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ABSTRACT

Deep Learning (DL) libraries have significantly impacted various
domains in computer science over the last decade. However, de-
velopers often face challenges when using the DL APIs, as the
development paradigm of DL applications differs greatly from tradi-
tional software development. Existing studies on API misuse mainly
focus on traditional software, leaving a gap in understanding API
misuse within DL APIs. To address this gap, we present the first
comprehensive study of DL API misuse in TensorFlow and PyTorch.
Specifically, we first collect a dataset of 4,224 commits from the top
200 most-starred projects using these two libraries and manually
identified 891 API misuses. We then investigate the characteristics
of these misuses from three perspectives, i.e., types, root causes,
and symptoms. We have also conducted an evaluation to assess the
effectiveness of the current state-of-the-art API misuse detector on
our 891 confirmed API misuses. Our results confirmed that the state-
of-the-art (SOTA) API misuse detector is ineffective in detecting
DL API misuses. To address the limitations of existing API misuse
detection for DL APIs, we propose LLMAPIDet, which leverages
Large Language Models (LLMs) for DL API misuse detection and
repair. We build LLMAPIDet by prompt-tuning a chain of ChatGPT
prompts on 600 out of 891 confirmed API misuses and reserve the
rest 291 API misuses as the testing dataset. Our evaluation shows
that LLMAPIDet can detect 48 out of the 291 DL API misuses while
none of them can be detected by the existing API misuse detector.
We further evaluate LLMAPIDet on the latest versions of 10 GitHub
projects. The evaluation shows that LLMAPIDet can identify 119
previously unknown API misuses and successfully fix 46 of them.

CCS CONCEPTS

« Software and its engineering — Software evolution; Soft-
ware libraries and repositories; - Computing methodologies
— Machine learning.
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1 INTRODUCTION

Over the last decade, Deep Learning (DL) libraries have played an
important role in various domains, such as image processing [39],
autonomous driving [47], face recognition [17], drug discovery [8],
and natural language processing [31]. These libraries facilitate the
implementation of complex deep-learning algorithms and have
revolutionized the field of computer science. However, developers
often face challenges when using the DL APIs within these libraries.
Due to the fact that the DL development paradigm differs greatly
from traditional software development [24], knowledge in tradi-
tional software development may not be directly applicable to DL
APIs. Developers who lack familiarity with DL APIs and relevant
concepts may frequently encounter API misuses.

Existing studies on API misuse have primarily focused on Java
APIs of traditional software [5, 6, 44, 55]. However, there has been
limited investigation specifically into API misuse within Python
DL APIs [7, 19, 49]. Islam et al. [19] conducted a comprehensive
analysis of DL bugs by manually examining over 2,500 StackOver-
flow posts and GitHub commits related to five popular DL frame-
works. Although they categorized API bugs, they did not delve
into the specific details of these instances. Baker et al. [7] per-
formed a manual analysis of 15 TensorFlow bugs, identifying 7 API
misuse patterns based on a dataset from a pre-existing DL defect
study [18, 57]. However, their studies’ limited scale raises concerns
about their representativeness. Wan et al. [49] conducted an API
misuse study on cloud computing service APIs for four major cloud
computing service providers across three application directions.
Their focus was on performance problems and user experience of
commercial APIs, leaving the characteristics of API misuse in lower-
level building-block APIs like PyTorch and TensorFlow unexplored.
While prior studies have provided basic insights into DL API mis-
uses, a comprehensive study in this area remains absent, which
would be highly valuable as it can provide developers with guidance
regarding potential pitfalls when using APIs in the development of
new applications.
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In this study, we present the first comprehensive DL API mis-
use study of two major DL libraries, i.e., TensorFlow and PyTorch.
Specifically, we first collected 18,794 bug-fix commits from the top
200 most-starred projects using either PyTorch or TensorFlow. We
then employ a set of heuristic filtering to eliminate irrelevant com-
mits (e.g., changes that do not involve API names, API conditions,
or API parameters), resulting in a refined dataset of 4,224 commits
for manual analysis. The details of the data collection are described
in Section 3. After that, we manually investigated and analyzed the
4,224 commits and successfully identified 891 API misuses. To better
understand the characteristics of DL API misuse, we performed the
investigation from three perspectives, i.e., API misuse categories,
root causes of API misuse, and symptoms of API misuse. In addi-
tion, we investigated the feasibility of utilizing a state-of-the-art
API misuse detector [7] to identify DL API misuses. Our analysis
reveals a fundamental distinction between identifying DL API mis-
uses and traditional software API misuses. Traditional API misuse
detectors [26, 27, 37, 51] mainly rely on static program analysis,
whereas DL API misuse primarily involves issues related to data and
device usages such as returning incorrect float types or accidentally
running GPU tasks on CPU. These issues often manifest as perfor-
mance differences or incorrect results, rather than triggering errors
that can be easily detected through static analysis. Also, identifying
these types of DL API misuses heavily relies on human experience
and a comprehensive understanding of the source code semantics.
As a result, existing detectors may not be suitable for effectively
detecting DL API misuses, given the substantial contextual shift
and the unique characteristics compared to traditional software
API misuses.

In response to the limitations of existing API misuse detection
for DL API misuses, we propose LLMAPIDet that leverages Large
Language Models (LLMs) to detect and fix DL API misuses. We
base our study on ChatGPT [32] as it has shown great potential in
software engineering, e.g., code generation [9], bug repair [43], and
program understanding [52], among comparable LLMs [50].

The primary idea of LLMAPIDet is to identify API misuse by
applying a set of predefined rules to API usage instances. The
proposed approach initiates the process by constructing a corpus of
natural language API misuse rules by querying the ChatGPT with
our collection of API misuse code examples. For each API usage
code snippet, the approach first utilizes the ChatGPT to generate its
code explanation. Subsequently, it employs a retrieval-based few-
shot learning technique to provide the most relevant API misuse
rules to ChatGPT, enabling it to determine whether the code snippet
involves an API misuse. Then we instruct ChatGPT to generate the
patch.

We build LLMAPIDet by prompt-tuning a chain of ChatGPT
prompts on 600 out of 891 confirmed API misuses and reserve the
remaining 291 API misuses as the testing dataset. Our evaluation
shows that LLMAPIDet can successfully detect 48 API misuses. Note
that as ChatGPT’s training data include source code from publicly
available open-source projects, to avoid data leaking issue [3, 21],
we further collected 4,359 DL API usage instances from the latest
versions of 10 GitHub projects built with Pytorch and TensorFlow
other than the 200 projects used in our empirical analysis. All the
versions are released after July 1st 2023. Our evaluation on the 4,359
DL API usage instances shows that LLMAPIDet can identify 119
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previous unknown API misuses and successfully fix 46 of them,
whereas the state-of-the-art tool could only detect 5.
The contribution of this paper is as the following:

e We present the first large-scale analysis to demystify and
detect DL API misuses in PyTorch and TensorFlow.

e We create a benchmark DL API misuse dataset including 891
instances of DL API misuse. We provide detailed taxonomies
regarding the types, root causes, and symptoms of DL API
misuses.

e Motivated by the ineffectiveness of state-of-the-art API mis-
use detection on DL API misuses, we further present a novel
LLM-based API misuse detector, i.e., LLMAPIDet, to detect
and repair DL API misuses. Our evaluation shows that our
tool can outperform the state-of-the-art API misuse detec-
tion.

e We provide a set of practical guidelines to help machine
learning development teams develop reliable programs by
avoiding and detecting DL API misuses.

e We release the dataset and source code of our experiments
to help other researchers replicate and extend our study!.

The structure of the rest of the paper is as follows: Section 2
introduces the background and related work of this study. Sec-
tion 3 describes the approach used for the empirical study. Section 4
presents the empirical study and result analysis. Section 5 presents
the evaluation of state-of-the-art API misuse detection on DL API
misuses. Section 6 details our proposed LLM-based DL API mis-
use detector. Section 7 discusses our findings. Section 8 discusses
threats to validity. Lastly, Section 9 summarizes the paper.

2 BACKGROUND AND RELATED WORK
2.1 API Misuse

An API misuse refers to the incorrect usage of an Application
Programming Interface (API), where there are violations of the
APT’s usage constraints, such as call order or preconditions [44].
These misuses can lead to various issues, including software crashes,
bugs, data loss, and vulnerabilities.

Most of the existing API misuse studies mainly focus on Java
projects. Amann et al. [5] presented the API misuse dataset, i.e.,
MUBENCH, which contains manually identified 89 API misuses
from 33 general Java projects. Later, they further presented a sys-
tematic evaluation of existing API misuse detectors for Java [6].

Recently, Baker et al. [7] conducted an API misuse study on
TensorFlow API misuses and also proposed an API misuse detector
for TensorFlow APIs. They performed a manual investigation on
a limited scale of 15 Tensorflow bugs and identified 7 API misuse
patterns based on existing datasets from two empirical studies on
DL program bugs[18, 57]. We manually investigated over 4,000 API
misuse instances and confirmed 891 API misuses on Pytorch and
TensorFlow APIs. As far as we know, this is the first large-scale
API misuse study focused on DL libraries exclusively. Li et al. [25]
performed a large-scale study on API misuse for over 500,000 bug
fixes and classified them into 9 categories for general Java Projects.
Compared to our work, they focus on general API misuse in open-
source Java projects, while we focus on Python Deep Learning

!https://anonymous.4open.science/r/LLMAPIDet_replication-C157
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APIs. Also, our findings reveal several significant differences in
misuse categories and patterns. Wan et al. [49] conducted an API
misuse study on machine learning cloud service APIs for 4 major
service providers on 3 primary application types. Compared to our
work, they focus on the cloud service APIs from commercial service
providers such as Microsoft Azure and 3 application types such
as vision, language, and speech, while we focus on open-source
backbone deep learning libraries APIs in PyTorch and TensorFlow.

2.2 LLM in Software Engineering

Recently, the field of software engineering research has witnessed
a significant impact with the emergence of Large Language Models
(LLMs). Chen et al. [9] introduced Codex, the first GPT-based LLM
for source code, which subsequently served as the foundational
model for code-related research. Codex has found applications in
multiple software engineering domains, including Automated Pro-
gram Repair (Prenner et al. [36], Sobania et al. [42]), Automated Test
Case Generation (Xie et al. [53], Yuan et al. [54]), and Vulnerability
Detection (Cheshkov et al. [12], Nair et al. [30]).

Despite the impressive code generation abilities exhibited by
LLMs, researchers have begun to evaluate the quality of the gen-
erated code from multiple perspectives, including correctness (Liu
et al. [28]), performance (Feng et al. [15]), and security (Khoury et
al. [23]). Prompt engineering is the primary approach for building
LLM-based applications. Previous works have studied the method-
ology of prompt tuning (Zhang et al. [56], Shrivastava et al. [41])
specifically in the context of software engineering. In our work, we
design and refine prompts through iterative testing and evaluation
on a small dataset.

3 METHODOLOGY
3.1 Data Collection

3.1.1 Experiment Library and Project Selection. To collect exper-
iment data, we choose PyTorch and TensorFlow as the target DL
libraries due to their wide acceptance in both industry and academia.
PyTorch [33], officially released in 2016 by the FAIR research lab, has
gained immense popularity in the field of deep learning research due
to its flexibility and ease of use. On the other hand, TensorFlow [1],
developed by the Google Brain team in 2016, has found extensive
utilization in industrial settings owing to its comprehensive ecosys-
tem and broad coverage of use cases. Note that, we have excluded
other DL libraries, such as Caffe [20], MXNet [11], Theano [4], and
CNTK [40], due to their comparatively lower popularity and main-
tenance activity. We have also excluded machine learning libraries
like scikit-learn [34], XGBoost [10], and LightGBM [22] due to the
significant differences in the paradigm and workflow between deep
learning libraries and traditional statistical-based machine learning
libraries.

To conduct our study, we have collected the top 200 most-starred
projects for the two studied DL libraries (i.e., PyTorch and Tensor-
Flow) from GitHub, and we also pull the complete commit history
of each project. The selected projects span from the years 2015 to
2022, with an average project creation date of 2018. The number
of forks ranges from 248 to 21,624, with an average of 2,708 forks
per project. The size of the repositories varies significantly, ranging
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Figure 1: API Misuse Categorization

from 7 MB to 19 GB, with an average size of 198 MB. The complete
list of project names can be found in the replication package.

3.1.2 Data Filtering. For each experimental project, to identify
its commit changes that involve DL APIs, we first used the API
lists provided in the API documents of TensorFlow and PyTorch
to filter out irrelevant commits. Similar to previous research [6],
we observed that API misuse often involves a small number of
line edits. Consequently, we restricted the number of lines in a
change to less than 10, considering both additions and deletions.
Please note that certain API-related commits, such as custom API
document updates, string updates, typos, and logic changes, were
excluded from our study since these categories are not related to
API misuses but rather normal development updates. After the data
collection process, we followed an existing study [25] and employed
an AST diff checker called GumTree [14] to collect commit diffs at
the AST tree structure level. We also observed the presence of code
clones during the investigation, where the exact same code change
occurred in multiple commits. Since our focus was on identifying
API misuse patterns rather than code clones, we retained only
one instance of each code change and eliminated the duplicates.
Furthermore, we removed code changes that did not contain any
methods. Following these steps, we ultimately obtained a filtered
set of 4,224 commits.

3.2 Manual Analysis

For our manual analysis, three of the authors, with an average
of 6 years of experience in DL development, were involved. To
better understand the dataset, we first performed an exploratory
data analysis (EDA) using a variation of Grounded Theory [16].
Similar to prior work [6], we manually labeled 200 randomly sam-
pled commits and took notes on whether the instance is an API
misuse, the API misuse types, involved API elements, the violation,
symptoms, and root causes. We determined the labels during the
process until each API misuse was tagged with one label. Each sam-
ple took an average of 6.3 minutes to label, including the process of
reading commit messages, code changes, API documentation, and
contextual information within the code commits.

We then summarized the collected information and made deci-
sions on the dimensions of classification and the names of each
class based on the notes taken during the EDA. Based on the above
practice, we identified 3 dimensions for categorization: API misuse
types, API misuse symptoms, and API misuse root causes. Figure 1
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shows the dimensions and classes of our categorization. After deter-
mining the categories and classification rules, we classified all 4,224
commits and categorized them according to the above three dimen-
sions if the instance is confirmed to be an API misuse instance.
We finally confirmed 891 API misuse instances. The identified API
misuses contain 311 unique API methods, covering about 10% of
the APIs in PyTorch and TensorFlow libraries (3,622 APIs).

API Misuse Types: In our analysis, API misuse types are cat-
egorized based on two sub-dimensions: API Violations and API
Elements. Li et al. [25] categorized the type of violation into three
types, i.e., missing, redundant, and replacement. In this work, we
expand the replacement class to Replacement and ‘Outdated to re-
flect the significant difference in the characteristics of these two
types in DL API misuse. The difference is that the Replacement API
element represents the complete replacement from one API method
to another, while the Outdated API element represents an outdated
class or API method that requires a version update. Amann et al.
[6] proposed a classification scheme that included four elements of
Java API misuse, i.e., method call, condition, iteration, and exception
handling, while we identified 3 types of API elements for Python DL
API misuse based on the observation, i.e., API method, API param-
eter, and API condition. The iteration category was omitted from
our classification since it was not observed. Also, we moved the
exception handling category to the root cause classification as it
aligns more appropriately with that aspect.

API Misuse Root Cause: To better understand the technical
characteristics of API misuse, we categorized the existing work
based on root causes. Existing work on general Python libraries
API misuse studies[25] did not specifically identify the root causes,
but they have one similar category that overlaps with our classi-
fication, which is the null reference check category that contains
an if statement of whether a variable is null. Based on the unique
feature of deep learning, we identified 4 new categories, which are
Data conversion, Device Management, Algorithm, and Deprecation.

API Misuse Symptom: To understand the impact of API mis-
uses, we classified the severity of API misuses based on their symp-
toms. Existing work [7] about a limited-scale TensorFlow API mis-
uses study mentioned one overlapped category, which is the Low
Efficiency category while we identified three new symptom cate-
gories, which are Program Crash, Unexpected Output, and Return
Warning.

4 CHARACTERISTICS OF API MISUSE IN DL
LIBRARIES

4.1 Taxonomy of API Misuse Type

We categorize API misuse into two sub-dimensions, which are API
violations (Section 4.1.1) and API elements (Section 4.1.2). Specifi-
cally, there are four types of API violations and three types of API
elements. In total, 12 API misuse types are derived from consider-
ing different API violations and API elements. Table 2 shows the
detailed distribution of API misuse in these two dimensions.

4.1.1 API Violation Type. We categorized API violations into
four types, i.e., Missing, Redundant, Replacement, and Outdated. In
general, the distribution of each violation is fairly even. The Missing
violation indicates the absence of an API element. It contains 244
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instances and is the most common violation type. Conversely, the
Redundant violation entails a redundant API element. The redun-
dant API method, with 138 instances, is the most common API
misuse type among all 12 types. The Replacement violation involves
replacing an existing API element, including replacing an existing
API with a new one. API condition Replacement, with only 17 in-
stances, is the rarest category among the 12 types. The Outdated
violation represents a class change or renaming of the API elements.
The difference between an Outdated and a Replacement lies in their
semantics. An Outdated refers to a minor alteration that only affects
the class or name while keeping the semantics almost the same,
while a Replacement implies a significant modification to the API
method.

4.1.2 APl Element Type. We categorized API elements into three
types, i.e., API Method, API Parameter, and API Condition. An API
Method refers to a deep learning API method involved in the API
misuse with or without parameters. API Parameter refers to the
parameters used in an API method. The value of the parameters
can be defined in the API context or in the API method argument
assignment. API Condition refers to the internal state of the pro-
gram at runtime or condition before the API method call. To better
understand the meaning of each category, we present one exam-
ple for each category in Table 1. API method is the most common
misuse element in the Missing, Redundant, and Replacement cate-
gories. Missing API Method represents an API misuse because of
missing the required API call. One common example in PyTorch is
changing tensor_a to tensor_a.to(device) to move a tensor to
a specific device. Redundant API Method denotes an API misuse
caused by an unneeded API call. For example, in earlier versions
of PyTorch (version 0.4 and earlier), cpu() was used to convert a
tensor into a CPU tensor. However, in a later version of PyTorch,
cpu() is no longer required. API Method Replacement involves
replacing one API call with another. For instance, in the PyTorch li-
brary, a mask tensor requires a boolean type. Thus, changing “.int()’
to “bool()’ in ‘tensor_a.int()’ ensures that the tensor has a strictly
boolean type.

Finding 1: The most common API element of API misuse is
the API Method (455, 51.06%). The most common violation
of API misuse is Missing (244,27.38%). The most common
combination of violation and element is the Redundant API
Method (138,61%) and the least common combination is
API Condition Replacement (17,8%).

4.2 Taxonomy of API Misuse Root Cause

We conducted an investigation into the underlying root cause be-
hind API misuses, categorizing them into five distinct types: Algo-
rithm Error, Deprecation Management Error, Data Conversion Error,
Device Management Error, and Null Reference Error. Table 3 shows
the API misuse distribution of each root cause category. In general,
Device Management Error with 337 instances is the most frequent
root cause. On the other hand, State Handling Error and Argument
Error are extremely rare in root causes.
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Table 1: DL API misuse examples

Type Examples
Element |Violation Misuse Fix

Missing tensor_a tensor_a.to(device)
Redundant |embeds.detach().cpu().numpy() embeds.detach().numpy()

Method -
Replacement | tensor_a.int() tensor_a.bool()
Outdated tf.scalar_summary(learning_rate’, Ir)  |tf.summary.scalar(learning_rate’, Ir)
Missing torch.tensor(data_arg) torch.tensor(data_arg, device=device_arg)
Redundant |torch.zeros(arg_a, requires_grad=True) |torch.zeros(arg_a)

Parameter - -
Replacement | DenseLayer(arg_a,arg_b, act=tf.identity)|DenseLayer(arg_a,arg_b, act=None)
Outdated torch.chunk(inputs, arg_a, dim=1) torch.chunk(self.inputs, arg_a, dim=1)
Missing dtype = dtype_a if isinstance(dtype, object): dtype = dtype_a

... |Redundant |if self.flatten: x = x.flatten(1) x = self.flatten(x)

Condition - - - - - -
Replacement | if version < version_a: if version < version_b:
Outdated if type == type_a: if type == type_a or dtype == type_a

Table 2: Distribution of DL API misuse types

Missing |Redundant |Replacement | Outdated
API Method | 113 (46%)| 138 (61%) |130 (62%) |74 (34%)
API Parameter |88 (36%) |56 (25%) |60 (29%) 115 (52%)
API Condition |43 (17%) |29 (17%) |17 (8%) 28 (13%)
Total [244 [223 [207 [217

Table 3: Distribution of DL API misuse root causes

Root Cause Category ‘ TensorFlow ‘ PyTorch H Total

Data Conversion Error 72 174 246
Device Management Error 68 269 337
Algorithm Error 20 68 88
Deprecation Management Error | 76 101 177
Null Reference Error 13 20 33
Other 2 8 10

Algorithm Error represents the math-related API misuses, typ-
ically involving errors such as division by zero or incorrect calcu-
lations. this type of error rarely exists in traditional libraries but
commonly exists in deep learning libraries due to the computation-
intensive nature of deep learning libraries. For example, an API call
missing the eps value as a parameter can result in a division-by-
zero problem. By including the eps value (e.g., eps = config.eps)
in the nn.LayerNorm(dim) API call, a small non-zero number is
introduced to prevent division by zero. Identifying and rectifying
such API misuses can be challenging, as it requires knowledge and
experience in deep learning.

Deprecation Management Error involves API misuses due to
deprecated APIs or refactoring. API calls must be updated to accom-
modate the refactoring and version change, ensuring their contin-
ued usability. For instance, if one Script uses the torch.nn. functio-
nal.softmax() API and the other Script uses the nn. functional-
.softmax () API, the API in Script B should be updated to match
the one in the first Script. This standardizes API references and
prevents potential program defects. Identifying API deprecation

is one of the simplest forms of API misuse detection, as develop-
ers adhere to best practices by programming warning messages
when deprecated APIs are used in the latest versions. Refactoring-
related API misuse is also relatively easy to address, as modern
integrated development environments (IDEs) support automated
reference updates after refactoring. In fact, we observed that a con-
siderable number of API misuse patches are generated by code
linting software. Although deprecation management may appear
straightforward, several specific cases, such as condition checks,
status updates, and parameter updates, can still be challenging.

Device Management Error pertains to the API misuse related
to hardware and resource utilization. This category is particularly
relevant to deep learning APIs due to their distinct hardware uti-
lization characteristics. Unlike traditional software libraries that
assume CPU-only hardware and local execution, machine learning
tasks are computationally intensive and primarily utilize GPUs or
GPU clusters instead of CPUs. Therefore, machine learning libraries
commonly offer GPU support and distributed computing capabili-
ties. The assumption that CPU is the sole hardware resource is no
longer valid for machine learning libraries, leading to API misuses
caused by incorrect hardware or resource configuration, as well as
flawed assumptions about the hardware environment. An example
of a common API misuse is the omission of the device parameter in
an API call. In machine learning tasks, data objects must be stored
in the appropriate hardware cache for accurate execution. Failing
to provide the device parameter may result in incorrect hardware
assignment of the data object, leading to program crashes.

Data Conversion Error relates to the incorrect shape or type
of API input or output. Type problems are well-known issues in
Python and other dynamic programming languages. In Python,
variables lack specific types upon creation and may change types
during runtime. While this design simplifies syntax to a great ex-
tent, it also introduces significant challenges. API calls often assume
specific types for their variables, leading to failures when the pa-
rameter value provided to the API call does not match the assump-
tions. Developers already consider this problem when designing
machine learning APIs and provide parameters that explicitly spec-
ify the type. For example, including the parameter dtype = dtype
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Table 4: Distribution of DL API misuse symptoms

Symptom Category ‘ TensorFlow | PyTorch H Total

Program Crash 97 226 323
Unexpected Output 57 153 210
Low Efficiency 63 218 281
Return Warning 30 34 64
Others 4 9 13

in tf.ones_like() explicitly sets the return type of t f.ones_like()
to dtype. On the other hand, Shape mismatch occurs often when
passing variables to APIs. Executing deep learning models requires
strict shape match when passing a tensor between layers. Each
layer has its own constraint on the input tensor. Developers need to
make necessary transformations to the tensor to make it compatible
with the receiver. For instance, certain models require tensors to be
flattened before passing them to the next layer. This problem can be
resolved by adding the .flatten(Tensor) API call. Shape mismatch
is a unique type of API misuse in deep learning libraries because
these libraries heavily rely on tensor computations.

Identifying data conversion API misuse can be challenging since
the program might not immediately raise an error but rather pro-
duce incorrect results due to the incorrect calculation introduced
by the API misuse. Detecting such API misuses requires a lot of
experience in both deep learning libraries and algorithms. Given
the absence of immediate errors, developers must manually review
the code line by line to identify API misuses. While existing work
has addressed tensor shape-related bug repair using static anal-
ysis approaches, there is still room for improvement in terms of
efficiency, coverage, and ease of use.

Null Reference Error represents the null pointer exceptions-
related API misuse. Null pointer exceptions are classic errors in
computer programming. Thanks to the linting feature of modern
IDEs, most API misuses are identified and rectified before merging
the code into the project’s codebase. Therefore, instances of such
API misuse are rarely observed.

Others includes cases that may not belong to any of the pre-
defined categories. One such example is argument error, which
involves API misuses where necessary API arguments are missing.
Instances of this type are infrequent since APIs typically require
all necessary parameters, and omitting them would result in error
messages.

Finding 2: The most common root cause of API misuse in
PyTorch is Device Management Error (269, 30.19%), while
in TensorFlow, it is Deprecation Management Error (76,
8.52%). On the other hand, Null Reference Error shows the
lowest number of API misuses in both libraries (13 in Ten-
sorFlow and 20 in PyTorch). Notably, Device Management
Error (337), Data Conversion Error (246), and Deprecation
Management Error (177) are the top three most common
types of API misuse in both TensorFlow and PyTorch.
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4.3 Taxonomy of API Misuse Symptom

In the subsequent sections below, we classified DL API misuse in-
stances based on the symptoms they exhibited. The symptoms of
API misuse were classified into four distinct categories, i.e., Pro-
gram Crash, Unexpected Output, Low Efficiency, Return Warning,
and others. Table 4 displays the instance count of each symptom.
In the subsequent sections, we will explain each category in detail.

Program Crash represents a category of API misuse that is
relatively easy to identify. It is the most common symptom of API
misuse. Instances falling under this category result in immediate
program failures or crashes. For example, a previously functional
program may fail to work properly after a version update or code
refactoring due to inappropriate handling of the refactored APL The
program crashes as a direct consequence of the failure to update the
changes introduced in the API. Timely detection and rectification
of such issues are vital to maintaining the stability and reliability of
software systems that rely on the API. This category is the easiest
to identify because it would crash the program immediately and
throw an error with the line number.

Unexpected Output includes instances where developers devi-
ated from the prescribed usage of the API, thereby employing an
unexpected way of using APL. Consequently, the output obtained
differs from the expected result. This category has the most com-
plex root causes because it does not closely relate to any specific
root cause. Any root causes may result in an unexpected output as
long as it does not throw an error. This type of symptom is hard to
identify and debug since such a program does not throw an error
but instead produces an incorrect result.

Low Efficiency refers to the slow execution of an APL It is
closely related to device management errors because deep learning
APIs can be accelerated by GPU devices. Failing to configure the
device properly may very likely result in slow execution speed.
Identifying errors related to low efficiency in API usage can be par-
ticularly challenging. Unlike other categories, low efficiency does
not manifest as a warning or incorrect error. Instead, it produces a
negative impact on the performance of the program, resulting in
decreased efficiency or slower execution. Inexperienced developers
may not notice the error because they may not have enough expe-
rience to have a proper expectation of the performance[2]. Such
issues often require careful analysis of performance bottlenecks to
pinpoint and resolve the underlying problems. In the deep learning
industry, identifying these inefficiencies and optimizing the code
is crucial to ensure the overall performance and responsiveness of
the application or system utilizing the APL

Return Warning refers to instances where the API usage re-
turns warnings instead of errors. Return warnings typically occur
when developers use deprecated APIs in a newer version of the soft-
ware. The impact of such warnings on the program’s functionality
depends on the actions taken by the library developers. Some devel-
opers provide backward compatibility APIs, allowing the continued
use of deprecated functionalities. However, in some cases, library
developers discontinue support for deprecated APIs in newer ver-
sions. As a result, developers need to heed these warnings seriously
and take appropriate actions, such as updating their code to utilize
alternative APIs or adopting compatible replacements, to ensure
the smooth operation and maintainability of their software.
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Figure 2: Mapping between root causes and symptoms

Others refers to cases where the information we have collected
may not be sufficient to draw a definitive conclusion regarding
a specific symptom. In such cases, we categorize these instances
under the label of ‘Others’.

We also created a Sankey graph illustrating the relationship
between root causes and symptoms to interpret the outcomes of
API misuses, as shown in Figure 2. The graph clearly demonstrates a
correlation between the root cause and the resulting symptom. For
example, the majority of low-efficiency symptoms stem from device
management errors, while nearly all return warning symptoms are
caused by deprecation management errors.

Finding 3: The most common symptom of DL API misuse
in PyTorch and TensorFlow is Program Crash (226 for Py-
Torch and 97 for TensorFlow). On the other hand, Return
Warning shows the lowest number of API misuses in both
libraries (30 in TensorFlow and 34 in PyTorch).

5 PERFORMANCE OF SOTA ON DL API
MISUSE DETECTION

To assess the effectiveness of the existing state-of-the-art API mis-
use detector, i.e., TADAF [7], in detecting DL API misuses, we run
the tool on our dataset that contains 891 DL API misuses.

Please note that the replication package of TADAF is not publicly
available. Despite our efforts to contact the author for the latest
version of the replication package, we did not receive a response.
Consequently, we proceeded with our replication of TADAF to the
best of our effort. We rigorously followed the process of TADAF as
described in the paper to replicate the tool based on their description.
Specifically, TADAF utilizes a keyword-matching mechanism based
on the 11 API misuse patterns to detect API misuses.

To ensure the accuracy of our replication, we run our replica-
tion on the same dataset used in the experiments for evaluating
TADAF. Our replication reports the same set of bugs as TADAF in
its experimental projects, which confirms the correctness of our
replication.

For the evaluation of TADAF, we applied our replication to our
DL API misuse dataset, which contains 891 confirmed API misuse
instances. The result shows that TADAF only detected 3 out of
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Figure 3: Overview of our LLM-based DL API misuse detector

891 API misuse instances. TADAF’s low performance can be attrib-
uted to its limited API misuse patterns used to find API misuses,
while mining patterns demand non-trivial manual effort from ex-
pert developers to identify, summarize, and validate each misuse
pattern.

6 LLMAPIDET: AN LLM-BASED DL API MISUSE
DETECTOR

As we show in Section 4, DL API misuse primarily involves issues
related to data and device usages, such as returning incorrect float
types or accidentally running GPU tasks on CPU. These issues are
beyond the detection scope of most of the existing API misuse de-
tection tools, which rely on errors or warning signals to trigger the
detection process. Detecting such misuse often relies on manually
created API rules by experienced experts, which can be both costly
and impractical in terms of scalability.

Inspired by the recent great progress of LLMs (Large Language
Models) in code understanding and various source code-related
tasks [9, 36, 53], we propose LLMAPIDet, the first LLM-based DL
API misuse detector for automated misuse rule extraction, API
misuse detection, and patch generation. Note that we base our
study on ChatGPT [32] as it has shown great potential in software
engineering, e.g., code generation [9], bug repair [43], and program
understanding [52], among comparable LLMs.

6.1 Approach

The overview of our proposed tool is illustrated in Figure 3, com-
prising four steps.

In step (1), we construct a knowledge base of misuse rules based on
the 891 confirmed API misuses identified during the empirical anal-
ysis. We extract API misuse rules using ChatGPT to comprehend
source code and summarize the rules. Table 5 shows the Prompt
template for misuse rules extraction. In the prompt, we describe
the task and provide two manually created examples, including the
code before fix (i.e., code removed), code after fix (i.e., code added),
and the manually defined misuse rule. We then follow the same
pattern and extract the ‘code removed’ and ’code added’ informa-
tion from one of the code changes to extract the rules. For each of
the 891 confirmed API misuses, we apply ChatGPT using the same
examples to generate the corresponding output. For simplicity of
display, we omit the actual example text and only show the template
in Table 5.
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Table 5: Prompt template for extracting misuse rules.

"prompt": Please identify the rules for fixing the API method
problem in the following code change.

Example One: {code_removed_one} {code_added_one}
{misuse_rule_one}

Example Two: {code_removed_two} {code_added_two}
{misuse_rule_two}

Question: {code_removed}{code_added}

"output”: {misuse_rule}

Table 6: Prompt template for generating code explanation

"prompt": Please describe what the following code snippet
does in two sentences:
Code snippet: {code_snippet}

"output": {Answer}

In step (2), given a new API usage instance, we utilize ChatGPT
to generate a code explanation. Table 6 shows the template for
generating code explanations. The prompt is composed of an in-
struction that prompts ChatGPT to describe a given piece of code
snippet, along with a ‘code_snippet’ variable. For each ChatGPT
API call, we fill the ‘code_snippet’ variable with the API usage in-
stance along with its context. We set the context length similar to
existing GitHub historical commit studies [29, 38, 46], which is 4
lines both above and below the API usage instance.

In step (3), we let ChatGPT determine the applicability of any of
the misuse rules to the given API usage instance. If an API usage
instance satisfies the conditions defined by the misuse rules, we
consider it as a detected API misuse. The prompt for ChatGPT in
this step is constructed by concatenating the API usage instance
and the list of misuse rules filtered by the API usage method name.
To identify potential misuse rules that best match the given in-
stance, we re-rank the misuse rule list by cosine similarity between
the code explanation obtained in step (2) and each misuse rule in
our knowledge base. The reason is that we observed suboptimal
cosine similarity between source code embeddings and misuse rule
embeddings due to the representation gap between source code and
plain English text. To address this issue and achieve better align-
ment, we replaced the source code with its corresponding English
description, resulting in an enhanced cosine similarity calculation.
After the re-ranking, the top 4 misuse rules are then selected as
candidates. We set the number of rules to 4 to ensure that the total
prompt length remains within the token limit of ChatGPT. We feed
this composed prompt into the ChatGPT and query whether any of
the identified misuse rules can be applied to the provided example.
This step results in a response of either ‘YES’ or ‘NO’, indicating
the presence or absence of API misuse in the code. Table 7 shows
the template for detecting API misuses in this step.

In step (4), for each instance identified as an API misuse from (3),
we guide ChatGPT through a step-by-step reasoning process. In
the prompt template, we instruct ChatGPT to generate the thinking
steps and then create a potential patch based on the corresponding
misuse rule. The thinking steps and patch are generated following
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Table 7: Prompt template for API misuse detection

"prompt": Please read the following code snippet and API
misuse rules. Then, answer whether the misuse rules can
be applied to the code snippet. If the pattern can be applied,
answer "Yes"; if not, answer "No".

Code snippet: {code_snippet}

Misuse rules: {misuse_rules}

"output": {Decision}

Table 8: Prompt template for patch generation

"prompt":

Please read the following code snippet and misuse rules.
Then, think step by step and generate a patch for the code
snippet. Please ignore any indentation problems in the code
snippet. Fixing indentation is not the goal of this task. If the
pattern can be applied, generate the patch.

Code snippet: {code_snippet}

Misuse rules: {misuse_rules}

"output": {Think steps}{Patch}

Table 9: Performance of LLMAPIDet in detecting API misuse

Exp. One Exp. Two
Detected | Recall || Detected | Verified | Precision
LLMAPIDet 48 16.49% 368 119 32.33%
TADAF 0 - 41 5 12.2%

Table 10: Performance of LLMAPIDet in patch generation

Generated | Verified | Accuracy
Exp.One LLMAPIDet 48 10 22.83%
TADAF 0 - -
ExpTwo LLMAPIDet 119 46 38.65%
TADAF 5 5 100%

a predefined output format. The prompt template for generating
the patch is shown in Table 8.

6.2 Experiment Setting

We designed two experiments to evaluate the performance of LLMAPI-
Det and the benchmark approach TADAF. In the first experiment,
we built LLMAPIDet using 600 randomly selected instances from
the 891 confirmed API misuses and reserved the remaining 291 API
misuses as the testing dataset (i.e., Experiment One). We ran both
tools on Experiment One to show how many API misuses can be
detected and the recall rate of each tool.

Additionally, we designed the second experiment to address con-
cerns about memorization in LLM-based approaches [3, 21], where
correct predictions are based on publicly available online answers.
To mitigate the memorization issue, in the second experiment,
we collected 4,359 API usage instances from the latest version of 10
open-source GitHub projects (i.e., Experiment Two) other than the
200 projects used in the empirical study (see Section 4). All of these
projects are actively maintained, as their latest updates range from
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July 25, 2023, to July 29, 2023. The number of API usage instances
in these projects ranges from 78 to 2,131, with an average count of
436 instances. The dataset covers a total of 204 unique APIs. We ran
both tools on Experiment Two and show how much API misuse
can be detected and manually verified its validity.

6.3 Performance of LLMAPIDet

The results on the detection of DL API misuses are presented in
Table 9. As we can see, in experiment one, LLMAPIDet successfully
detected 48 API misuses, whereas TADAF could not detect any
instances. The recall values are 16.49% and 0% for LLMAPIDet and
TADAF, respectively. In the experiment two dataset, LLMAPIDet
identified 368 instances of API misuse, while TADAF only found 41
misuse instances. We manually examined each instance and con-
firmed that 119 API misuses reported by LLMAPIDet and 5 misuses
detected by TADAF are true bugs. The precision of LLMAPIDet is
32.33%, while the precision of TADAF is 12.2%.

We show the results of patch generation in Table 10. In the
first experiment, LLMAPIDet generated patches for 48 API mis-
uses, while TADAF did not generate any patches. The accuracy
of LLMAPIDet is 22.83%. In the second experiment, LLMAPIDet
generated patches for 119 API misuses, while TADAF generated
patches for 5 instances. We manually investigated each patch and
confirmed that 46 patches for LLMAPIDet and 5 patches for TADAF
are correct. The accuracy of LLMAPIDet is 38.65% while the preci-
sion of TADAF is 100%. To validate the findings, we reported the
API misuse instances to the developers of these projects by creating
GitHub issues.

The following example demonstrates a successfully detected API
misuse. In line 3, the input tensor should be assigned to a device to
avoid potential device management errors when the args.mode is
not equal to ‘gpu’ in line 5. LLMAPIDet detects this API misuse and
suggests a fix (i.e., assigning the tensor to a device) in line 9, which
has been verified as correct.

1# LLMAPIDet detects API Misuse in the code below:

2if args.bbox_init == "two':

3 input = transform(img_step2).unsqueeze(0)
4 with torch.no_grad():

5 if args.mode == 'gpu':

6 input = input.cuda()

7# Patch:

8if args.bbox_init == 'two':

9 input = transform(img_step2).unsqueeze(®).to(device)
10 with torch.no_grad():

11 if args.mode == 'gpu':

12 input = input.cuda()

The following example illustrates a case in which LLMAPIDet
fails to detect API misuse. The problem arises from the presence of
incomplete code in the last line of the context, leading ChatGPT to
generate code to complete the line instead of primarily focusing on
examining and editing the existing code for misuse detection.

# LLMAPIDet fails to detect API Misuse in the code below:
with tf.name_scope('distribution_errors'):

...other code...

tf.compat.v2.summary.scalar(
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# Patch:
with tf.name_scope('distribution_errors'):
...other code...
tf.compat.v2.summary.scalar('mean',
tf.reduce_mean(distribution_errors),
step=self.train_step_counter)

The above problem can be alleviated by obtaining a context of
API usage, such as through code slicing. However, achieving high-
quality code slicing in Python is not a straightforward task.

7 DISCUSSION

7.1 Difference between DL API misuses and API
misuses of traditional software

Existing studies on API misuse primarily focus on general soft-
ware with programming-related categories, such as synchroniza-
tion, control flow, and state handling [5, 6, 44]. DL API misuses
exhibit distinct characteristics such as tensor-related API misuse
and resource-related API misuse. These differences arise from the
unique design, problem-solving paradigm, knowledge representa-
tion, and computationally intensive nature of DL APIs. The follow-
ing sections delve into a detailed description of these contrasting
characteristics.

Differences in data type-related API misuse: Our study con-
firms that DL libraries also experience type-related issues. However,
we identified a few differences compared to traditional libraries.
For instance, when comparing the return value of a torch tensor
to a number, developers may need to cast the number as a tensor
using torch.tensor () to match the API’s return type; otherwise,
the comparison may fail. However, value comparison in traditional
Python programs often allows comparison between different data
types without specifically casting one type to another. Additionally,
types are sometimes intentionally adjusted to accommodate busi-
ness logic. For example, developers may cast float64 numbers to
float32 to optimize computation resources and expedite calculations
at the cost of slight precision loss.

Shape and algorithm-related API misuse: API misuses can
arise from incorrect shape assumptions or erroneous algorithms.
These types of API misuse are relatively uncommon in traditional
API misuse as they typically do not involve tensor computations.
Identifying and locating these types of errors can be challenging
since they often do not cause immediate program crashes. For exam-
ple, if an APT expects a 3x2 shape input tensor (e.g., [1,2],[3,4],[5,6]),
but a 2x3 shape tensor is provided (e.g., [1,2,3],[4,5,6]), the appro-
priate API misuse fix would be to invoke Tensor. transpose() to
transpose the shape. However, developers without enough math-
ematical knowledge might instead use Tensor. reshape() to re-
shape the tensor to an incorrect shape (e.g., [1,4],[2,5],[3,6]), result-
ing in incorrect data. While this API misuse may not trigger an
immediate error, it eventually leads to incorrect results and diffi-
culties in tracing the root cause. Given their lack of transparency
and intricacy, we consider these bugs the most challenging to han-
dle. Prior research has also highlighted similar issues in machine
learning defects[35].

Resource and hardware-related API misuse: We observed a
significant number of API misuses related to resource management
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(37.8%). Given the computational intensity of machine learning
tasks, GPU acceleration, and distributed computing are commonly
employed. As a result, API execution shows inconsistencies depend-
ing on resource availability and environment configuration. For
example, tensors involved in the same calculation process must re-
side on the same hardware device; otherwise, the program crashes
when it fails to locate the tensor on the assumed device. Other
resource-related misuses include setting the GPU as the default op-
tion on CPU-only devices and encountering missing GPU support
libraries when switching between different GPU models.

Versioning-related API misuses: Machine learning libraries
experience frequent refactoring and version updates compared to
other libraries. While traditional software design builds on top of
established computer science theories and software development
best practices, the rapidly evolving nature of machine learning the-
ory introduces new concepts regularly. The rapidly evolving nature
of machine learning libraries introduces many refactoring-related
API misuses. Our observations revealed three levels of refactoring-
related API misuse fixes in PyTorch and TensorFlow, ranging from
easy to challenging. The first level involves class-level refactoring,
where the class of the API changes while leaving the API method
unchanged. This is a relatively straightforward update that can be
automated. The second level involves refactoring both class and
method names, requiring manual effort to create a mapping be-
tween the old and new APIs. Despite the additional complexity, this
type of update remains feasible due to the guaranteed one-to-one
mapping. The third and most challenging level involves library
redesign, where numerous APIs are removed, functionalities are
split into multiple new APIs, or certain functionalities are discon-
tinued. In such cases, developers may need to learn the new library
and rewrite their code as an alternative API after refactoring is not
guaranteed.

7.2 Guidelines for avoiding DL API misuse

Variable type enforcement: Based on our analysis, we suggest
incorporating type annotations and type assertions into APIs and
API parameters to mitigate type errors. By explicitly specifying
the expected types, developers can catch type-related issues early
in the development process. Type annotations also facilitate more
transparent type management in Python, as they serve as docu-
mentation for both humans and automated tools. Additionally, we
recommend integrating code lint checkers like PEP8[48] into the
development pipeline to enforce consistent coding conventions and
improve code quality.

Resource availability checking: To ensure efficient resource
and environmental management in machine learning applications,
we suggest implementing a global configuration file that is con-
sulted before executing any business logic. Currently, machine
learning library APIs often require explicit device specifications,
which are handled individually by each APL By centralizing device
management in a dedicated layer before the business logic layer, we
can ensure consistent resource and environment assumptions for
all resource-sensitive machine learning APIs. This approach simpli-
fies the process of managing resources such as GPUs and facilitates
seamless execution across different hardware configurations. Ap-
plying techniques like environment detection and configuration
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generation further enhances the reliability and reproducibility of
resource-sensitive machine learning APIs and workflows.

API deprecation handling: Although developers already make
efforts to handle API deprecation by issuing warnings and main-
taining backward compatibility, unforeseeable risks can still arise.
As deep learning theory and practices evolve, popular architec-
tures may become suboptimal, requiring a redesign of the library
structure to meet new technical requirements. Such redesigns and
refactorings are often unavoidable. In some cases, the redesigned
library may not provide alternative APIs, leaving developers to face
the challenge of rewriting their code using the new version. This
task can be frustrating, and developers may struggle to find compre-
hensive guidelines and solutions for version migration. To enhance
the robustness of deprecation support, it is crucial to provide not
only thorough documentation but also automated API mapping
mechanisms. These mechanisms can aid in transitioning existing
codebases to new versions by suggesting equivalent replacement
APIs and minimizing the effort required for code migration. By
improving archive code support, developers can more effectively
adapt to evolving libraries while maintaining code compatibility
and minimizing disruptions to their projects.

8 THREAT TO VALIDITY

Construct Validity: In the empirical study, we focused exclusively
on Python deep learning libraries, excluding deep learning libraries
in R or Java due to differences in programming language charac-
teristics. To determine the number and names of categories, we
conducted a preliminary analysis based on 200 randomly selected
examples to determine the appropriate granularity and category
names. We chose TADAF as our benchmark tool due to its high
relevance to our study. Unlike other tools, such as Ariadne [13],
which serve as general bug detectors for DL libraries, TADAF specif-
ically addresses DL API misuse detection. This specialization makes
TADAF the most suitable choice for our research.

Internal Validity: The manual labeling process required sig-
nificant effort. We ensured accuracy by having multiple rounds of
discussion to establish a consensus on the labeling standards for
200 randomly selected examples. The rest of the labeling work was
then assigned to several experienced Ph.D. students. However, it is
important to recognize that this approach may impact the overall
accuracy of the classification.

External Validity: During the evaluation of the detector, the
non-deterministic nature of LLMs introduced variability in the
output of the LLM model. Consequently, these differences could
propagate through subsequent interactions with the LLM in the
detector workflow, leading to different results. Employing a fully
open-sourced model such as LLaMA [45] with a frozen seed may
enhance reproducibility.

9 CONCLUSION

This paper presented the first extensive study on API misuse within
two major DL libraries, i.e., TensorFlow and PyTorch. We identified
891 API misuses from the 200 most starred projects on GitHub built
with the two libraries and provided insights into their categories,
root causes, and symptoms. To address the challenges in detecting
DL API misuses, we introduced LLMAPIDet, a novel LLM-based tool
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for DL API misuse detection and patch generation. Our evaluation
demonstrated the effectiveness of LLMAPIDet. The contribution of
this work is, to the best of our knowledge, this is the first large-
scale analysis to demystify and detect DL API misuses in PyTorch
and TensorFlow. Additionally, we created a benchmark with 891
instances of DL API misuse and released the dataset and source
code for replication. In future work, we aim to expand LLMAPIDet’s
capabilities and explore more automation strategies for DL API
misuse detection.
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