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ABSTRACT
Crash reports are vital for software maintenance since they allow
the developers to be informed of the problems encountered in the
mobile application. Before fixing, developers need to reproduce
the crash, which is an extremely time-consuming and tedious task.
Existing studies conducted the automatic crash reproduction with
the natural language described reproducing steps. Yet we find a non-
neglectable portion of crash reports only contain the stack trace
when the crash occurs. Such stack-trace-only crashes merely reveal
the last GUI page when the crash occurs, and lack step-by-step guid-
ance. Developers tend to spend more effort in understanding the
problem and reproducing the crash, and existing techniques cannot
work on this, thus calling for a greater need for automatic support.
This paper proposes an approach named CrashTranslator to auto-
matically reproduce mobile application crashes directly from the
stack trace. It accomplishes this by leveraging a pre-trained Large
Language Model to predict the exploration steps for triggering
the crash, and designing a reinforcement learning based technique
to mitigate the inaccurate prediction and guide the search holisti-
cally. We evaluate CrashTranslator on 75 crash reports involving
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58 popular Android apps, and it successfully reproduces 61.3% of
the crashes, outperforming the state-of-the-art baselines by 109%
to 206%. Besides, the average reproducing time is 68.7 seconds, out-
performing the baselines by 302% to 1611%. We also evaluate the
usefulness of CrashTranslator with promising results.
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1 INTRODUCTION
New mobile applications are being developed and released contin-
uously via app stores since the market for mobile devices is both
growing and diversifying. Recent statistics show that more than
5 million mobile apps are available in popular marketplaces like
Apple App Store and Google Play Store, for over 140 billion down-
loads in 2022 and 12 million mobile developers are maintaining
them [55]. As developers add more features and capabilities to their
apps to make them more competitive, the corresponding increase
in app complexity has made testing and maintenance activities
more challenging. The competitive app marketplace has also made
these activities quite important for an app’s success. As shown in a
survey, 88% of app users would abandon an app if they repeatedly
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encountered a functionality issue [2]. This motivates developers to
identify and resolve issues rapidly, or risk losing users otherwise.

An important mechanism for ensuring app quality is the online
bug reporting systems, e.g., GitHub Issue Tracker [21], Bugzilla
[29], Google Code Issue Tracker [9]. These systems enable users
to create bug reports in which they can describe their observed
failure; developers can then use this information to help debug their
apps. These bug reports are becoming a non-neglectable source of
information for improving app quality and user satisfaction.

Once developers receive a bug report, one of the first steps to
debugging the reported issue is to reproduce the issue following
the reproducing steps. There are several existing studies focusing
on crash1 reproduction from the natural language described re-
producing steps [72–74]. They typically apply natural language
processing techniques to match the reproducing steps with the
app’s GUI events (i.e., operations on GUI widgets, e.g., clicking the
search button of an app), and employ guided exploration strategies
with the matched information for bug reproduction. However, not
all crash submitters would strictly follow the report template to
provide the reproducing steps when reporting the crash.

Our motivational study (Section 2) reveals that a non-neglectable
portion (20.2%) of crash reports contain only the stack trace. Such
stack-trace-only reports can be submitted by crash reporting tools
such as Crashlytics [10], which automatically collects crash logs and
upload them, and this is also the commonly-used practice in large
commercial software. These reports can also be submitted by the
app users who accidentally trigger the crash yet fail to figure out the
reproducing steps. Due to the insufficient information provided in
these reports, developers tend to spend extra effort in understanding
and reproducing the issues, which brings in a longer fixing duration,
i.e., the average fixing duration of these stack-trace-only reports is
26% larger than the crash reports with reproducing steps. Besides,
the aforementioned existing approaches would fail to work on
stack-trace-only reports. This further implies the necessity for the
automatic crash reproduction approach directly from stack traces.

Existing studies on stack trace analysis relate with stack trace
similarity [30, 49, 60], fault localization from stack trace [23, 26,
42, 65, 67], test code generation from stack trace [7, 50, 52–54,
68], duplicate crash reports detection with stack trace [11, 48], etc.
Although these approaches can facilitate the understanding and
analysis of the stack trace, none of them can tackle the problem of
automatic crash reproduction from the stack trace. There are two
challenges in the automatic reproduction of these crashes.

First, as mentioned above, existing studies generally utilize the
textual-described reproducing steps for crash reproduction, yet
stack-trace-only crashes lack step-by-step guidance. In other words,
the stack trace does not record the exploration sequence from the
entry page to the crash-occurring page, while the most useful infor-
mation might be the last GUI page when the crash occurs. However,
there can be 1 to 8 exploration steps for reaching the last crash-
occurring GUI page (based on our experimental data), which can
be quite inefficient if explored randomly. Although the static or
dynamic analysis techniques [19, 56, 70] can infer the transition
between activities and plan the exploration path, yet they can be
1Existing studies focus on the crash reports since they have the observable oracle
compared with other bugs, and following them, this work also focuses on the crash
reproduction, and we will use crash and bug interchangeably.

quite incomplete or inaccurate [69]. Second, even when the last
crash-occurring page is reached, it may still need certain interac-
tions with the app to finally trigger the crash, e.g., clicking a certain
button. Nevertheless, there can be an average of 6.6 interactive
widgets on a GUI page (based on our experimental data) and the
stack trace does not implicitly provide which widget to interact
with for crash triggering, which further complicates the automated
crash reproduction problem.

Nevertheless, we also find two clues for facilitating the reproduc-
tion of stack-trace-only crashes. The first is the last crash-occurring
GUI page before triggering the crash, which offers the target for
the planned exploration. The second is the involved APIs in the
programming code when conducting the operations in the crash-
occurring page, which can help find the widget with which to
interact so the crash can finally be triggered.

Motivated by these clues, we propose an approach named Crash-
Translator to automatically reproduce mobile application crashes
directly from the stack trace. It accomplishes this by leveraging a
pre-trained Large Language Model (LLM) to predict the exploration
steps for triggering the crash, and designing a reinforcement learn-
ing based technique to mitigate the inaccurate prediction and guide
the search holistically.

In detail, we first extract crash-related information from the
stack trace, i.e., the crash-occurring GUI page and crash-involved
APIs. Second, we design three scorers to assign the exploration
priority for each GUI widget on the current page: 1) Page reaching
scorer, which leverages the LLM to choose the GUI widget that may
lead to the crash-occurring page; 2) Widget hitting scorer, which
utilizes the heuristic method to find the crash-triggering widget
by matching the crash-involved APIs; 3) Exploration optimization
scorer, which assigns scores based on previous interaction records
of reinforcement learning technique, in order to bridge the gap by
inaccurate prediction of the first two scorers and plan the explo-
ration holistically. CrashTranslator selects the GUI widget based
on the three scorers and continues the process iteratively until the
target crash is triggered. It finally generates the replay script (for
direct replay) and the textual-described reproducing steps with the
step-by-step image instructions (for facilitating understanding).

To evaluate the effectiveness and efficiency of our approach, we
run CrashTranslator on 75 crash reports collected from 58 popular
Android apps involving three datasets. CrashTranslator success-
fully reproduces 61.3% (46/75) of the crashes, which outperforms
the state-of-the-art baselines by 109% to 206%. Besides, the average
reproducing time is 68.7 seconds, outperforming the baselines by
302% to 1611%. Furthermore, the results also show that both the
designed page reaching scorer and widget hitting scorer greatly
contribute to the reproduction performance. The usefulness evalu-
ation shows that CrashTranslator’s generated reproducing steps
can make the crashes easily reproduced (215% faster).

The contributions of this paper are as follows:

• Dimension. The first work of the automatic crash repro-
duction of mobile applications directly from the stack trace.
• Technique. An automatic approach CrashTranslator for
stack-trace-only crash reproduction by leveraging the LLM
to predict the exploration steps for triggering the crash, and
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designing a reinforcement learning based technique to miti-
gate the inaccurate prediction and guide the search holisti-
cally.
• Evaluation. Experimental evaluation of effectiveness, effi-
ciency and usefulness of CrashTranslator with promising
performance, outperforming the state-of-the-art techniques
and human reproduction.
• Data. Public released source code of CrashTranslator and
the dataset of our experiments to facilitate the replication
and extension of this study2.

2 MOTIVATIONAL STUDY
We conduct a motivational study to investigate whether it is com-
mon for stack-trace-only crash reports, their characteristics, and
the challenges of reproducing these reports.

In detail, we choose GitHub as the data source since it contains a
large number of publicly available valid bug reports. We use the web
crawler provided by Wendland et al. [63] to automatically crawl
the bug reports from Android projects and focus on the reports
created from Jan. 2015 to May. 2022, resulting in 96,451 bug reports.
We then filter the bug reports involving application crashes with
the keywords such as crash, exception following existing studies
[63, 74]. As a result, we acquire 10,843 Android crash reports for
our motivational study.

2.1 Is it Common for Stack-trace-only Crash?
Awell-formulated crash report usually contains the crash overview,
textual-described reproducing steps, stack trace when the crash
occurs, and visual recordings (screenshots/GIFs) about how the
crash occurs. However, not all issue submitters would strictly follow
the report template and provide all crash-related information when
reporting the crash.

We utilize keywords and heuristic pattern matching2 to automat-
ically examine whether the crash report contains reproducing steps
and stack traces, following existing studies [63, 74]. Results reveal
that 20.2% (2,187 / 10,843) of crash reports contain only stack traces,
i.e., stack-trace-only crash reports. Such reports can be submitted
by crash reporting tools such as Crashtics [10], which automatically
collect crash logs and upload them to the issue server when the app
crashes, as shown in Figure 2 (a). Furthermore, commercial software
can also have such auto-generated stack-trace-only crash reports
[14, 27] , which further indicates the universality of such reports.
Besides, these reports can also be submitted by the app users or
developers who accidentally trigger the crash yet fail to figure out
the reproducing steps, as shown in Figure 2 (b). This also implies
the necessity for the automatic crash reproduction approach.

2.2 Is it Difficult to Handle Such Crash?
We go a step further to investigate whether it is difficult to handle
(e.g., reproduce, fix) such crashes. Since it can hardly obtain the
time or effort for crash reproducing from GitHub, we turn to the
commonly-used issue fixing duration, i.e., the duration between
the issue creation time and the closing time [12], to indicate the
difficulty of handling such crashes.

2Details are in our website: https://github.com/wuchiuwong/CrashTranslator

For crash reports with reproducing steps, the average issue fixing
duration is 57 days, while for stack-trace-only crash reports, such
duration is increased to 72 days (26% higher). We assume that due to
the insufficient information provided in the stack-trace-only crash
report, developers need to spend extra effort in understanding the
problem and reproducing the issue, and thus have a low willingness
and take more time to fix the issue. Therefore it would be highly
expected to automate the reproduction of stack-trace-only crash
reports to save the effort and facilitate follow-up issue fixing.

2.3 Why is it Difficult?
Challenge 1: Lack of step-by-step guidance. Existing approaches
would take the textual-described reproducing steps as input and con-
duct the bug reproduction guided by the steps [72–74]. However, for
the stack-trace-only crash report, we cannot fetch the reproducing
steps and thus lacks the step-by-step guidance to trigger the crash.
By comparison, we can possibly derive the crash-occurring activity
or fragment, i.e., the last interactive GUI page when the crash oc-
curs, e.g., InstalledSearchEnginesSettingsFragment as demonstrated
in Figure 1. But the automatic approach still needs to speculate the
exploration steps for navigating to the crash-occurring page. In
our experimental dataset (shown in Section 4.1), there can be 1 to 8
exploration steps for reaching the crash-occurring GUI page, which
can be quite inefficient if explored randomly.

Challenge 2: Need specific interactions even reaching the
last GUI page. The second challenge is that even if the crash-
occurring GUI page is reached, it may still need certain interactions
with the app to finally trigger the crash. As shown in Figure 1, to
trigger the crash, after reaching the GUI page, one still needs to
click Search engine in the crash-occurring GUI page at step 5. In
our experimental dataset (shown in Section 4.1), there can be an
average of 6.6 interactive widgets, which further complicates the
reproduction of stack-trace-only crashes.

2.4 Are There any Clues for Reproduction?
While facing the above challenges, stack traces do provide clues for
automated reproduction. Specifically, as mentioned in challenge 1,
we can derive the crash-occurring GUI page, which offers the target
for the planned exploration. Besides, when conducting the opera-
tions in the crash-occurring GUI page, there can be corresponding
invocations of the programming code, and the stack trace would
output the involved APIs, e.g., refetchSearchEngines and onResume
in Figure 1.

To summarize, the stack trace offers two clues, i.e., the crash-
occurring GUI page and the involved APIs when interacting with
the app at the crash-occurring page. We can utilize the first clue
for predicting the exploration steps for navigating to the crash-
occurring GUI page; and then use the second clue to find the widget
by interacting with which the crash can finally be triggered.
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Step 1: Click “SKIP" Step 2: Click "More Options" Step 3: Click "Settings" Step 4: Click "Search" Step 5: Click "Search engine"

Intro page Main page Menu of main page Settings page Settings page FATAL EXCEPTION: main
Process: org.mozilla.focus, PID: 4228
java.lang.IllegalStateException: Module with the Main dispatcher is missing. Add dependency providing the Main dispatcher, e.g. 'kotlinx-coroutines-android'

at kotlinx.coroutines.MissingMainCoroutineDispatcher.missing(Dispatchers.kt:123)
at kotlinx.coroutines.MissingMainCoroutineDispatcher.dispatch(Dispatchers.kt:116)
at kotlinx.coroutines.DispatchedKt.resumeCancellable(Dispatched.kt:282)
at kotlinx.coroutines.intrinsics.CancellableKt.startCoroutineCancellable(Cancellable.kt:23)
at kotlinx.coroutines.CoroutineStart.invoke(CoroutineStart.kt:109)
at kotlinx.coroutines.AbstractCoroutine.start(AbstractCoroutine.kt:160)
at kotlinx.coroutines.BuildersKt__Builders_commonKt.launch(Builders.common.kt:54)
at kotlinx.coroutines.BuildersKt.launch(Unknown Source)
at kotlinx.coroutines.BuildersKt__Builders_commonKt.launch$default(Builders.common.kt:47)
at kotlinx.coroutines.BuildersKt.launch$default(Unknown Source)
at org.mozilla.focus.search.SearchEngineListPreference.refetchSearchEngines(SearchEngineListPreference.kt:65)
at org.mozilla.focus.settings.InstalledSearchEnginesSettingsFragment.refetchSearchEngines(InstalledSearchEnginesSettingsFragment.kt:96)
at org.mozilla.focus.settings.InstalledSearchEnginesSettingsFragment.onResume(InstalledSearchEnginesSettingsFragment.kt:37)
at android.support.v4.app.Fragment.performResume(Fragment.java:2498)
at android.support.v4.app.FragmentManagerImpl.moveToState(FragmentManager.java:1501)
at android.support.v4.app.FragmentManagerImpl.moveFragmentToExpectedState(FragmentManager.java:1784)
at android.support.v4.app.FragmentManagerImpl.moveToState(FragmentManager.java:1852)
at android.support.v4.app.BackStackRecord.executeOps(BackStackRecord.java:802)
at android.support.v4.app.FragmentManagerImpl.executeOps(FragmentManager.java:2625)
at android.support.v4.app.FragmentManagerImpl.executeOpsTogether(FragmentManager.java:2411)
at android.support.v4.app.FragmentManagerImpl.removeRedundantOperationsAndExecute(FragmentManager.java:2366)
at android.support.v4.app.FragmentManagerImpl.execPendingActions(FragmentManager.java:2273)
at android.support.v4.app.FragmentManagerImpl$1.run(FragmentManager.java:733)
at android.os.Handler.handleCallback(Handler.java:739)
at android.os.Handler.dispatchMessage(Handler.java:95)
at android.os.Looper.loop(Looper.java:148)
at android.app.ActivityThread.main(ActivityThread.java:5654)
at java.lang.reflect.Method.invoke(Native Method)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:782)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:672)

Stack trace of the crash

at kotlinx.coroutines.BuildersKt.launch$default(Unknown Source)
at org.mozilla.focus.search.SearchEngineListPreference.refetchSearchEngines(XXX:65)
at org.mozilla.focus.settings.InstalledSearchEnginesSettingsFragment.refetchSearchEngines(XXX:96)
at org.mozilla.focus.settings.InstalledSearchEnginesSettingsFragment.onResume(XXX:37)
at android.support.v4.app.Fragment.performResume(Fragment.java:2498)

Crash!

Figure 1: Examples of crash reproducing

a) submitted by crash reporting tools b) tester fail to reproduce crash

We are noticing several Crashlytics reports of an NPE 
that occurs when goBack is called on the backstack. I 
am not sure how to reproduce this though, Here is 
the crash log

My app randomly crashes,  couldn't find any 
steps to reproduce the issue, FYl I do invoke, 
lmageloader.getlnstance().stop(); sometime.

Figure 2: Examples of stack-trace-only crash reports

Summary: Our analysis on 10,843 crash reports of Android apps
from GitHub shows that 20.2% of crash reports only contain the
stack trace, and these stack-trace-only reports consume 26%more
time for issue fixing. This can be because they lack step-by-step
guidance for planning the reproduction. Our findings confirm
the necessity and challenges of the crash reproduction directly
from the stack trace. We also observe two clues to motivate our
approach development for automated crash reproduction.

3 APPROACH
Motivated by the above findings, we propose an automated ap-
proach named CrashTranslator to reproduce crash reports directly
from the stack trace of mobile apps. It accomplishes this by lever-
aging a pre-trained Large Language Model (LLM) to predict the
exploration steps for triggering the crash, and designing a reinforce-
ment learning based technique to mitigate the inaccurate prediction
and guide the search holistically.

As demonstrated in Figure 3, given a stack-trace-only crash re-
port, CrashTranslator first derives the crash-occurring GUI page
and crash-involved APIs for triggering the crash. It designs three
scorers to assign the exploration priority for each interactable GUI
widget on the current page, i.e., 1) Page reaching scorer lever-
ages the LLM to choose the next GUI page for reaching the crash-
occurring GUI page, and the widget for transferring to the next
page (Section 3.2); 2) Widget hitting scorer utilizes a heuristic
method to find the crash-triggering widget by matching the crash-
involved APIs (Section 3.3); and 3) Exploration optimization
scorer assigns scores based on the previous interaction records of
reinforcement learning technique, which aims at bridging the gap
by inaccurate prediction of the first two scorers and plans the ex-
ploration holistically (Section 3.4). CrashTranslator selects the GUI
widget based on the three scorers and repeats the process iteratively
until the target crash is triggered. It finally generates a replay script
(for direct replay) and textual-described reproducing steps with
step-by-step image instructions (for facilitating understanding).

3.1 Preprocessing
We first conduct preprocessing for the stack trace and the target app,
to prepare the information for reproducing the crash. Specifically,
three types of information will be used in the crash reproduction.

App’s package name and the names of all activities in the
app.We first decompile the target app and get its configuration file
(AndroidManifest.xml) which records the package name of the app
and the names of all activities it contains. In this paper, we consider
the activity name as the GUI page name.

Crash-involved APIs. We extract the lines that contain the
app’s package name from the stack trace, which indicate the crash-
involved APIs in the app, e.g., org.mozilla.focus.search.SearchEngine-
ListPreference.refetchSearchEngines in blue color in Figure 1.

Crash-occurring page. From the crash-involved APIs extracted
in the second step, we then check whether the terms coincide with
the app’s activity name (extracted in the first step). If so, we treat
the activity as the crash-occurring page; otherwise, the crash may
occur in a fragment, and we simply extract the name with the
keywords Fragment from the stack trace, e.g., InstalledSearchEngi-
nesSettingsFragment in red color in Figure 1.

For better understanding and reducing noise, we further tokenize
the extracted page names (activity names), crash-involved APIs,
and the crash-occurring page by the underscore and Camel Case,
and remove the stop words, for follow-up usage.

3.2 Page Reaching Scorer
To reach the crash-occurring GUI page, intuitively, we can interact
with the GUI widgets that share similar names with the crash-
occurring page, e.g., click Search in step 4 can reach the crash-
occurring installed search engines settings fragment as shown in
Figure 1. However, there can be a long sequence of exploration
steps for reaching the crash-occurring page, and the widgets in
the prior and middle part of the sequence tend to be irrelevant to
the crash-occurring page, e.g., More options in step 2 looks totally
different from the crash-occurring page as shown in Figure 1. To
tackle this, we leverage the LLM to predict the exploration steps
for reaching the crash-occurring page iteratively. Specifically, as
shown in Figure 4, we first ask the LLM to predict the next page for
reaching the crash-occurring page; then ask the LLM to choose the
widget for transferring to the predicted next page; and iterate the
process. This step would assign scores for the widgets, indicating
their probabilities of reaching the crash-occurring GUI page, i.e.,
priorities of being chosen.
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Crash-occurring page

Selected 
GUI widgets

Current page

Interactable
GUI widgets

Crash-involved APIs

Scores of 
GUI widgets

Parsing 
GUI page

Reproducing steps
in text and image

Reward of the 
selected GUI widget

Next page

Page change

Performing 
on the app

Yes

Interaction 
cache

Input 2: app

Input 1: Crash
Stack Trace

Is target
crash?

No

Record

Launch 
the app

Exploration optimization scorer (Sec 3.4)

Widget hitting scorer (Sec 3.3)

Page reaching scorer (Sec 3.2)

Reward function
(Sec 3.4.1)

Widget selector
(Sec 3.4.2)

Step Replayer 
(Sec 3.5)

Predicting 
next GUI page

Predicting transfer widget 
for reaching next page

Replay script

Figure 3: Overview of CrashTranslator. Page reaching (Sec 3.2) means arriving at the last GUI page when the crash occurs, and
widget hitting (Sec 3.3) means clicking the correct widget in the last GUI page for triggering the crash.

Table 1: The example of prompt generation rules

Input

ID Attribute Description Examples

I1 PageNames List of names of all activities in the app, extracted from Android-
Manifest.xml file

PageNames = ["intro", "main", "setting", . . . ]

I2 CurrentPage The activity name of the current page CurrentPage = menu of main
I3 CrashPage The name of the crash-occurring page, obtained from stack trace CrashPage = installed search engines settings
I4 Interactable-

Widgets
List of names for all interactable GUI widgets on the current page,
obtained from parsing the view hierarchy of the current page

InteractableWidgets = ["what’s new", "help", "set-
tings", . . . ]

Prompt

ID Task Prompt Instantiation Prediction

P1 Predicting
next GUI
page

There are <#NumOfPageNames> pages in the app,
named: <PageNames> . I want to go from the
<CurrentPage> page to the <CrashPage> page.
What is the next page?

There are 8 pages in the app, named: intro, main,
setting, ... . I want to go from the menu of main
page to the installed search engines settings page.
What is the next page?

<NextPage> =
setting

P2 Predicting
transfer
widget for
reaching
next page

There are <#NumOfPageNames> pages in the app,
named: <PageNames> . I want to go from the
<CurrentPage> page to the <CrashPage> page.
The next page may be the <NextPage> page. Here
are widgets I can click:<InteractableWidgets>.
What should I click?

There are 8 pages in the app, named: intro, main,
setting, ... . I want to go from the menu of main
page to the installed search engines settings page.
The next page may be the setting page. Here are
widgets I can click: what’s new, help, settings in
a list, .... What should I click?

<TransferWidget
> = settings

Current Page:
- intro
Crash-occurring GUI page: 
- installed search engine settings
Predicting next GUI page:
- main
Interactable Widgets on the page:
- SKIP, Next on the screen
Predicting transfer widget:
- SKIP
- NEXT
- …

Click "More options"Click "SKIP"

Current Page:
- main
Crash-occurring GUI page: 
- installed search engine settings
Predicting next GUI page:
- menu of main
Interactable Widgets on the page:
- Search, More options on the screen
Predicting transfer widget:
- More options
- Search
- …

Current Page:
- menu of main
Crash-occurring GUI page: 
- installed search engine settings
Predicting next GUI page:
- settings
Interactable Widgets on the page:
- What’s New, Help, Settings in a list
Predicting transfer widget:
- Settings
- What’s New
- …

Figure 4: Example of navigating from the app entry page to
the crash-occurring page

3.2.1 Predicting Next Page for Reaching Crash-occurring
Page. We provide the LLM with all app’s pages and the current

GUI page, and ask the LLM to speculate the next page to reach the
crash-occurring page, by which the whole exploration sequence is
generated iteratively.

Input. There are three inputs, i.e., I1-I3 as shown in Table 1. 1)
PageNames, i.e., the name of all activities, are extracted from the
AndroidManifest.xml as described in Section 3.1; 2) CurrentPage
is the activity name of the current GUI page during the iterative
process. To distinguish between pages with the same activity name
but with different widgets on them (e.g., the pages in steps 2 and 3
in Figure 1), we divide the pages into three types: menu, dialog, and
general pages. For menu or dialog page, we name the CurrentPage
by "page_type of activity_name" (e.g., menu of main in step 3 in
Figure 1). 3) CrashPage, i.e., the name of the crash-occurring page,
is extracted from the crash stack trace as described in Section 3.1;

Prompt generation. To design the prompt, we follow the reg-
ular prompt template [5, 8, 25], and each of the three authors is
asked to write the prompt sentence for this task with 10 trial apps,
and conduct a discussion to derive the final prompt pattern, i.e., P1



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yuchao Huang, Junjie Wang, Zhe Liu, Yawen Wang, Song Wang, Chunyang Chen, Yuanzhe Hu, and Qing Wang

as shown in Table 1. Take the last step in Figure 4 as an example,
we first tell the LLM what pages are contained in the app (There
are 8 pages in the app, named: intro, main, setting, ...), then tell the
LLM what we want to do with the information about the current
page and crash-occurring page (I want to go from the menu of main
page to the installed search engines settings page), and finally ask
what the next page should be (What is the next page?). The LLM
will predict the name of the next page (setting).

Fine-tuning. To achieve better performance, we build a fine-
tuning dataset and fine-tune the LLM for learning the transition
relations between app pages. Specifically, we collect 1,000 apps of
different categories from F-Droid [17] and extract their activity
transition graph (ATG) with Gator [19], one of the state-of-the-art
static analysis tools. We then utilize these transition relations as
fine-tuning data for model fine-tuning. Although the static analysis
tool like Gator cannot obtain the full ATG, which is why we do
not directly use it for path planning, yet through inputting the
incomplete ATG from different apps, the LLM has the potential
to combine the diversified viewpoints together and speculate the
desired transitions. Note that the fine-tuning process is a one-time
requirement and does not necessitate individual fine-tuning for
each app.

3.2.2 Predicting Transfer Widget for Reaching Next Page.
After knowing the next page, we need to know how to reach there,
e.g., which button to click. We provide the LLMwith all interactable
GUI widgets on the current page, then ask the LLM to choose the
widget for transferring to the next page.

Input. Besides the three inputs used in the previous section,
this step needs the fourth input, i.e., InteractableWidgets (I4 as
shown in Table 1). It is the list of names for all widgets which can
be interacted with on the current GUI page, and we obtain it from
the view hierarchy file of the current page. Specifically, we first
filter the interactive widgets from all the widgets based on whether
the clickable or long-clickable property is true. Then, we leverage
heuristic rules to extract a representative name for each widget
following existing studies [38, 39, 74]. In detail, for text-like widgets
(e.g., Buttons, TextView, etc.), we obtain their textual attributes (e.g.,
text, content-description, resource-id) and utilize the first non-empty
one. For icon-like widgets (e.g., ImageButton, ImageView, etc.), we
extract their name from their contextual text information (e.g.,
nearby text, sibling text, child text) and use the first non-empty one.
Finally, we tokenize the extracted widget name by the underscore
and Camel Case, and group widgets according to their container
widgets to express the current page’s layout, e.g.,What’s New, Help,
Settings in a list in step 3 of Figure 4.

Prompt generation. Following the same procedure as the previ-
ous section, we come out with the prompt pattern, i.e., P2 in Table 1.
Take the last step in Figure 4 as an example. Like the prompt in the
previous section, we first tell the LLM what pages are contained in
the app and our ultimate goal; we then tell it the predicted next page
(The next page may be the setting page), provide the names of all
widgets on the current page (Here are widgets I can click: what’s new,
help, settings in a list, ...), and finally ask LLM to choose the optimal
transferring widget (What should I click?). The LLM will output a
widget which it thinks could lead to the target page (settings).

Since the LLM might not always output the correct transfer
widget, we would let it provide a ranked list of candidate widgets
(i.e., top 5), and CrashTranslator would consider these ranked wid-
gets during the exploration optimization in Section 3.4. To realize
this, we repeat the widget prediction by utilizing a new prompt in
which we remove the interactable widgets that have already been
predicted, and let the LLM provide a new answer. This process is
repeated five times, and we obtain five distinct widgets in order.
We then assign numerical scores to each widget in the manner of
1/(𝑟𝑎𝑛𝑘 + 2) (e.g., Top 1 scores 0.33, Top 2 scores 0.25).

Fine-tuning. Similar to the prior section, we fine-tune the LLM
for better performance. We use the commonly-used RICO dataset
[13], which contains plenty of the targeted GUI page and transfer
widget for reaching it. We randomly sample 1,000 such data pairs
(involving 629 apps) as the fine-tuning dataset. Note that the fine-
tuning process here also only needs to be conducted once.

3.3 Widget Hitting Scorer
Some crashes can be triggered as soon as arriving at the crash-
occurring page, yet in most cases, specific events or event com-
binations are needed to perform on the crash-occurring page to
finally trigger the crash, e.g., although we reach the installed search
engine settings page at step 4 in Figure 1, the crash has not yet been
triggered until we click the Search engine at step 5. We utilize the
crash-involved APIs to infer the crash-triggering widgets. Take
Figure 1 as an example, the stack trace involves API of refetch-
SearchEngines, from which we can infer that clicking the Search
engine on the crash-occurring page would likely trigger the crash.

To automatically find these crash-triggering widgets, we pro-
pose a lightweight matching method between widgets and crash-
involved APIs extracted from the stack trace. Specifically, we first
tokenize the name of widgets and crash-involved APIs by the un-
derscore and Camel Case. If there is an overlap at the token level
between the name of a widget and an API, i.e. at least one token is
the same after stemming or an abbreviation of the other, we assume
the widget is a candidate crash-triggering widget and assign a score
based on the percentage of overlapping tokens.

3.4 Exploration Optimization Scorer
Ideally, the crash can be reproduced with the predicted transfer
widget for arriving at the crash-occurring page (in Section 3.2) and
the crash-triggering widget after reaching the crash-occurring page
(in Section 3.3). Yet, in practice, the prediction can be inaccurate,
and there might be complex transitions in the app which the predic-
tion model could not capture. Therefore we design the exploration
optimization scorer to help plan the exploration holistically and
bridge the gap by inaccurate prediction of the first two scorers.

We leverage Q-learning [62], a reinforcement learning method,
to help conduct the exploration. The basic idea is to maintain a
Q-table, which stores all widgets’ value, to record the crash-related
and exploration information and memorize the valuable widgets
during trial-and-error exploration. When we first reach a new page,
the value of each widget on the page is initialized to 0 and updated
by reward or penalty after the widget’s interaction (details below).
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3.4.1 Formulating Exploration as MDP. In our approach, we
define an instance of the Markov decision process (MDP) to de-
scribe the exploration process and adopt Q-learning to optimize the
exploration. The MDP can be defined with a 4-tuple, ⟨S,A,P,R⟩,
where S refers to the set of states, A refers to the set of actions,
P refers to the transition function, and R refers to the reward
function. In the context of crash reproduction, each page in the
app represents an individual state. We extract interactable GUI
widgets on each page, and interactions (click, long click or type
text) with widgets constitute the action set of the state. When we
perform an action 𝑎𝑡 (an interaction on a widget), the app’s state
will be changed from state 𝑠𝑡 to state 𝑠𝑡+1. We first record the tran-
sition ⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1⟩ to the transition function P, and then assign a
reward 𝑟𝑡 based on the reward function R. The reward function
R generates a value indicating the quality of a performed action,
e.g., whether interacting with a certain widget relates to the crash.
Our reward function evaluates an action (i.e., the corresponding
widget) as a sum of the following three aspects.

Crash triggering reward. When an action involves the crash-
related elements, i.e., reaching the crash-occurring page or trigger-
ing crash-involved APIs, the corresponding widget will receive a
large positive reward since the exploration in these widgets has
a larger possibility of triggering the crash. Next time when the
approach reaches the page, it might choose the widget again, and
the combination containing the widget might trigger the crash.

New state reward. When an action explores a new GUI page,
the corresponding widget will receive a small positive reward to
encourage exploiting new states, especially at the beginning of the
exploration. With the exploration going on, the new state reward
of a widget can be balanced out by the duplicate state penalty.

Duplicate or failure state penalty. When a widget transfers
to a known page, it will receive a small penalty since it is less likely
to trigger the crash. Besides, when an action transfers to a page out
of the app (e.g., opening a browser) or triggers a non-target crash,
the corresponding widget will receive a large penalty. It will not be
chosen again since it is impossible to trigger the crash.

Next, we will update the value of the widget interaction𝑄 (𝑠𝑡 , 𝑎𝑡 )
recorded in the Q-table with the Bellman function:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑄 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 (𝑟𝑡 + 𝛾𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 )) (1)

where 𝛼 refers to the learning rate and is set to 0.1, 𝛾 refers to
the discount factor and is set to 0.9, 𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) refers to the
maximum value of all actions in state 𝑠𝑡+1.

3.4.2 Widget selector. To efficiently focus on the potentially
correct planning and also break out the local optimum, we lever-
age the 𝜖-greedy policy [59] to select the widget to be performed
following existing studies [46, 72]. Specifically, for each widget, we
sum the assigned score from the three scorers (i.e., page reaching
scorer, widget hitting scorer, exploration optimization scorer); then
choose the widget with the highest sum score with a high probabil-
ity 1 − 𝜖 , or randomly select other widgets with a low probability 𝜖 .
In practice, 𝜖 is initially set as a small number close to 0 to enable
CrashTranslator to focus on the predicted optimal widget (i.e., the
one with the highest sum score). During exploration, the optimal
widget may be wrongly predicted and lead the exploration stuck in
a repetitive exploration between several pages; at this point, 𝜖 will

be changed to a big number close to 1, leading CrashTranslator to
select the non-optimal widget to break the local optimum.

3.5 Step Replayer
During crash reproducing, CrashTranslator uses an interaction
cache to record all interactions with widgets when the app is
launched (and the cache will be cleared after the app restart). Af-
ter the target crash is triggered, the interaction recorded in the
cache is crash-reproducing operations from app launch to crash.
However, the interactions recorded in the cache may not be the
most straightforward way to trigger the crash and might contain
some redundant interactions. To make the generated reproducing
steps more concise, we automatically eliminate the redundant in-
teractions that lead to repeated or looped transitions. Finally, we
convert the concise interaction history into an auto-replay script
and human-readable reproducing steps, i.e., “image + text” repro-
ducing steps shown in Figure 1. For each interaction, we highlight
the widget to be interacted with on the page’s screenshot by a red
box and generate the textual reproducing step in the form of “event
type + widget name”.

3.6 Implementation
We implement our approach in Python and extend functionalities
from the following libraries: Appium [1] to interact with Android
apps and obtain the view hierarchy of the current page; NLTK [43]
to stemword, which is used in thewidget hitting scorer (Section 3.3);
Ella [16] to check whether crash-involved APIs are triggered, which
is used in the exploration optimization scorer (Section 3.4); OpenCV
[45] to mark widgets that need to be interacted with on screenshots,
which is used in generating reproducing steps (Section 3.5). We
run CrashTranslator and perform experiments on a physical x86
Ubuntu 20.04 machine with Android emulators (Android 4.4-7.0).

For the LLM leveraged in the page reaching scorer (Section
3.2), we adopt the pre-trained GPT-3 [4] model from OpenAI3. We
choose the Curie model as the base model and fine-tune the model
through official APIs as described in Section 3.2. Developers only
need to set up their OpenAI account, complete the fine-tuning
process according to the instructions provided on our website2,
and subsequently utilize our tool to automatically. On average,
reproducing one crash requires sending approximately 42.6 prompts
(4939.7 tokens), with an estimated cost of around 0.01 USD.

4 EXPERIMENT DESIGN
To evaluate CrashTranslator, we consider the following three re-
search questions:

RQ1: How effective and efficient is CrashTranslator in reproduc-
ing crashes from stack trace?

RQ2: What is the contribution of the designed scorers in Crash-
Translator for reproduction?

RQ3: Can the reproducing steps generated by CrashTranslator
help developers to reproduce crashes?

3https://platform.openai.com/docs/models/gpt-3
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4.1 Experimental Dataset
In this work, We collect 75 crash reports involving 58 apps from
three sources for evaluation, i.e., ReCDroid’s dataset [74], AndroR2
dataset [63], and GitHub. ReCDroid is an approach for crash replay
based on the textual-described reproducing steps, and we utilize
all 33 crash reports in its replicate package. AndroR2 is a dataset
of manually-reproduced bug reports for Android apps, and we use
all its 22 crash reports. Other reports, e.g., display bug reports,
are out of the scope of this study. Note that the above 55 (33+22)
reports do not necessarily contain stack traces. For those reports
without a stack trace, we manually reproduce the crash following
the reproducing steps and then extract the stack trace from the log.

We also collect a third dataset from GitHub to further prove
the effectiveness of CrashTranslator. In detail, we first crawl and
filter 3,566 crash reports with the stack trace (may also contain
reproducing steps) from GitHub as described in Section 2, and ran-
domly sample 300 crash reports for manual checking to retrieve the
reproducible ones. It is performed independently by three graduate
students with 2-4 years of Android development experience, and
each report is manually reproduced by two of them. We exclude
those that cannot be reproduced (e.g., lack of apks, failed-to-compile
apps, environment issues) or require special conditions (e.g., ac-
count, hardware). This results in 20 crash reports involving 15 apps,
and we refer to this dataset as CrashTranslator’s dataset.

Note that the crash reports used in the experiments may contain
reproducing steps or screenshots, but CrashTranslator will not use
such information and only uses the stack trace to reproduce crashes.
Due to space limitations, the details of the dataset can be viewed
on our website2.

4.2 Baselines
To the best of our knowledge, CrashTranslator is the first work
to reproduce crashes directly from the stack trace. Existing stud-
ies which reproduce crashes from the natural language described
reproducing steps, e.g., RecDroid [74] and ReproBot [72], can not
work for our task. Nevertheless, we forcefully apply ReCDroid as a
baseline for our task and donate as ReCDroid𝑆𝑇 . Specifically, We
provide the crash stack trace as its input rather than the reproduc-
ing steps, irrespective of whether ReCDroid comprehends the stack
trace or not.

In addition, there are automated GUI testing approaches [15, 24,
34, 36, 37, 40, 46, 57, 61] which also explore the app and try to reveal
the crashes; hence we utilize these approaches as the baselines
to better prove our effectiveness. We choose the following four
state-of-the-art approaches from different categories, i.e., Monkey,
Humanoid, APE, and Q-testing:

Monkey [40] is a widely-used random-based GUI testing tool
that tests the target app with purely random sequences of GUI
events or system events. The advantages of Monkey are its ability
to perform lots of GUI events quickly and its good compatibility.

Humanoid [34] is a novel deep learning-based GUI testing tool.
It trains a deep neural network model from a large-scale crowd-
sourced human interactions dataset to predict which GUI widgets
on the current page are more likely to be interacted with by testers.

Ape [24] is one of the state-of-the-art model-based GUI testing
tools. It models the app’s behavior by building a finite state machine

dynamically. The advantage of Ape is its ability to balance the size
and precision of the modelling by using dynamic GUI abstraction.

Q-testing [46] uses reinforcement learning to guide testing to-
ward new pages to find crashes. It rewards GUI events that reach a
new page and penalizes events that transfer to an explored page.

4.3 Experimental Setup and Evaluation Metrics
For RQ1, we verify the effectiveness and efficiency of CrashTransla-
tor in two aspects: (1) the percentage of reports that can be success-
fully reproduced in a given time (denoted as success rate). We set
one hour following the existing study [46]. (2) The time required for
successful reproduction (denoted as reproducing time). To mitigate
the bias from randomness, we run our approach and the baselines
three times and record the average reproducing time.

For RQ2, to investigate the contribution of the designed scorers,
we would remove each of them and evaluate the performance for
crash reproduction. Note that since the exploration optimization
scorer is responsible for the exploration, if removing it, the explo-
ration might be stuck in a local dilemma and could not finish the
reproduction. Therefore, we only evaluate the contribution of the
other two scorers. In detail, we create two variants of CrashTrans-
lator, i.e., 1) CT𝑤𝑝 , the variant without the page reaching scorer
described in Section 3.2. 2) CT𝑤𝑤 , the variant without the widget
hitting scorer described in Section 3.3. The relative contribution
of each scorer is measured by comparing each variant with the
original approach in terms of success rate and reproducing time,
which is also based on the average of three runs.

For RQ3, we verify the usefulness of reproducing steps generated
by CrashTranslator. We invite 14 postgraduate students to partic-
ipate in this experiment. All of them have experience in mobile
application testing, 8 are Android developers with at least 3 years of
development experience, and 7 work in the crowdtesting platform.
For the 46 crash reports that can be reproduced by CrashTranslator,
we ask participants to reproduce the crash manually based on the
stack trace or reproducing steps (generated by CrashTranslator).
Specifically, each participant is assigned 20 different reports, 10 of
which only contain the stack trace, while the other 10 only contain
the reproducing steps, thus ensuring that each report is reproduced
by 3 participants based on the stack trace and 3 others based on
steps. If a participant can reproduce the crash within 30 minutes
following the existing study [74], we record the reproducing time;
otherwise, we mark it as failing to reproduce. Finally, we compare
the success rate and reproducing time based on the stack trace and
CrashTranslator-generated reproducing steps.

5 RESULTS AND ANALYSIS
5.1 RQ1: Effectiveness and Efficiency
Table 2 shows the success rate of reproducing crash reports from
three datasets. Overall, CrashTranslator can reproduce 61.3% of
them (46 out of 75), outperforming the baselines by a large margin,
i.e., 171% (61.3% vs. 22.6%) higher than ReCDroid𝑆𝑇 , 206% (61.3%
vs. 20%) higher than Monkey, 142% (61.3% vs. 25.3%) higher than
Humanoid, 109% (61.3% vs. 29.3%) higher than Ape, 206% (61.3% vs.
20%) higher than Q-Testing. This shows that our tool can effectively
reproduce crashes based on the corresponding stack trace. Specifi-
cally, CrashTranslator successfully reproduces 28 (84.8%) reports on
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Table 2: Reproduction success rate (Effectiveness). CT, R,
M, H, A, Q in the table header refers to CrashTranslator,
ReCDroid𝑆𝑇 , Monkey, Humanoid, Ape and Q-testing respec-
tively.

# Dataset CT R M H A Q
ReCDroid’s Dataset (33) 27 (81.8%) 14 (42.4%) 11 (33.3%) 15 (45.5%) 17 (51.5%) 10 (30.3%)

AndroR2 Dataset (22) 10 (45.5%) 2 (9.1%) 0 (0%) 2 (9.1%) 3 (13.6%) 3 (13.6%)
CrashTranslator’s Dataset (20) 9 (45%) 1 (5%) 2 (10%) 2 (10%) 2 (10%) 2 (10%)

total (75) 46 (61.3%) 17 (22.7%) 13 (17.3%) 19 (25.3%) 22 (29.3%) 15 (20%)

Table 3: Reproducing time on successfully reproduced re-
ports (Efficiency)
Reproducing Time (s) Average Min Q1 Median Q3 Max

ReCDroid𝑆𝑇 (17 reports) 988 10 94 996 1436 2719
Monkey (15 reports) 669 5 48 152 985 2525

Humanoid (19 reports) 532 12 43 216 1094 1642
Ape (22 reports) 531 5 33 84 809 2166

Q-testing (15 reports) 368 6 30 118 548 1506
CrashTranslator (46 reports) 68.7 8 19 44 87 640

the ReCDroid’s dataset, which outperforms ReCDroid𝑆𝑇 and other
automated GUI testing baselines (30.3%-51.5%). While on the An-
droR2 dataset and the CrashTranslator’s dataset, CrashTranslator
can achieve a success rate of 40.9%-45%. In contrast, ReCDroid𝑆𝑇
and other automated GUI testing baselines can only successfully
reproduce a small portion of reports, with a success rate of 5% to
13.6%. The difference in the success rate of the three datasets is
might because that crash reports in the ReCDroid’s dataset tend to
involve fewer exploration steps for reproduction, while the other
two datasets require a longer exploration sequence for reproducing
the crash.

For the 29 reports that CrashTranslator fails to reproduce, there
are three main reasons for hindering the reproduction: 1) Some
apps (3 from the ReCDroid’s dataset, 1 from the AndroR2 dataset)
could not run in our environment, e.g., the server is down, incom-
patibility with our emulator. 2) CrashTranslator does not cover all
the interactive GUI actions. It already supports such GUI actions
as tapping, long pressing and typing, and rotating the screen like
existing studies [73, 74], yet some crashes require other types of
actions to trigger (e.g. C-4 Alarmio-47 requires scrolling up and
down the screen). 3) Other unsolved technical challenges, which
are further discussed in the discussion (Section 6.1).

Table 3 and Table 4 show the reproducing time of CrashTrans-
lator and four baselines on the successfully reproduced reports.
For the 46 crash reports that CrashTranslator can reproduce, the
average reproducing time of CrashTranslator is 68.7 seconds, which
indicates that CrashTranslator can automatically reproduce crashes
based on the corresponding stack trace within an acceptable time
cost. Compared with the baselines, CrashTranslator performs better
than ReCDroid𝑆𝑇 and the automated GUI testing techniques inmost
of the cases. Since different tools can succeed in different crashes,
for the average reproducing time, we compare CrashTranslator with
each baseline on the crashes that both of them can reproduce. The
results show that CrashTranslator is 1110% faster than ReCDroid𝑆𝑇
(81.6s vs. 988s), 1611% faster than Monkey (39.1s vs. 669s), 620%
faster than Humaniod (73.9s vs. 532s), 705% faster than Ape (66s vs.
531s), and 302% faster than Q-testing (89.6s vs. 360s).

5.2 RQ2: Contribution of Different Scorers
Columns CT𝑤𝑝 and CT𝑤𝑤 in Table 4 show the reproduction re-
sults for the variants of CrashTranslator without the page reaching
scorer and without the widget hitting scorer, respectively. Overall,
CT𝑤𝑝 can only successfully reproduce 42 crash reports, 4 fewer
than CrashTranslator. Meanwhile, the average reproducing time of
CT𝑤𝑝 is 127.1 seconds, which is 82% slower than CrashTranslator
(69.7s vs. 127.1s) considering the reports both can reproduce. For
CT𝑤𝑤 , it can successfully reproduce 44 crashes (2 fewer than Crash-
Translator), and the average reproducing time is 113.2s (63% slower
than CrashTranslator). The inferior performance of CT𝑤𝑝 /CT𝑤𝑤

indicates that the two scorers can significantly improve the effec-
tiveness and efficiency of crash reproducing.

We further examine the detailed difference between the results
of CT𝑤𝑝 /CT𝑤𝑤 and CrashTranslator for a thorough understanding.
For the reports which involve shorter exploration sequences for
reaching the crash-occurring page, e.g., R-10 FastAdapter-394, we
find that excluding the page reaching scorer or widget hitting scorer
would not largely influence the reproduction. This might be be-
cause, in these cases, the widget transferring to the crash-occurring
page can be found by one of the scorers or even by traversal. By
comparison, for the reports which involve longer exploration se-
quences for reproduction (e.g., A-5 andOTP-500), or the entry page
has dozens of candidate widgets (e.g., R-5 AnyMemo-18), it is dif-
ficult to find the reproducing steps solely by the traversal or the
widget hitting scorer. In this case, the page reaching scorer which is
accomplished by LLM contributes significantly to the crash repro-
duction by providing step-by-step guidance to the crash-occurring
page. Besides, for the reports which have many candidate widgets
on the crash-occurring page (e.g., R-14 SMSsync-464), the efficiency
can be largely improved by the widget hitting scorer that predicts
which widgets should be interacted with to trigger the crash.

Still, we need to admit that on some reports like R-11 LibreNews-
22, removing the scorer would improve the crash reproduction
efficiency. This is mainly because the scorers can occasionally fail
to conduct an accurate prediction, and with the wrong guidance,
the exploration might go in the wrong direction and waste time.

5.3 RQ3: Usefulness of CrashTranslator
Columns P𝑡𝑟𝑎𝑐𝑒 and P𝑠𝑡𝑒𝑝 of Table 4 show the results of partici-
pants’ manual reproduction based on stack traces and reproducing
steps (generated by CrashTranslator), respectively. Following the re-
producing steps generated by CrashTranslator, 100% of reports are
successfully reproduced by at least two participants. As a compari-
son, when we only provide the stack trace, this percentage drops to
63% (29/46), and there are 6 reports that none of the participants can
reproduce. Besides, the average reproducing time with CrashTrans-
lator is 66.7 seconds, which is 215% faster than reproducing from
stack traces (57.3s vs. 180.5s) considering the reports that both have
at least one participant can reproduce. This indicates the usefulness
of our proposed CrashTranslator, whose generated reproducing
steps can supplement the stack-trace-only crash reports and make
the crashes easily to be reproduced.

Furthermore, on 91.3% (42/46) reports, the reproduction is faster
for the automatic approach CrashTranslator, when compared with
the average time of human reproduction directly from the stack
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Table 4: Reproduction details on three datasets. CT, R, M, H, A, Q in the table header refers to CrashTranslator, ReCDroid𝑆𝑇 ,
Monkey, Humanoid, Ape and Q-testing respectively. CT𝑤𝑝 and CT𝑤𝑤 refer to variants of CrashTranslator without the page
reaching scorer and without the widget hitting scorer, respectively. If the above approach successfully reproduces the crash,
we record the reproduction time (in seconds) in the table, and if it fails, we record ×. Columns P𝑡𝑟𝑎𝑐𝑒 and P𝑠𝑡𝑒𝑝 show the
average time for participants to manually reproduce the crash based on the stack trace or reproducing steps generated by
CrashTranslator, respectively, and the number in parentheses is the number of participants who reproduce crash successfully
(out of 3). Note that in order to save space, reports that cannot be reproduced by either approach are omitted.

RQ 1 RQ 2 RQ 3 RQ 1 RQ 2 RQ 3
ID #Crash Reports CT R M H A Q CT𝑤𝑝 CT𝑤𝑤 P𝑡𝑟𝑎𝑐𝑒 P𝑠𝑡𝑒𝑝 ID #Crash Reports CT R M H A Q CT𝑤𝑝 CT𝑤𝑤 P𝑡𝑟𝑎𝑐𝑒 P𝑠𝑡𝑒𝑝
R-1 NewsBlur-1053 32 176 2024 × 68 × 53 69 201 (3) 69 (3) R-25 K-9Mail-2612 11 × × × × × 22 × 194 (3) 65 (3)
R-2 Markor-194 88 × × × 2166 1156 52 94 540 (1) 120 (3) R-26 K-9Mail-2019 12 × × × × × 16 21 185 (2) 68 (3)
R-3 Birthdroid-13 112 1776 × × 1564 × 100 127 230 (2) 73 (3) R-27 TagMo-12 42 × 52 47 12 × 25 42 176 (2) 43 (2)
R-4 Car Report-43 46 2558 × × × × 58 46 475 (2) 92 (3) R-28 FlashCards-13 23 × × × × × 21 21 73 (2) 18 (3)
R-5 AnyMemo-18 19 × 125 644 111 × × 23 63 (3) 16 (3) A-1 HABPanel-25 21 × × × 672 25 28 29 44 (3) 19 (3)
R-6 AnyMemo-440 90 × × × 950 × × × 342 (2) 91 (3) A-2 Noad Player-1 8 10 5 12 5 6 10 10 13 (3) 14 (3)
R-7 Notepad-23 64 2719 × 1223 855 × 120 70 × (0) 116 (3) A-3 Weather-61 31 × × × × 578 40 34 47 (2) 16 (3)
R-8 Olam-2 10 × 1288 × 101 × 10 10 62 (3) 23 (3) A-4 Berkeley-82 8 50 683 39 22 × 8 8 41 (3) 23 (3)
R-9 Olam-1 10 × × × 37 × 10 10 24 (3) 13 (3) A-5 andOTP-500 120 × × × × × 425 323 104 (3) 103 (3)
R-10 FastAdapter-394 8 526 10 1642 13 1506 8 8 61 (3) 36 (3) A-6 K-9Mail-3255 14 × × × × × 15 19 45 (2) 41 (3)
R-11 LibreNews-22 93 1261 × × × × 31 139 107 (1) 42 (3) A-7 K-9Mail-3971 66 × × × × × 95 85 × (0) 152 (3)
R-12 LibreNews-23 71 × 126 104 49 518 × 51 × (0) 83 (3) A-8 Firefox-3932 61 × × × × × 107 83 × (0) 47 (3)
R-13 LibreNews-27 93 1272 × 197 × × 31 139 11 (1) 64 (3) A-9 Aegis-3932 117 × × × × × 159 129 205 (3) 146 (2)
R-14 SMSsync-464 118 × × 443 × 63 186 254 213 (2) 68 (3) C-1 NewPipe-7825 32 × × × × × 46 32 426 (1) 64 (3)
R-15 Transistor-63 41 94 × 216 × 17 10 48 151 (3) 63 (3) C-2 SDBViewer-10 15 × × 68 1900 36 20 192 98 (3) 25 (3)
R-16 Zom-271 50 536 45 × 50 24 52 59 120 (1) 80 (3) C-3 Anki-10584 180 × × × × × 878 312 175 (2) 148 (2)
R-17 Pix-Art-125 48 1436 × 977 541 219 48 176 246 (3) 34 (2) C-4 Alarmio-47 × × × × × 487 × × A- (0) A- (0)
R-18 Pix-Art-127 56 1270 × 1416 1972 53 57 164 300 (1) 49 (3) C-5 Shuttle-456 87 × × × × × 96 97 476 (1) 132 (3)
R-19 ScreenCam-25 33 × 152 28 43 × 40 33 69 (2) 68 (3) C-6 Anki-3370 35 × × × × × 611 35 183 (2) 41 (3)
R-20 ownCloud-487 60 996 303 262 × 118 62 60 228 (1) 87 (3) C-7 WhereUGo-368 165 × 2524 × × × 372 181 × (0) 157 (3)
R-21 OBDReader-22 52 × 2525 1211 × × × 53 210 (2) 76 (3) C-8 GrowTracker-87 210 × × × × × 271 605 × (0) 221 (3)
R-22 Dagger-46 8 18 8 12 5 × 8 8 180 (1) 14 (3) C-9 FakeStandby-30 27 × × × × × 27 27 386 (1) 38 (3)
R-23 ODK-2086 640 2064 × 1538 531 725 939 1016 180 (1) 41 (3) C-10 getodk-219 20 45 166 29 32 × 157 20 80 (3) 25 (3)
R-24 K-9Mail-3255 13 × × × × × 16 18 256 (3) 43 (3)

trace. This further implies the usefulness of CrashTranslator which
provides an automatic solution and can be faster than humans.

After practitioners have manually reproduced the bug reports,
we also conduct an unstructured interview about the challenges
they encountered in reproducing crashes based on stack traces only.
Most participants complain that crash-related information in stack
traces is too limited to infer how to reproduce crashes. They usually
need to spend a long time trying to reach crash-occurring pages and
finding crash-triggering widgets, and after many attempts, they
may lose interest and assume that crashes are not reproducible.
By comparison, they agree that CrashTranslator can automatically
conduct the tedious process of exploring the app and finding paths
to crash-occurring pages and crash-triggering widgets.

6 DISCUSSION
6.1 Limitations
Except for the two engineering limitations discussed in Section 5.1,
there are three other technical limitations of CrashTranslator which
hinder it from reproducing all bug reports, This also indicates the
challenges in crash reproduction from stack traces and calls for
further research.

First, CrashTranslator may fail to reproduce crashes that do
not contain crash-occurring pages or crash-involved APIs in stack
traces. In some special cases, crashes do not occur in a specific
activity or fragment, e.g., faults related to network communication.
For these cases, crash-occurring pages and crash-involved APIs are
not available from the stack trace, CrashTranslator may degenerate
into an automated GUI testing tool for aimless exploration due to
the lack of guidance from the stack trace.

Second, CrashTranslator cannot reproduce crashes requiring
valid input contents, e.g., performing a crash-triggering log-in re-
quires a valid username and password. Such crashes require human
intervention and cannot be fully automated since input contents
are not present in the stack trace. Nevertheless, by asking the users
to provide the information in advance, CrashTranslator can still
conduct the automatic reproduction for these cases.

Third, CrashTranslator cannot capture special preconditions that
trigger crashes. For example, a display GUI page works fine with
default settings, but if switching to a dark theme, a crash would
occur when reaching the page. In this case, CrashTranslator can
correctly understand that the display page is a crash-occurring
page, but it could not successfully reproduce the crash even if the
correct page is reached. This is because CrashTranslator can hardly
capture the triggering precondition of switching to the dark theme
from the stack trace. In the future, we will investigate incorporating
the crash-triggering preconditions into CrashTranslator with the
help of static code analysis and other techniques.

6.2 Threats to Validity
The first threat relates to the randomness of CrashTranslator. Our
widget selector (Section 3.4.2) will select a non-optimal widget with
a certain probability. To reduce this threat, we run CrashTranslator
and its variants (CT𝑤𝑝 and CT𝑤𝑤 ) three times and record the
average reproducing time in experiment results.

The second threat relates to the choice of parameter settings of
CrashTranslator that may affect the effectiveness and efficiency
of crash reproduction. In order to mitigate the threat, we conduct
small-scale experiments on several “crash” reports that are excluded
from our experimental data to determine suitable settings before
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the evaluation. These reports come from the data collection (Section
2) when we find some “crash” reports with stack traces, but they
can not be triggered by ourselves due to incompatibility with our
environment.

The third threat relates to the confounding effects of participants.
Following the existing approach [74], we assume that students with
Android programming experience can be substituted for testers,
and their reproducing time and success rate are representative.

7 RELATEDWORK
Mobile Bug Reports Analysis and Reproducing. There are sev-
eral studies which utilize natural language processing techniques
to extract critical information from mobile bug reports, such as
summarizing and classifying bug reports [20, 47], facilitating dy-
namic analysis [28, 66], augmenting bug reports for mobile apps
[35, 41] and generating test cases [6, 41].

Several studies focus on crash reproduction of mobile bug reports
with step-by-step guidance, i.e., textual described reproducing steps
[72–74] and visual recordings [18]. Specifically, ReCDroid [74] and
ReCDroid+ [73] leveraged the natural language described reproduc-
ing steps to perform reproduction. It designed a set of predefined
grammar patterns to extract events and objects from textual repro-
ducing steps and then adopted a greedy-based dynamic exploration
to synthesize event sequences. ReproBot [72] went a step further
by analyzing the reproducing steps more accurately and designing
a new exploration strategy to find the best match between steps
and GUI actions. GIFdroid [18] leveraged the visual screen record
to perform reproduction. It adopted image-processing techniques
to map the keyframes in recording to GUI states and generated
reproducing traces based on the transition graph. Compared to the
aforementioned crash reproduction tools, CrashTranslator achieves
the following advances: 1) Our work enables the reproduction of
crashes from stack traces without relying on step-by-step guidance.
This is a more challenging task, and existing tools perform poorly;
2) We propose a novel approach which leverages LLM and rein-
forcement learning to predict and guide the exploration steps for
trigger the crash, which is more effective and efficient than previous
techniques.

There are also studies which record and replay bugs in mobile
and web apps by using running information [22, 33, 44, 64, 71] and
textual description [3, 31]. Among these studies, CrashDroid [64]
generated reproducing steps by translating the call stack, which
contains all method calls from app launch to app crash. It requires
the call stack collected by the specific mechanism throughout the
app’s run, while our approaches only need the automatically gen-
erated stack trace when the crash occurs.

Stack Trace Analysis. Stack traces offer exception-related in-
formation about an app. Schroter et al. [51] empirically indicated
that the stack trace information was very helpful to developers
when debugging. Subsequently, several automatic approaches were
proposed to recover the links between the crashes and their cause
functions and assist developers in locating crashing faults [23, 26,
42, 65, 67]. Going a step further, researchers started to explore how
to utilize the located faulty functions to help developers fix bugs,
e.g., generating test cases for fault functions [7, 50, 52–54, 68], and
finding the best developer to fix the bug [32, 58]. Besides, there

were some studies focused on calculating the similarity between
the stack trace, which could be used to distinguish duplicate crash
reports [11, 30, 48, 49, 60]. This study opens a new direction, i.e.,
the crash reproduction directly from the stack trace.

8 CONCLUSION
Crash reports from open-source platforms are vital for ensuring
mobile application quality. Still, the crash-related information they
record is not always complete, e.g., they may only contain the crash
stack trace but lack the reproducing steps, which hinders develop-
ers from fixing issues. This paper proposes a novel reproduction
approach named CrashTranslator which automatically reproduces
crashes from stack traces of mobile bug reports. It adopts three scor-
ers, i.e., page reaching scorer, widget hitting scorer, and exploration
optimization scorer, to select crash-related widgets iteratively un-
til the target crash is triggered. We evaluate the CrashTranslator
on 75 bug reports, and it can successfully reproduce 46 (61.3%) of
the crashes within an acceptable time cost, largely outperforming
automated GUI testing baselines.
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