) 

The authority score of node a in Fig. 1 can be calculated in Equation 6, where       

represents the initial authority score of node a. 

                                                           (6) 

Note that, different random paths generated by HIPRank may have common sub-

paths, which could be reused to save computational cost. For example, hub propaga-

tion along paths           and         are generated by HIPRank queries for 



node e and c, and these two paths share the common sub-path        , which can 

be reused in practical computation. 

For all the nodes in a network, we develop an algorithm, called HIPRank-All to 

compute their HIPRank scores in matrix form as shown in Algorithm 1. 

Algorithm 1. HIPRank-All( ,   ,   , h ,   ,   ) 

Input: graph       , initial authority vector   , initial hub vector   , threshold h 

for deciding the maximum propagation step,   is the adjacency matrix 

of  , and   is the transpose of  . 

Output: HIPRank scores    and    

1:initialize   =  ;   =  ; 

2: obtain    and    by normalizing   and  ; 

3:for every node     do 

4:    obtain K according to Equation (4); 

5:    AuthorityRecursion(v,      , 0,  ); 

6:    HubRecursion(v,       , 0,  ); 

7:end for 

8:return    and   ; 

 

9:Procedure AuthorityRecursion(v, x, y,  ) 

10:y=y+1; 

11:for every node u in out-neighbor set of node v do 

12:                 
         

13:   if y <   then  

14:     AuthorityRecursion(u,     
   , y,  ); 

15:   end if 

16:end for 

 

17: Procedure HubRecursion (v, x, y,  ) 

18: y=y+1; 

19:for every node u in out-neighbor set of node v do 

20:                  
         

21:   if y <   then  

22:     HubRecursion (u,     
   , y,  ); 

23:   end if 

24:end for 

 

In HIPRank, the initial authority and hub of all nodes are stored in two vectors    

and    respectively. Taking the computation of authority score as an example, in the 

first step, all the nodes propagate hub to their out-neighbors with decay factor     . 

Considering the hub received by a node which contributes to its authority, let       be 

the in-neighbor set of node v within 1 step hop. The hub received by v is         

     ∑       
 
   

     
   . Further, considering all the nodes in the network, we obtain 

             
  in matrix form. In the second step, all the nodes that are 2-step in-

neighbors to node v, represented by      , will also propagate hub to v and contribute 



to the authority of v. Thus, the authority of v obtained from the second step is 

             ∑       
 
   
      

   . Considering all the nodes in the network, we 

obtain              
   in matrix form. By analogy, the obtained authority vector 

of all nodes in the network on the k-th step can be computed by Equation 7. 

              
                                             (7) 

As a result from Definition 1, in HIPRank, the authority ranking vector obtained with-

in k steps can be described in Equation 8. 

     ∑         ∑       
   

 
      

                           (8) 

In the same manner, we can obtain the hub ranking vector within k steps, as described 

in Equation 9. 

      ∑         ∑       
   

 
      

                           (9) 

Equation (8) and (9) describe the main computation of HIPRank-All algorithm. The 

time complexity of HIPRank-All algorithm is      ,   is the number of edges trav-

ersed in the propagation process. One useful proposition about HIPRank computing 

is given below. 

 

Proposition 2: When                and    , HIPRank is convergent. 

 

Proof: According to Equation (8), since each row in     is normalized to one, 

when    ,      . The decay function is               , therefore : 

                    (  
                     )     

                                                                             (10) 

Similarly:     =                                                                                      (11) 

Here, E is the identity matrix and 0 is the zero matrix. Equation (10) and (11) show 

that when                and    ,     and    are convergent. Proposition 

2 holds. 

In HITS the only factor that influences the final authority and hub scores is the top-

ological structure of the network, while in HIPRank, from equation (10) and (11), we 

can see that both the topological structure of the network and the initialized im-

portance of authority and hub can influence the final ranking scores. 

5 Experiments 

5.1 Appropriate propagation step K 

For obtaining acceptable scores for all the nodes, an appropriate propagation step   

should be specified. We conduct a simulation on a PC with a 3.4GHz CPU and an 



8GB RAM to exam how to set an appropriate  . We use three random networks 

called G1 (1 million nodes and 3 million edges), G2 (1 million nodes and 5 million 

edges) and G3 (1 million nodes and 10 million nodes). Similar to Pei Li et al [1], we 

also use the precision defined by average          ⁄  to observe the convergence 

rate of HIPRank on those three graphs. 

    
(a)                                        (b)                                           (c) 

Fig. 2. Convergence rate of three networks (left to right G1, G2 and G3). 

For G1 we set the        ⁄  = 3, Fig.2 (a) shows that the error of precision is below 

0.01 after 9 iterations; for G2,        ⁄  = 5, results in Fig.2 (b) shows after 11 itera-

tions  the error of precision is below 0.01; for G3,        ⁄  = 10, Fig.2 (c) shows that 

the error of precision is below 0.01 after 12 iterations. So, with the proportion of the 

number of edges and nodes increasing, HIPRank needs more iteration to obtain high 

convergence rate. In Fig. 2 when     , the precision of G1 is 0.996, G2 is 0.97 and 

G3 is 0.95, so we recommend when        ⁄   10, the max propagation step   is set 

to 10 and when         ⁄  10, the   should be bigger than 10. 

    

(a)                                                       (b) 

Fig. 3. (a) Time cost when   increases (N = 1.5 million, M = 3.5 million). (b) Time cost when 

edges size increases (  = 10, N = 0.1 million).   

5.2 Time cost of HIPRank 

The time complexity of HIPRank-All algorithm is      , where   is the maximum 

propagation steps and   is the number of edges traversed in the propagation process. 

Fig. 3 (a) shows the time cost when   increases. We can see that when   is smaller 

than 9, which means the influence of a node propagates less than 9 steps, the time cost 

of HIPRank keeps very small because the number of traversed edges in the propaga-

tion process would be not very large at this duration. However, when   is larger than 

10, there is a linear increase in the time cost as we explain that all the edges in the 

network are traversed in the propagation process. Fig. 3(b) shows the time cost when 
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  increases. We set   as 10 to obtain high convergence rate. As   increases,   in-

creases at the same time, and the time cost of HIPRank increases linearly when   

increase from 0.1 million to 0.7 million.  

      In practice,   is usually much larger than  . Thus, the computation complexity is 

almost decided by  , which is not larger than the number of edges ( ) in the work. In 

this case, traversed edges in the proposed HIP rank model are much smaller than that 

in models proposed by [11] and [12] to find the top-K relevant nodes.   

5.3 Results on DBLP paper citation network 

We build a large paper citation network using the citation information of the entire 

DBLP conference papers. This network consists of 1,511,035 papers (nodes) and 

2,084,019 citations (edges).  

Three expected outcomes of the experiment are: (i) if a user has already known that 

some papers are important in some fields, for example, we know that the paper “C4.5: 

Programs for Machine Learning” is an authoritative paper in KDD area, a user can 

find other authoritative and directory papers(authority papers and hub papers) in 

KDD area using the HIPRank model by setting high authority scores to this paper; (ii) 

Papers with high authority scores have larger possibilities to propose novel algorithms 

or pioneering methods to solve difficult problems in a domain. We can call these pa-

pers authority papers; (iii) Papers with high hub scores have larger possibilities to be 

surveys, overviews, or reviews, which called hub papers. 

The decay function is            and the maximum propagation step is set to 10. 

The initial authority and hub values of the predefined nodes are set to    ⁄  , the ini-

tial values of the rest nodes are set to    ⁄  , and then we normalize all the initial val-

ues to the range from 0 to 1 for all the nodes, where N is the number of nodes in the 

network.  

First we use the HITS on the paper citation network, and the corresponding top-10 

authority papers and top-10 hub papers are shown in Table 3 (a). For the top-10 au-

thority papers, papers rank high only because they have high citations; for the top-10 

hub papers, papers rank high mainly because they cite authority papers.  

Second, we bias the ranking to a special area by predefining importance (both au-

thority and hub) for papers. In Table 3 (b), papers published in SE (Software Engi-

neering) area conferences (here we use ICSE, FSE, ESEM, and SIGSOFT) are given 

higher predefined authority and hub scores. Then we obtain top-10 authority papers 

and top-10 hub papers in Software Engineering area.  

Third, we bias HIPRank to KDD(Knowledge Discovery and Data Mining) area 

(here we use conferences: SIGKDD，PAKDD, PKDD, and ICDM) and show results 

in Table 3 (c). Those authority papers and hub papers of special areas listed in Table 

3 (b) and (c) show that out HIPRank with predefined authority and hub scores pro-

duces reasonable results.  

From Table 3 (b) and (c), we can see that many papers which are not initialized 

with relatively high authority and hub are retrieved from DBLP dataset, such as those 

papers from ACM TOSEM for SE area and SGIMOD for KDD area. These outcomes 

illustrate that HIPRank is enlightening in discovering papers by user preference. 



Table 3. (a) Results of HITS. (b)HIPRank on SE area. (c) HIPRank on KDD area. 

(a) 

Top10 authority papers Conf Top10 hub papers Conf 
C4.5: Programs for Machine Learning BOOK Data Mining: An Overview from a Database Perspective IEEE Trans 

Fast Algorithms for Mining Association Rules 
in Large Databases 

VLDB Scalable Algorithms for Mining Large Databases SIGKDD 

Mining Association Rules between Sets of 

Items in Large Databases 

SIGMOD Mining Query Logs: Turning Search Usage Data into 

Knowledge 

FTIR 

Introduction to Algorithms BOOK Scalable frequent-pattern mining methods: an overview SIGKDD 

Introduction to Modern Information Retrieval BOOK ACIRD: Intelligent Internet Document Organization and 

Retrieval 

IEEE Trans 

Modern Information Retrieval BOOK ART: A Hybrid Classification Model Machine  

Learning 

Induction of Decision Trees BOOK Ratio Rules: A New Paradigm for Fast, Quantifiable Data 
Mining 

VLDB 

Compilers: Princiles, Techniques, and Tools BOOK Using Information Retrieval techniques for supporting data 
mining 

Data & 
Knowledge 
Engineering 

The Anatomy of a Large-Scale Hypertextual 
Web Search Engine 

WWW Association Rule Mining, Models and Algorithms BOOK 

Mining Frequent Patterns without Candidate 
Generation 

SIGMOD From intra-transaction to generalized inter-transaction: 
Landscaping multidimensional contexts in association rule 

mining 

Information 
Sciences 

 

(b) 

Top10 authority papers Conf Top10 hub papers Conf 
The Model Checker SPIN IEEE Trans Research Directions in Requirements Engineering FOSE 

Communicating Sequential Processes Communica-

tions of the 
ACM 

A brief survey of program slicing ACM SIGSOFT 

Statecharts: A Visual Formalism for Complex 

Systems 

Science of 

computer 
programming 

Architecture Reconstruction SE 

Object-Oriented Modeling and Design BOOK Models and Tools for Managing Development Processes BOOK 

Experiments of the Effectiveness of Dataflow- 
and Controlflow-Based Test Adequacy 

Criteria 

ICSE Requirements interaction management ACM CSUR 

Compilers: Princiles, Techniques, and Tools BOOK A schema for interprocedural modification side-effect 
analysis with pointer aliasing 

ACM TOPLAS 

A Formal Basis for Architectural Connection ACM 
TOSEM 

Software Unit Test Coverage and Adequacy ACM CSUR 

Software Processes Are Software Too ICSE Context-aware statistical debugging: from bug predictors 

to faulty control flow paths 

ASE 

Automatic Verification of Finite-State 
Concurrent Systems Using Temporal Logic 

Specifications 

ACM 
TOSEM 

The IBM-McGill project on software process CASCON 

Bandera: extracting finite-state models from 

Java source code 

SE Profile-guided program simplification for effective testing 

and analysis 

ACM SIGSOFT 

 

(c) 

Top10 authority papers Conf Top10 hub papers Conf 
Fast Algorithms for Mining Association Rules 

in Large Databases 
VLDB Scalable frequent-pattern mining methods: an overview SIGKDD 

C4.5: Programs for Machine Learning BOOK Scalable Algorithms for Mining Large Databases SIGKDD 

Mining Association Rules between Sets of 

Items in Large Databases 

SIGMOD Data Mining: An Overview from a Database Perspective IEEE Trans 

Mining Frequent Patterns without Candidate 
Generation 

SIGMOD From intra-transaction to generalized inter-transaction: 
Landscaping multidimensional contexts in association rule 

mining 

Information 
Sciences 

Mining Sequential Patterns BOOK Association Rule Mining, Models and Algorithms BOOK 

Induction of Decision Trees BOOK Off to new shores: conceptual knowledge discovery and 

processing 

Int. J. Human-

Comput-
er  Studies 

An Efficient Algorithm for Mining Associa-
tion Rules in Large Databases 

VLDB A template model for multidimensional inter-transactional 
association rules 

VLDB 

An Effective Hash Based Algorithm for 

Mining Association Rules 

SIGMOD Efficient dynamic mining of constrained frequent sets ACM TODS 

Dynamic Itemset Counting and Implication 
Rules for Market Basket Data 

SIGMOD Mining Frequent Patterns without Candidate Generation: A 
Frequent-Pattern Tree Approach 

Data Mining and 
Knowledge 

Discovery 

Mining Quantitative Association Rules in 
Large Relational Tables 

SIGMOD ART: A Hybrid Classification Model Machine 
Learning 



6 Conclusion 

This paper proposes a new ranking model, called HIPRank, to rank individuals based 

on their influence propagation of authority and hub in the network. The basic idea of 

HIPRank is to make use of user preference and prior knowledge of nodes to initialize 

the authority and hub of nodes. Then, the initialized authority and hub of each node 

are propagated to other nodes through the topology of the network. Finally, the im-

portance of each node in the network is measured by summing their initialized author-

ity and hub with the propagated authority and hub from other nodes within the prede-

fined  -step hops. Also, users can control the propagation by defining decay function 

and the maximum propagation step  . Experiments on synthetic data and the real 

DBLP citation dataset demonstrate the effectiveness of the proposed approach in re-

trieving user-intended authoritative and directory individuals from the network. 
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