
Context-aware Bug Reproduction for Mobile Apps

Yuchao Huang1,2,3, Junjie Wang1,2,3,*, Zhe Liu1,2,3, Song Wang4, Chunyang Chen5, Mingyang Li1,2,3, Qing Wang1,2,3,*

1Science and Technology on Integrated Information System Laboratory,

Institute of Software Chinese Academy of Sciences, Beijing, China;
2State Key Laboratory of Intelligent Game, Beijing, China;

3University of Chinese Academy of Sciences, Beijing, China; *Corresponding author;
4Electrical Engineering and Computer Science, York University, Canada;

5Monash University, Melbourne, Australia;

{yuchao2019,junjie,mingyang2017,wq}@iscas.ac.cn, liuzhe181@mails.ucas.edu.cn

wangsong@yorku.ca,Chunyang.chen@monash.edu

Abstract—Bug reports are vital for software maintenance that
allow the developers being informed of the problems encountered
in the software. Before bug fixing, developers need to reproduce
the bugs which is an extremely time-consuming and tedious task,
and it is highly expected to automate this process. However, it
is challenging to do so considering the imprecise or incomplete
natural language described in reproducing steps, and the missing
or ambiguous single source of information in GUI components.
In this paper, we propose a context-aware bug reproduction
approach ScopeDroid which automatically reproduces crashes
from textual bug reports for mobile apps. It first constructs a state
transition graph (STG) and extracts the contextual information of
components. We then design a multi-modal neural matching net-
work to derive the fuzzy matching matrix between all candidate
GUI events and reproducing steps. With the STG and matching
information, it plans the exploration path for reproducing the
bug, and enriches the initial STG iteratively. We evaluate the
approach on 102 bug reports from 69 popular Android apps,
and it successfully reproduces 63.7% of the crashes, outper-
forming the state-of-the-art baselines by 32.6% and 38.3%. We
also evaluate the usefulness and robustness of ScopeDroid with
promising results. Furthermore, to train the neural matching
network, we develop a heuristic-based automated training data
generation method, which can potentially motivate and facilitate
other activities as user interface operations.

I. INTRODUCTION

Mobile applications (apps) are becoming extremely popular

– as of the second quarter of 2022 there are over 3.5 million

apps in Google Play’s app store1. As developers add more

features and capabilities to their apps to make them more

competitive, the corresponding increase in app complexity has

made testing and maintenance activities more challenging. The

competitive app marketplace has also made these activities

quite important for an app’s success. As shown in a survey,

88% of app users would abandon an app if they repeatedly

encounter a functionality issue [1]. This motivates developers

to rapidly identify and resolve issues, or risk losing users

otherwise.

To track and expedite the process of resolving app issues,

many modern software projects use bug-tracking systems

1https://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

(e.g., GitHub Issue Tracker [2], Bugzilla [3], Google Code

Issue Tracker [4]). These systems allow testers and users to

report bugs they have identified in an app. These bug reports

are becoming a non-neglectable source of information for

improving app quality and user satisfaction. Once developers

receive a bug report, one of the first steps to debugging the

issue is to reproduce the reported issue as shown in Figure

1. However, this step involves many human efforts, including

natural language comprehension, app usage acquisition, and

human app interaction. It is expected to relieve developers

from this tedious task with an automated approach.

Previous approaches [5]–[8] apply natural language process-

ing (NLP) techniques to match the reproducing steps with

app’s GUI events (i.e., operations on GUI components, e.g.,

clicking ‘login’ button of an app), and employ random or sim-

ple guided exploration strategies with the matched information

for bug reproduction. Despite their promising performance,

there exist the following four major drawbacks which hinder

them from achieving higher effectiveness and efficiency.

First, the natural language description of a bug report is

inherently imprecise and incomplete [9], therefore the parse

and extraction of reproduce-related elements from the repro-

ducing steps can be far from accurate. For example, since

the reproducing step click send text contains two verbs, the

operation object send text can hardly be extracted by existing

approaches. Second, previous approaches mainly utilize the

name-related information (e.g., displayed text, content de-

scription) of the GUI component to match the reproducing

steps, yet our motivational study (in Section II) shows that

75% components would miss the display text, and 81%

components miss the content description, which hinders the

accurate matching and follow-up reproduction. Third, the

successful reproduction of a bug report by existing approaches

often relies on the accurate and complete reproducing step

description. However, 56% of bug reports start from 2-6 steps

after app launch, and 15% of reports miss some steps in the

middle when describing the bug, according to our observation.

Fourth, there are similar components on different pages of the

app, e.g., text input for username on the login/register page.

These further complicate the bug reproducing since existing

2336

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00196

20
23

 IE
EE

/A
CM

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g 
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
01

96

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



State_1 (S1) State_2 (S2) State_3 (S3) State_4 (S4) State_5 (S5) State_6 (S6) 

Add a new plant Save it Open that created plant Go to the “Photo” tab select “From Camera” Press the back button

Fig. 1: Examples of reproducing steps and their corresponding GUI events

approaches adopt a greedy-based algorithm when matching

the GUI events and the reproducing steps, and the similar

matching in the current state is not always the optimal one

from the global perspective.

The above-mentioned characteristics of the mobile apps and

bug reports motivate us to utilize the context information to

make the reproduction more accurate. We utilize the informa-

tion from two viewpoints. The first is the context information

about a specific component (local context), e.g., the nearby

components, which facilitates the accurate matching between

GUI event and the reproducing steps (tackle the first and

second drawback). The second is the context information

about a GUI event (global context), e.g., the nearby state

transition information of the app, which facilitates the accurate

construction of the GUI event sequence for bug reproducing,

especially when facing with the missing reproducing steps or

similar components in different pages (tackle the third and

fourth drawback).

This paper proposes a context-aware bug reproduction

approach ScopeDroid which automatically reproduces crash

from a text description of mobile bug reports2. First, we

construct the initial State Transition Graph (STG) with the

automated app exploration tool, and extract the textual/icon

information of each component and the contextual information

from its nearby components. Second, we design a multi-modal

neural matching network, which takes the prior extracted

information, for predicting the probability of each GUI event

being mapped with a certain reproducing step. It derives

a fuzzy matching matrix between all candidate GUI events

and reproducing steps, which alleviates the influence of the

blurred natural language descriptions and the missing name-

related information. Third, with the initial STG and fuzzy

matching matrix, we plan the path for reproducing the bugs,

which considers the global perspective provided by STG and

alleviate the influence of missing steps in the report and similar

components in the app. Meanwhile, considering the auto-

constructed STG can be incomplete, we enrich the initial STG

guided by the planned exploration, and iteratively conduct the

2Note that, we focus on crash reports as previous studies [5] [7] since the
reports involving app crashes are of particular concern to developers because
it directly impacts an app’s usability; and we will use bug report and crash
report interactively in the following paper.

reproducing step matching, path planning and STG enrichment

until a crash occurs.

To train the neural matching network for step matching, we

develop a heuristic-based method for automatically generating

the reproducing steps corresponding to certain GUI events

following linguistic patterns, which serves as the training data

for the automatic model training. The matching between the

natural language described operational steps and GUI events is

widely utilized in software engineering and human-computer

interaction fields, such as user interface operation [10], task

shortcuts generation for virtual assistants [11]. Our proposed

method for automated training data generation can potentially

motivate and facilitate these activities.

To evaluate the effectiveness of our approach, we run Scope-

Droid on 102 bug reports collected from 69 popular Android

apps, involving three datasets. ScopeDroid successfully repro-

duces 65 (63.7%) of the crashes, which outperforms the state-

of-the-art baselines by 32.6% and 38.3%. The step matching

neural network of ScopeDroid can successfully conduct the

match at the first recommendation in 53% - 61% cases, and

this value is 74% - 85% when considering the first five

recommendations, outperforming the state-of-the-art baselines

by a large margin. To evaluate the usefulness, we conduct a

user study and the results show that ScopeDroid can reproduce

30% more bugs that cannot be reproduced by at least one

developer, and is highly preferred by developers in comparison

to a manual process. Besides, ScopeDroid is highly robust in

terms of different described bug reports.

The contributions of this paper are as follows:

• The design and development of a novel approach to

automatically reproduce bugs for mobile apps directly

from the textual description of bug reports.

• Experimental evaluation showing that ScopeDroid is ef-

fective and useful at bug reproduction, outperforming the

state-of-the-art baselines and human reproduction.

• Method for matching natural language described repro-

ducing steps with the GUI event without manually labeled

training data, which can potentially motivate and facilitate

other tasks as user interface operation [10], and task

shortcuts generation for virtual assistants [11].

2337

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



• Public released source code of ScopeDroid and the

dataset of our experiments help other researchers replicate

and extend this study 3.

II. MOTIVATION

To reveal the challenges of bug reproduction and motivate

the design of our approach, three authors try to reproduce the

real-world crashes with the help of existing approaches (i.e.,

ReCDroid [5] and MaCa [7]). In detail, we choose GitHub

as the data source following existing studies [5], [12], as

it contains a large number of publicly available valid issue

reports. We crawl the issue reports from Android projects

and focus on issue reports that are created from Jan. 2015 to

May. 2022, resulting in 96,451 issue reports. Note that, not all

issue reports are related to app crash, we use keywords, e.g.,

crash, exception, to search for reports involving app crashes

following existing studies [5], [12]. As a result, there is a total

number of 6,959 crash reports, and we randomly sample 100

crash bug reports for human reproduction. During the process,

the authors reveal the following three findings related to the

characteristics of the Android apps and the reproducing steps,

which influences the successful reproduction of crashes with

existing approaches.

1) Name-related information of a GUI component can be
missing or misleading: Previous studies typically utilize the

name (e.g., displayed text, content description, identifier) of

a GUI component to match the textual description of repro-

ducing steps, in order to reproduce the crash. For related apps

of the collected bug reports, we randomly choose 100 GUI

pages with 399 clickable components, and investigate their

name-related information. Three authors carry out the process

separately, and discussion is conducted until a final consensus

is reached. Results indicate that in 75% (299/399) compo-

nents, the displayed text is missing, and in 81% (325/399)

components, the content description is missing. Furthermore,

the identifier is missing in 32% (131/399) components, and

21% (58/268) of the remaining identifiers are misleading, e.g.,

meaningless names like button1 and edit2. This is mainly

due to the developers not following the naming conventions,

and could seriously influence program comprehension and bug

reproducing.

Name-related 
Information

Contextual 
Information

Text: Null
Resource Id: Null
Cont_Desc: Navigate up

“Return to the 
previous screen”

Icon:
Nearby text: Add new plant “Save the  created 

plant profile”

match

match

Fig. 2: Illustrative example

On the contrary, we observe that the contextual information

of a GUI component can facilitate the recognition of its true

intent. We list an example from GrowTracker, an app with

124 stars in Github4, in Figure 2. For the green icon with the

check mark, the name-related information is either missing

3https://github.com/wuchiuwong/ContextAwareReproduction
4https://github.com/7LPdWcaW/GrowTracker-Android

(e.g., displayed text, resource id) or incorrect (e.g., content

description), because of which the matching would go wrong.

Nevertheless, the contextual information, i.e., displayed text of

its nearby components (add new plant) and icon image, can

help the correct matching with the reproducing steps.

This motivates us to include contextual information, such as

the nearby components and the icon image, for the matching

with the reproducing steps.

2) Reproducing steps can have missing steps: The success

reproduction of a bug report by previous studies often relies

on the accurate and complete reproducing steps. The quality of

the bug report often depends on the experience of the testers,

and some crowd testers in an open environment often could

not precisely describe all the reproducing steps. Three authors

inspect the reproducing steps of the 100 bug reports, and

conduct discussion until a final consensus is reached. Results

reveal that only 44% reports are described from the launch

of the app, while the remaining 56% reports typically start

from 2-6 steps after the app launch. Worse more, 15% reports

involve missing middle steps when describing the bug.

Since previous studies adopt the greedy-based algorithm

when matching the GUI event and reproducing the bug, these

missing steps can easily lead the algorithm to get in the

wrong direction and significantly reduce the success of the

reproduction. In addition, when faced with the missing steps,

the optimal matching between GUI event and reproducing

steps in the current state is not always the optimal matching

from the global perspective.

This motivates us to derive the global matching information

between each reproducing step and all GUI events, and employ

this information for the exploration path planning from the

global perspective.

3) There are similar components on different pages of
the app: Another characteristics of the mobile apps are that

different GUI pages have the same or similar components,

which makes it challenging for accurate matching with re-

producing steps. This is mainly caused by the following

three practices: (1) components that play the same role in

different GUI pages, e.g., the text input for username on

the login/register/reset password page; (2) commonly-used

components, e.g., the “ok” or “cancel” on each confirmation

box; (3) system keys, the “back” button in the Android system.

We name these components as ambiguous components in this

scenario. Three authors inspect the collected bug reports and

their related apps to find the ambiguous components, and

discuss until reaching a final consensus. The results reveal

that 12% of bug reports contain at least one step related with

the ambiguous components. Together with the situation that

reproducing steps can have the missing steps, the existence

of ambiguous components makes it even more challenging to

precisely match the GUI event with the reproducing step.

This further motivates us to conduct reproduction from

a global perspective. Existing approaches adopt the greedy-

based algorithm when matching the GUI event and reproduc-

ing step, which mainly utilizes the information about current

step and cannot combine the previous and subsequent steps

2338

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



for a better decision. We utilize the context information about

the nearby state transition information of the app for better

constructing the GUI event sequence in reproducing the crash.

In summary, the characteristics of the mobile apps and bug

reports motivate us to utilize the context information to make

the reproduction more accurate. We utilize the information

from two viewpoints. The first is the context information

about a specific component (local context), e.g., the nearby

components, which facilitates the accurate matching between

the GUI event and the reproducing steps (tackle the first

and second drawback). The second is the context information

about a GUI event (global context), e.g., the nearby state

transition information of the app, which facilitates the accurate

construction of the GUI event sequence for bug reproducing,

especially when facing with the missing reproducing steps or

similar components in different pages (tackle the third and

fourth drawback).

III. APPROACH

This paper proposes a context-aware automated bug re-

production approach ScopeDroid to reproduce bugs from

the natural language described bug reports of mobile apps.

Figure 3 shows the pipeline of ScopeDroid, which includes

three modules.

STG construction and information extraction (Sec-
tion III-A). It employs an automated app exploration tool (i.e.,

Droidbot) to generate the initial state transition graph (STG),

and obtain the contextual information of each GUI component

(i.e., nearby textual related attributes and its icon image).

Fuzzy reproducing step matching (Section III-B). It

designs a multi-modal neural matching network for predicting

the probability of each GUI event being mapped to a certain

reproducing step. We name this phase as “fuzzy matching”

because it does not explicitly map a GUI event to a given

reproducing step, rather it derives a matrix considering all the

GUI events in an app and each reproducing step, which serves

as the input for the path planning.

Path planning and STG enrichment (Section III-C). With

the initial STG and the fuzzy matching matrix, it plans the

path (i.e., the sequence of GUI events) for reproducing the

bugs, and uses it for guiding the app exploration; meanwhile

it enriches the initial STG during exploration, and iteratively

conducts the path planning and STG enrichment until crash

occurs.

A. STG Construction and Information Extraction

1) STG Construction: The state transition graph (STG) of

mobile apps is widely used to illustrate the transitions across

different states triggered by typical operations such as press
login button [13], [14]. In detail, in one STG, a node is an app

state, while an edge is a transition between two connected

states, which contains an operation and the component on

which the operation is conducted. We adopt Droidbot [15], a

widely-used automatic dynamic app exploration tool for STG

construction.

In detail, for an app, we run Droidbot with a breadth-first

search strategy, and obtain all the interactive components (i.e.,

clickable is true) and their related states. Since the dynamic

exploration tool like DroidBot treats any two states with slight

differences (e.g. text changes in input boxes) as different states,

the generated raw STG is redundant. We then merge the

duplicate states to produce a more concise STG. Specifically,

following previous works [15]–[17], we obtain the identifier

(i.e., xpath) for each component in an GUI page (i.e., state),

and compute the jaccard distance [18] of the components’

xpath for two GUI pages. If the distance exceeds a pre-

defined threshold (following existing studies [15], [19], [20],

the empirically set as 0.8 in this study, we treat them as

duplicate states and merge them into one.

2) Information Extraction: We extract the textual at-

tributes and icon image of each GUI component for the

reproducing step matching.

Textual Information of GUI Components. Following

existing studies [21], [22] we extract 10 types of textual

information for each GUI component. Among them, 6 types

are the basic attributes of the GUI components, i.e., type, dis-

played text, content description, hint for the input information,

resource id used for identification, and absolute location (one

of the nine grid locations within the UI page). The remaining 4

types are the component’s contextual information derived from

its nearby components, i.e., the displayed text of its sibling

components, its parent component, its children components,

and its neighborhood components.

After extracting the 10 types of textual information, we

combine them into a sentence with the format [key] value,

where the key is the field name of the corresponding infor-

mation. Taking the confirm button (i.e., green check mark) in

Figure 2 as an example, its combined textual information is

[type] imagebutton [displayed text] none [content description]
navigate up [hint] none [resource id] none [absolute location]
top left corner [neighbor text] plant details [sibling text] add
new plant [child text] none [parent text] none.

Icon Image of GUI Components. When running Droid-

bot, we can obtain the boundary of each component in the

screenshot, with which we then capture the icon image of the

component from the screenshot.

B. Fuzzy Reproducing Step Matching

To efficiently map the reproducing steps to the GUI events,

we design a multi-modal neural matching network which

leverages both the textual information and the icon image.

It outputs the matching score of a reproducing step mapped

to a GUI event. We also develop a heuristic-based automated

training data generation method for facilitating model training.

The reasons why we design such a neural network are

threefolds. First, it can mitigate the drawbacks of existing

approaches in syntactic parsing the reproducing steps for

matching with GUI events, since the parsing is relied on the

human-created linguistic rules and is error-prone. Second, it

can better capture the semantics of the reproducing steps and

GUI components to derive more accurate matching, e.g., “add”

2339

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



Components

id: None
class: ImageButton
text: None
Sibling Text: Add new plant

Extracted Info
Text Info

Icon Info:

Input2: Reproducing steps

Add a new plant
Save it
Open that …… Path Planning

Output
Crash Path

S1

S2

S3

S4

Components & STG

Matching Network(Figure 4)

Matching Matrix
(Figure 5)

Crash?

Path planning and STG enrichment (Sec )

…

Input1: App

Random
Exploration

STG

Execute On APP

Update

Icon
Text
Step

Candidate paths
(Figure 6)

Guided
Exploration

New Found
Pages & Components

Unexplored Components

STG construction and information extraction (Sec III.A)

Fuzzy reproducing step matching (Sec )

Fig. 3: Overview of ScopeDroid
TABLE I: Heuristic-based training data generation

Button, TextView, ImageView, Im-
ageButton

CheckBox RadioButton Switch EditText Layout

Operation click, launch, choose, press, select,
tap, open, click on, clicking, tapping,
pressing, go to, going, enter, choose

click, select, tap,
click on, turn on,
turn off

swipe, switch,
turn, enable,
disable

click, select,
tap, click on

type, write, enter, input,
put

click, open, tap,
press, click on,
choose, select

Component displayed text, content description,
hint, resource id, sibling text, child
text, neighbor text

sibling text, neighbor text resource id, sibling text,
parent text, neighbor text

child text,
neighbor text

Location Random choose one, i.e., at/on the top / bottom (left / right (corner)), at/on the left / right / center
Article Random add the article (i.e., the, a/an) between operation and operated component, e.g., click the login button
Quotes Random add quotation mark for the operated component, e.g., click “login”.
Input Random add the input for EditText, i.e., type the username, e.g., foo, or type foo in the username

Save it<SEP> ... [sibling_text] add new plant ...

ResNet

Linear Classifier

Similarity

Transformer Encoder

Input 1: Image Input 2: Text Information Input 3: Step

concat

Fig. 4: Architecture of Multi-modal Neural Matching Network

(S1) (S1) (S1) (S1) (S2) … (S5) (S5) …
Add a new plant 0.8 0.1 0.1 0.1 0.6 … 0.6 0.1 …
Save it 0.3 0.1 0.1 0.1 0.7 … 0.7 0.1 …
… … … … … … … … … …
Go to “Photo” tab 0.1 0.1 0.1 0.1 0.1 … 0.1 0.6 …
… … … … … … … … … …

Fig. 5: Example of similarity matrix between reproducing steps

and GUI components

and “save” in the example of Figure 2. Third, the image-

like components (e.g. ImageButton) can be modeled and its

semantic information can be taken into account which further

contributes to the better matching.

1) Multi-modal Neural Matching Network: As shown in

Figure 4, the input of the multi-modal neural matching network

is the reproducing step step and the event’s related component

C (with textual information Ctext and icon image Cimage of

the component), the network would output the matching score

Sim(step, C) of the reproducing step corresponding to the

GUI event.

We utilize the Cross-Encoder structure [23], which has been

to be effective in information retrieval, question answering,

duplicate question detection, etc [24]–[26]. The reproducing

step step and the textual information of the component Ctext

are concatenated with symbol <SEP>, then input into the

pre-trained transformer encoder TextEncoder to generate the

hidden state of the text.

hiddentext = TextEncoder(Ctext, step) (1)

Meanwhile, the image of the component Cimage is input

into the ResNet encoder ImageEncoder for obtaining the

hidden state of the image.

hiddenimage = ImageEncoder(Cimage) (2)

Finally the textual hidden state hiddentext and the image

hidden state hiddenimage are input into a fully connected layer

W for obtaining the match score Sim(step, C).

Sim(step, C) = W ([hiddentext, hiddenimage]) (3)

2) Heuristic-based Training Data Generation: For train-

ing an effective multi-modal neural matching network, we

need a large amount of training data with reproducing step

and corresponding GUI events, e.g., reproducing step press
the back button and corresponding event click back button in

the app as shown in the last step of Figure 1. However, there is

no such type of open dataset so far, and collecting the related

data from scratch is time- and effort-consuming. Meanwhile,

2340

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



through examining the bug reports in open source projects,

we observe that there are certain linguistic patterns when

writing the reproducing steps in bug reports. This motivates

us in developing a heuristic-based automated training data

generation method for collecting the satisfied training data.

The primary idea is that for each interactive component in

a GUI page, we heuristically generate the reproducing step

which can operate on it for transitioning to the next state;

meanwhile, the generated reproducing step pair with other

irrelevant components serve as the negative data instances.

Take the GUI page of Figure 1 as an example, for the back
component in the left corner, the generated reproducing step

can be Click back or Press back in the left corner.

To derive the heuristic rules, the first two authors examine

200 open source bug reports (93 apps involved) randomly

sampled from the data collected in Section II, summarizing the

linguistic patterns for writing the reproducing steps. Note that

none of these apps are utilized in our experimental evaluations.

As as shown in Table I, the first two fields, i.e., operation
and component are required, while the others are optional and

would be chosen randomly. For operation, we summarize a set

of verbs for each component category to make the description

more vivid, as shown in Table I, and would randomly choose

one verb to act as the operation. For component, we summarize

the data source from which the component name is generated

(e.g, the displayed text of a button is login, the reproducing

step can be click login ). To cope with the empty data source,

we list all the candidates and would choose the first non-

empty one. We also notice that the data sources are not

applicable for all components (e.g., the text for CheckBox

is checked/unchecked), this is why we design a specific list

per component category. For Button and related component

categories, we also randomly add the term button after the

component name to make it more vivid.

The data generation is based on the Rico [27] dataset

which contains more than 66K unique screenshots from 9.3K

Android apps, as well as their accompanied JSON file (i.e.,

the detailed run-time view hierarchy of the screenshot). For

each iterative component, we randomly generate three different

reproducing steps following the above-mentioned heuristic

rules, to serve as the positive data instances in the training data.

For the negative data instances, we follow the hard negative

mining strategy [28] to enhance the discriminability of the

model. In detail, we retrieve four other components similar to

the chosen one and pair them with the three generated steps,

i.e., twelve negative instances. We use BM25 algorithm [29],

[30] to find the similar components by comparing the textual

information of each component (details are in Section III-A2).

3) Reproducing Step Matching with Neural Matching
Network: With the auto-generated training data, we train the

multi-modal neural matching network. We build our model

based on PyTorch [31] and Sentence Transformers [32]. The

text processing module is loaded with DistilBert [33], a 12-

layer transformer-based pre-training model. The image pro-

cessing module is loaded with the icon classification ResNet

trained by Mehralian et al. [21]. We use AdamW as the

optimizer, BCEWithLogitsLoss as the loss function, and train

the model with the batch size set to 20.

For each reproducing step and each GUI event of the app,

we pair them and input all pairs into the trained model to

obtain a similarity matrix like the one shown in Figure 5.

This fuzzy matching matrix will be used in the candidate path

scoring in the subsequent section.

C. Path Planning and STG Enrichment

With the fuzzy matching matrix, we design a path planning

method to derive the GUI event sequence for bug reproduce.

The ideal situation for path planning would be to design a

dynamic programming algorithm to find the optimal event

sequence for reproducing the bug. Yet in real practice, since

the initial STG can hardly be completely restricted by current

app exploration tools [15]–[17], hence we can only design an

algorithm by taking the utmost use of current information.

Meanwhile when executing the planned path, we also apply

the guided exploration with the reproducing steps for enriching

the initial STG and iteratively conduct the patch planning.

1) Path Planning based on Fuzzy Matching Matrix: The

path planning algorithm is designed as a weighted algorithm

of three metrics, i.e., matching accumulation, length penalty,

and goal count, for all candidate GUI event sequences. This

is designed from the perspective of goal achievement and

redundancy reduction when considering the incomplete build

STG.

Matching accumulation SMA measures the sum of the

matching score (obtained in the fuzzy matching matrix) for

the involved GUI events and the reproducing steps. Since the

matching accumulation would assign a higher score to the

longer exploration sequence, Length penalty SLP punishes

the case of a meaningless long exploration loop. Note that,

there are usually looped reproducing steps involving repeated

exploration, thus the exploration loop is acceptable, yet we

should avoid the meaningless loop to optimize the exploration.

Goals scored SGS measures how many reproducing steps

are explored. It reflects the distance from achieving the final

reproduction.

We take the four generated candidate paths in Figure 6

as examples to better illustrate how these three metrics are

calculated. Path 1 is the most optimal of these four paths,

achieving more steps than the others and without redundant

operations. Path 2 involves one less GUI event that matches

the reproducing step compared to Path 1, so its matching
accumulation is lower than Path 1. Path 3 has a redundant

operation after the first arrival at State 4 and suffers a higher

length penalty. Path 4 contains four GUI events matching the

reproducing steps like path 1, but the path only completes the

first three steps in the reproducing steps, so its goals scored
is lower than Path 1.

Finally, we take the weighted sum of these three metrics as

the path score:

Scorepath = SMA + αSLP + βSGS (4)

2341

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



(S1)
Path 1: S1 S2 S3 S4 S5

Path 2: S1 S2 S3 S4 S7

Path 3: S1 S2 S3 S4 S3

S4 S5

Path 4: S1 S2 S3 S4 S3

(S2) (S3) (S4)

(S1)

(S1)

(S1)

(S2)

(S2)

(S2)

(S3)

(S3)

(S3)

(S4)

(S4)

(S4)

(S3) (S4)

Name

Path 1 0.8 (      ) + 0.7 (      ) +0.1 (                   ) + 0.6 (        ) = 2.2 4 4 (Finish Step 1, 2, 3, 4)

Path 2 0.8 (      ) + 0.7 (      ) +0.1 (                   ) + 0.1 (      ) = 1.7 4 3 (Finish Step 1, 2, 3)

Path 3 0.8 (      ) + 0.7 (      ) +0.1 (                   ) + 0.1 (      ) + 0.1 (                   ) + 0.6 (        ) = 2.4 6 4 (Finish Step 1, 2, 3, 4)

Path 4 0.8 (      ) + 0.7 (      ) +0.1 (                   ) + 0.7 (      ) = 2.3 4 3 (Finish Step 1, 2, 3)

Fig. 6: Example of scoring candidate paths

When choosing the parameter values, we consider two

main balances: the balance between avoiding path redundancy

and encouraging long path exploration (controlled by SLP ),

and the balance between encouraging exploration of paths

that achieve goals and avoiding wasting time on paths that

are wrongly achieved (controlled by SGS). To determine the

parameter values, we tune our approach on 17 other “crash”

reports which are excluded from the experimental data. These

“crash” reports are obtained during our data collection process

(details in the Section IV-A). They have clear reproducing

steps, but we fail to trigger crashes after manual reproduction

due to different hardware configurations or other engineering

reasons. We experiment with α from -2 to -0.5 with an

increment of 0.5 in between, and β from 1 to 5 with an

increment of 1 in between. We run the approach with each

group of parameters (α and β), and record the reproduction

success rate; then we choose the parameter value when the

highest success rate being achieved. After parameter tuning,

α is set as -1 and β is set as 3 in our experiment. Based on

this, we choose the path having the highest score for execution

or guided exploration. We execute the planned path on the

simulator automatically through Appium [34].

2) STG Enrichment: Since existing automated app explo-

ration tools can hardly explore all app states, and the built

STG is incomplete, i.e., some pages are not explored, or some

components in an explored page are not interacted.

Therefore, during the exploration process, we would enrich

the STG to include more states, update the path planning and

facilitate the bug reproduction. Generally speaking, guided by

the current planned path, we would include the unexplored

components on newly touched states, and the subsequent state

of the component which matches a reproducing step. After the

enhancement, we calculate the matching scores of the newly

discovered components with each reproducing step and update

the fuzzy matching matrix. Then we re-plan the execution

sequence and conduct the exploration.

IV. EXPERIMENT DESIGN

To evaluate ScopeDroid, we consider four research ques-

tions:

RQ1: How effective and efficient is ScopeDroid at repro-

ducing crashes in bug reports?

RQ2: How accurate is the step matching?

RQ3: Does ScopeDroid benefit developers compared to

manual reproduction?

RQ4: Is ScopeDroid robust in terms of different described

bug reports?

A. Experimental Dataset

We employ the crash reports from three sources for eval-

uation, i.e., ReCDroid’s dataset [5], AndroR2 dataset [12],

and GitHub. For the crash reports used by ReCDroid [5], we

employ all the 33 reports provided in their replicate package

for the experiment. For the reports contained in AndRoR2

dataset [12], we use all its 22 crash reports. Other reports,

e.g., display issue reports, are out of the scope of this study.

For 6,959 crash reports crawled and filtered from GitHub as

described in Section II, we randomly sampled 1500 of them

and conduct manual checking to get the final dataset. This

manual filtering is performed independently by three graduate

students with 2-4 years of industrial software development

experiment, and each report is manually reproduced by two

of them. We exclude those that could not be reproduced (e.g.,

lack of apks, failed-to-compile apps, environment issues) or

required special conditions (e.g., account, hardware, data).

This results in 47 crash reports from 28 apps, and we refer to

this dataset as ScopeDroid’s dataset. This process also yields

17 “crash” reports, which have clear reproducing steps, but we

fail to trigger crashes due to different hardware configurations

or other engineering reasons. These “crash” reports are only

used for parameter tuning as shown in Section III-C and

excluded from the experimental data. Note that, we manually

extract the reproducing steps from the crash reports, which is

a commonly-used practice in existing studies [5], [7]. Due to

space limitations, the details of the data (e.g., steps per report,

pages/components per app) can be viewed on our website3.

B. Baselines

To demonstrate the advantages of our proposed ScopeDroid,

we compare with 2 state-of-the-art approaches.

ReCDroid [5]: It is the state-of-the-art approach for repro-

ducing crashes from natural language described reproducing

steps. It leverages dependency parsing and predefined gram-

mar patterns to extract GUI event representations from the

reproducing steps. Then it conducts the exploration guided

by the matching status between the extracted GUI event

representations and the displayed text of GUI components.

Note that the same authors proposed an improved tool called

ReCDroid+ [35], which treats the raw bug reports as input and

focuses on the automatic extraction of the reproducing steps

from the raw bug reports. Except for the initial extraction

of reproducing steps, RecDroid+ is the same as ReCDriod.

ScopeDroid takes the reproducing steps rather than the raw

bug reports as input, so we do not select ReCDriod+ but only

ReCDroid as the baseline. We compare it for effectiveness and

2342

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



efficiency of bug reproduction (RQ1) and for the accuracy of

step matching (RQ2).

MaCa [7]: It is proposed to automatically identify and

classify the action words in bug reports in order to boost the

performance of bug reproduction tools like ReCDroid. It first

identifies action words based on natural language processing,

then extracts its related information (i.e., enclosing segment,

associated UI target); this information is fed into a machine

learner to predict the category of the action word (e.g., click,

type). We treat this approach as the baseline for step matching

(RQ2). In addition, we integrate it with ReCDroid as described

in their paper (denoted as ‘ReCDroid+MaCa’) which serves as

the baseline for RQ1.

C. Experimental Setup and Evaluation Metrics

For RQ1, we verify the effectiveness and efficiency of

ScopeDroid in two aspects: (1) the percentage of reports that

can be successfully reproduced in given time (denoted as

success rate), i.e., two hours following previous practice [5].

(2) The time required for successful reproduction (denoted as

reproducing time).

For RQ2, we validate whether our matching module can

accurately match the GUI event of the app with the repro-

ducing steps in the report. For the 67 crash reports that

can be successfully reproduced by at least one tool, we first

obtain all UI pages related to the reports with automatic

exploration (DroidBot) and manual supplementation. We then

run the matching module of ScopeDroid and the baselines

to calculate the similarity between each reproducing step and

GUI event on all found pages. Ideally, the target GUI event

should get a higher score and be ranked at the top. Therefore,

we evaluate the matching modules with the following two

evaluation metrics. Hit@k checks whether the recommended

top-k GUI events contain the correct one which matches the

given reproducing step. We set k as 1, 3, 5, and 10 to obtain

a relative thorough view. MRR (Mean Reciprocal Rank)
is the mean of Reciprocal Rank (RR) values obtained for

all reproducing steps. RR of a single reproducing step is

multiplicative inverse of the rank of corresponding component.

For RQ3, we evaluate the usefulness of ScopeDroid. We

invite 21 graduate students to participate in this experiment.

All of them have experience in mobile application testing, 12

are Android developers with at least 5 years of development

experience, and 10 work in the crowdtesting platform. For

the 67 crash reports that can be reproduced by at least one

tool, we divide them into 7 groups with each group having 10

reports. Each participant is assigned to three groups of reports,

i.e., ensuring that each test report is manually reproduced by

3 participants. Participants need to reproduce these reports

manually on the emulator with the corresponding app already

installed, and we record the time cost. If participants are

unable to reproduce within 30 minutes following existing

study [5], the report is marked as not reproduced. After

participants manually reproduce their reports, we show them

video of ScopeDroid in reproducing these crashes and ask their

TABLE II: Performance of reproduction success rate

# Dataset ReCDroid ReCDroid+Maca ScopeDroid
ReCDroid’s Dataset (33 Reports) 32 (97%) 32 (97%) 30 (91%)
AndroR2 Dataset (22 Reports) 6 (27%) 6 (27%) 11 (50%)
ScopeDroid’s Dataset (47 Reports) 9 (19%) 11 (23%) 24 (51%)
# Total (102 Reports) 47 (46%) 49 (48%) 65 (63%)

opinions about it with 5-Likert scale [36], i.e., very useful,

useful, neutral, not useful, and useless.

For RQ 4, we verify the robustness of the ScopeDroid.

Since reproducing steps are typed manually, there may be

inaccuracies in describing the GUI events, such as missing

words, using synonyms, and improper word order, which may

affect the success of the automatic reproduction. To simulate

the above problem, we create variants of reproducing steps by

using EDA [37], a common-used data augmentation tool that

generates semantically similar but textually different samples.

In detail, we set two degrees of mutation, i.e., randomly

changing 10%/20% (a large mutation rate can easily lead to

the semantic change) of the words in reproducing steps by

performing four commonly-used operations: synonym replace-

ment, random insertion, random swap and random deletion.

We conduct this experiment on the 30 successfully repro-

duced reports in ReCDroid’s dataset, which already exerts

diversified step length and reproduction time. We randomly

generate three variants for each degree of variation (a total

of 2 × 3 × 30 = 180), run ScopeDroid on these variants and

record reproduction results.

V. RESULTS AND ANALYSIS

A. RQ 1: Effectiveness and Efficiency of ScopeDroid

Table II shows the success rate of reproducing crash re-

ports from three datasets. Overall, ScopeDroid can reproduce

63.7% of them (65 out of 102), outperforming the baselines

by a large margin, i.e., 32.6% (63.7 vs. 48.0) higher than

ReCDroid+MaCa, and 38.3% (63.7 vs. 46.0) higher than

ReCDroid. This indicates that ScopeDroid is more effec-

tive in reproducing crash reports. ScopeDroid successfully

reproduces 30 reports on the ReCDroid’s Dataset, and the

other three failed cases are due to the incompatibility with

our environment or lack of a valid account. While on the

AndroR2 dataset and the ScopeDroid’s dataset, ScopeDroid

can achieve a success rate of about 50%. In contrast, ReCDroid

or ReCDroid+MaCa can only successfully reproduce a small

portion of reports with simple reproducing steps, with the

success rate of 19% to 27%.

Table III shows the reproducing time of ScopeDroid and

two baselines on each report. Note that MaCa takes less than

a second to analyze the bug report, which is negligible and

we treat the reproducing time of ReCDroid+MaCa the same

as ReCDroid.

For the 45 crash reports that the baselines can reproduce,

the average reproducing time of ReCDroid is 440 seconds,

while ScopeDroid’s average time is 83 seconds which is faster

than ReCDroid. The above comparison is conducted when not

considering the pre-exploration time of DroidBot. This implies

2343

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Detailed reproduction results on three datasets. RD, RD+M, SD in the table header refers to ReCDroid,

ReCDroid+MaCa and ScopeDroid respectively. p refers to the number of participants who successfully reproduced the report,

and pt refers to the average time it takes for the participants to reproduce the report, × means that the tool fails to reproduce a

report within the time limit. Note that in order to save space, reports that cannot be reproduced by either approach are omitted

in this table, and can be find in our website.

ReCDroid’s Dataset
id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s)
1 NewsBlur-1053 210 210 53 3 90 12 FastAdapter-394 29 29 25 3 118 23 ownCloud-487 74 74 16 3 17
2 Markor-194 2185 2185 135 2 149 13 LibreNews-22 186 186 58 2 51 24 OBDReader-22 1581 1581 523 3 190
3 Birthdroid-13 147 147 37 3 120 14 LibreNews-23 49 49 68 3 205 25 Dagger-46 18 18 12 3 12
4 Car Report-43 487 487 113 2 164 15 LibreNews-27 112 112 61 3 90 26 ODK-2086 99 99 83 3 122
5 Sudoku-173 917 917 181 3 137 16 SMSsync-464 1167 1167 75 1 312 27 K-9Mail-3255 185 185 50 3 155
6 ACV-22 500 500 × 3 88 17 Transistor-63 43 43 23 3 120 28 K-9Mail-2612 103 103 38 3 96
7 AnyMemo-18 69 69 38 3 32 18 Zom-271 88 88 21 2 123 29 K-9Mail-2019 55 55 19 2 46
8 AnyMemo-440 1531 1531 134 3 251 19 Pix-Art-125 891 891 35 3 192 30 Anki-4586 90 90 423 2 46
9 Notepad-23 348 348 73 3 34 20 Pix-Art-127 191 191 33 3 64 31 TagMo-12 27 27 24 2 54
10 Olam-2 58 58 13 3 142 21 ScreenCam-25 760 760 20 3 45 32 FlashCards-13 20 20 64 3 135
11 Olam-1 27 27 14 3 35 22 Ventriloid-1 69 69 × 3 110

AndroR2 Dataset
id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s)
33 HABPanel-25 × × 35 3 55 37 OpenMap-1030 314 314 430 3 90 41 Hex-9 12 12 155 3 56
34 Noad Player-1 11 11 10 2 40 38 andOTP-500 × × 536 3 141 42 Firefox-3932 3310 3310 98 2 120
35 Weather-61 × × 20 3 71 39 K-9Mail-3255 185 185 50 3 46 43 Aegis-3932 × × 1044 2 249
36 Berkeley-82 32 32 14 3 54 40 K-9Mail-3971 × × 117 3 53

ScopeDroid’s Dataset
id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s) id #Bug Reports RD (s) RD+M (s) SD (s) p pt (s)
44 NewPipe-7825 × 105 60 1 80 52 Anki-3370 × × 165 2 157 60 nRF Mesh-495 1342 1342 96 3 43
45 SDBViewer-10 × × 73 3 85 53 Anki-2765 37 37 81 3 176 61 SDBViewer-7 × × 13 3 20
46 Anki-9914 × × 150 2 55 54 Anki-2564 × × 268 1 105 62 FakeStandby-30 × 26 17 2 71
47 Anki-10584 57 57 14 3 100 55 Anki-2681 × × 455 3 196 63 pedometer-101 82 82 60 3 39
48 Alarmio-47 × × 35 3 51 56 WhereUGo-368 70 70 55 2 124 64 Revolution-183 2521 2521 135 3 41
49 plusTimer-19 × × 172 2 93 57 FoodTracker-55 72 72 37 3 61 65 Anki-3224 × × 125 3 48
50 GrowTracker-89 × × 196 1 537 58 GrowTracker-87 × × 259 3 218 66 getodk-219 13 13 42 3 152
51 Shuttle-456 × × 213 2 336 59 Markor-1565 × × 346 3 141 67 Anitrend-110 11 11 10 3 13

that our proposed approach has an advantage in efficiency

when the STG of an app being freely available, e.g., being

extracted in advance.

We admit that the pre-exploration by Droidbot is time-

consuming, and ScopeDroid may be slower than ReCDroid

when considering the time cost of pre-exploration. But note

that the pre-exploration is a one-time job for an app and can be

conducted in advance. Meanwhile, this time can be averaged

into bug reports of an app and becomes even negligible. Taken

in this sense, ScopeDroid has an efficiency advantage over

baselines in the scenario of an app having multiple crash

reports. Take the app Pix-Art which has multiple reports as

an example (e.g., Pix-Art-125,127 in ReCDroid’s dataset), we

only need to run DroidBot once for reproducing these two

reports and its running time can be shared, which makes our

approach faster (600/2s+ 83s = 383s < 440s).

The reason why ScopeDroid performs better than the base-

lines is mainly due to the following three reasons. First, our

approach develops a multi-modal neural matching network to

match the reproducing steps with the GUI event, which can

achieve a higher matching accuracy than the baselines which

mainly utilize name-related information and natural language

parsing. Second, ScopeDroid can conduct the exploration from

a relatively global perspective, while the baselines use a greed-

based exploration strategy which may waste time on repeated

exploration over certain pages and fail to reach the status

related to crash. Third, our approach supports more types of

GUI events, e.g., scrolling up and down the page, which are

not included by baselines. We also check the reasons for failure

cases and summarize them in Section VI-A.

B. RQ 2: Matching Accuracy

Table IV shows the performance of the step matching

module for each approach. Our step matching module can

accurately match the reproducing step with GUI event at the

first recommended result (i.e., Hit@1) on 61%, 55%, and

53% cases respectively on the three datasets. This indicates

more than half of the cases, the reproducing step can be

correctly matched to the GUI event, which facilitates path

planning and crash reproduction. When considering the first

five recommended results (i.e., Hit@5), the performance is

85%, 83%, and 74%. This indicates ScopeDroid can relatively

accurately match the reproducing steps with GUI events,

which constructs a solid foundation for crash reproduction.

The step matching of ScopeDroid outperforms the baselines

by a large margin, i.e., 17%-26% higher than ReCDroid in

Hit@1, and 33%-36% higher than MaCa in Hit@1. The

reasons for the advantages of our approach are two folds. First,

we develop a multi-modal matching network which can take

advantage of the context information of the GUI components.

By comparison, the baselines only utilize the name-related

information, which would fail in certain types of components

like CheckBox, ImageButton. Second, our developed network

does not require linguistic patterns for step matching, which

could mitigate the issues brought by the incorrect grammar

parsing.

C. RQ 3: Usefulness of ScopeDroid

The last two columns of Table III show the results of

participants’ manual reproduction of bug reports. For the

67 reports that at least one tool can reproduce successfully,

there are 30% (20/67) reports that failed to be reproduced

by at least one developer, indicating that ScopeDroid can

reproduce crashes that human testers cannot reproduce, and

ScopeDroid reproduces bugs faster than testers on 42 reports.

Although ScopeDroid does not perform as well as human

testers on some complex reports, it is still useful in many

cases, where ScopeDroid can automatically finish the tedious

2344

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Performance of the matching module for each approach

# Match Module
ReCDroid’s Dataset AndroR2 Dataset ScopeDroid’s Dataset

Hit@1 Hit@3 Hit@5 Hit@10 MRR Hit@1 Hit@3 Hit@5 Hit@10 MRR Hit@1 Hit@3 Hit@5 Hit@10 MRR
ReCDroid 0.35 0.44 0.52 0.54 0.411 0.38 0.44 0.55 0.55 0.441 0.29 0.36 0.36 0.36 0.319
Maca 0.27 0.31 0.35 0.42 0.307 0.22 0.38 0.44 0.55 0.33 0.17 0.21 0.23 0.36 0.213
ScopeDroid 0.61 0.77 0.85 0.91 0.709 0.55 0.83 0.83 0.94 0.682 0.53 0.7 0.74 0.78 0.62

TABLE V: Performance of robustness evaluation of Scope-

Droid. The Ori column shows the reproducing time of Scope-

Droid on the original report. The columns 10% and 20%
under the Degree of mutation show the average time of

ScopeDroid on the variants, and the number in parentheses

is the number of successfully reproduced variants (out of 3)

#Bug Reports Ori Degree of mutation #Bug Reports Ori Degree of mutation
10% 20% 10% 20%

NewsBlur-1053 53 52 (3) 52 (3) Transistor-63 23 24 (3) 22 (3)
Markor-194 135 137 (3) 135 (1) Zom-271 21 21 (3) 36 (3)
Birthdroid-13 37 46 (3) 46 (3) Pix-Art-125 35 117 (3) 115 (3)
Car Report-43 113 111 (3) 112 (3) Pix-Art-127 33 259 (3) 241 (3)
Sudoku-173 181 216 (3) 187 (1) ScreenCam-25 20 19 (3) 19 (1)
AnyMemo-18 38 43 (3) 39 (3) ownCloud-487 16 54 (3) 57 (3)
AnyMemo-440 134 130 (2) 188 (1) OBDReader-22 523 523 (2) Na (0)
Notepad-23 73 70 (3) 70 (3) Dagger-46 12 12 (3) 12 (3)
Olam-2 13 15 (2) 18 (2) ODK-2086 83 94 (3) 146 (3)
Olam-1 14 16 (3) 14 (3) K-9Mail-3255 50 48 (3) 200 (3)
FastAdapter-394 25 85 (3) 24 (3) K-9Mail-2612 38 42 (3) 42 (3)
LibreNews-22 58 225 (3) Na (0) K-9Mail-2019 19 19 (3) 21 (3)
LibreNews-23 68 72 (2) Na (0) Anki-4586 423 422 (3) 423 (2)
LibreNews-27 61 62 (2) 72 (2) TagMo-12 24 25 (3) 29 (3)
SMSsync-464 75 80 (3) 80 (2) FlashCards-13 64 66 (3) 78 (3)

and time-wasting process of exploring the app and finding the

components involved, saving the developer effort and time.

After manually reproducing the bug reports, we invite

all participants to rate ScopeDroid. ScopeDroid achieves a

mean score of 4.14 (between very useful and useful). Most

participants comment that ScopeDroid is accurate in matching
the GUI event with reproducing step. One participant complain

that it takes a lot of time to find the component corresponding
to the first step because some previous steps are omitted, and

ScopeDroid can potentially save time by helping her locate the

component in the first step. Another crowdsourcing developer

is interested in ScopeDroid. She thinks ScopeDroid could be
used in the future to complete test report information by adding
screenshots or GIFs for some text-only steps, thus allowing
other crowdsourcing participants to quickly understand the
bugs found to reduce duplicate submissions.

D. RQ 4: Robustness of ScopeDroid

On the sampled dataset, our method achieves success rates

of 94.4% (85 out of 90) and 76.7% (69 out of 90) at

the mutation levels of 10% and 20% respectively. And the

slowdowns caused by the mutation with respect to the original

bug reports are only 1.26 times and 1.37 times, respectively.

This indicates that our approach has good robustness and can

resist the disruption of missing words or word changes to some

extent. We check the variants that fail to reproduce, and the

results reveal that these failure cases are mainly because of the

significant changes in the meaning of the reproducing step. For

example, when enable automatically refresh in LibreNews-

235 is changed to enable mechanically brush up with the

5https://github.com/milesmcc/LibreNews-Android/issues/23

EDA technique in Section IV-C, even the human can hardly

understand what its actual meaning.

VI. DISCUSSION

A. Limitations

There are three main limitations of ScopeDroid which

hinder it from reproducing all bug reports, which also indicates

the challenges in bug reproduction of mobile apps and calls

for further research.

First, ScopeDroid assumes that a reproducing step refers

to a single interaction with the GUI component, yet this

assumption is not always true in real-world practice. Reporters

may abbreviate commonly-known processes into one step,

e.g., create a contact corresponds to three GUI events go
to the contact create page, enter contact information, click
save. Besides, ScopeDroid cannot correctly understand the

steps that require inference, e.g., click the big button, although

these steps are intuitive to human testers. This common-sense

knowledge needs to be further learned and incorporated into

the approach for facilitating reproduction.

Second, ScopeDroid cannot reproduce the bugs which in-

volve specific prior knowledge, e.g., entering a valid username

and password to log in, which requires human intervention and

cannot be fully automated.

Third, ScopeDroid cannot cover all the actions at the

execution time. It already supports the GUI events like tapping,

long pressing and typing, rotating the screen, scrolling up

and down, restarting the app, etc. There are other operations

not covered due to the limitations of emulator or engineering

issues, e.g., using hardware that the emulator does not have

(e.g., Bluetooth, NFC) and fast continuous clicking.

B. Generality across Platforms

The whole technical idea of ScopeDroid is platform-

independent and can be trivially applicable to other platforms

(e.g., IOS and web). Nevertheless, we utilize two platform-

dependent tools respectively for STG contribution (Droidbot

[15]) and execution on app (Appium [34]), and need to be

replaced with their alternative tools when extending to other

platforms.

In detail, the STG construction module (Section III-A) em-

ploys Droidbot [15], which is a testing tool for app exploration

and designed specifically for Android apps. For IOS or web

apps, one can choose Monkey [38] as an alternative. In addi-

tion, the path planning and STG enrichment module (Section

III-C) utilize Appium [34], which is an automation framework

for executing operations and obtaining screen layout on the

emulator, and designed for Android and IOS apps. For web

apps, one can turn to Selenium [39].

2345

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



Furthermore, in the fuzzy reproducing step matching module

(section III-B), we train a matching network for predicting

the probability of each Android GUI event being mapped

to a step, which is theoretically platform-independent. Yet

to further achieve better results, one is encouraged to fine-

tune the model with the data from the application scenarios

in case of different naming conventions; for example, the

class of the basic button is named “Button” on Android while

“XCUIElementTypeButton” on IOS.

Like existing studies [5], [7], [35], this study focuses on

Android apps because the bug reports are easier to fetch. We’ll

explore its feasibility on other platforms in the future.

C. Threats to Validity

The first threat relates to the implementation of the base-

lines. We reuse the source code provided on their website, and

carefully follow their instruction for conducting experiments

on the new datasets. The second threat is about the represen-

tativeness of the data used in the evaluation. We collect the

bug reports from GitHub submitted from 2015 to 2022, and

follow the procedures in previous studies to filter and select

the dataset. The third threat relates to the confounding effects

of participants. Following the existing approach [5], [35], we

assume that students with Android programming experience

can be substituted for testers, and their reproducing time and

success rate are representative. The fourth threat is that the

experimental result is only based on the 10-minute random

exploration by an automated testing tool. More experiments

(e.g., exploration time is 5 minutes) can be conducted in the

future to further evaluate the effectiveness of our approach.

VII. RELATED WORK

Mobile Bug Reports Analysis and Reproducing. Several

works focus on using NLP techniques to extract critical infor-

mation from bug reports, such as summarizing and classifying

bug reports [40], [41], facilitating dynamic analysis [42], [43],

augmenting bug reports for mobile apps [7], [44], [45] and

generating test cases [44], [45]. For example, Yakusu [6]

used a combination of program analysis and natural language

processing techniques to generate executable test cases from

bug reports. Maca [7] leveraged the pre-training language

model to identify and classify action words in bug reports.

The above works are close to our approach, but their goal is

not to reproduce the reported bugs.

The most closely related work that focuses on reproducing

the bug from the mobile bug report is ReCDroid [5], ReC-

Droid+ [35] and GIFdroid [46]. Specifically, GIFdroid [46]

leveraged the visual screen record to perform reproduction.

ReCDroid [5] leveraged the natural language described re-

producing steps to perform reproduction. It designed a set of

predefined grammar patterns to extract events and objects from

textual reproducing steps and then adopted a greedy-based

dynamic exploration to synthesize event sequences. The same

authors later proposed an improved version, i.e., ReCDroid+

[35], which introduced heuristic rules and neural network

classifiers to automatically extract the reproducing steps from

raw bug reports, and reused ReCDroid for bug reproduction.

Compared with the matching method in RecDroid and Rec-

Droid+, ScopeDroid develops a novel matching method that

first automatically extracts various information of GUI com-

ponents, e.g., icon and contextual information, and then uses a

multi-modal neural network to match reproducing steps to GUI

events. Our matching method has two advantages: first, it does

not need dependency parsing and has better generalization;

second, it utilizes more information than the text of the GUI

components, i.e., icon and contextual information. Meanwhile,

ScopeDroid also has advanced path planning strategies than

the two approaches.

Besides, there are several works focus on assisting in

recording and replaying bugs in mobile and web apps by using

running information [47]–[50], textual description [51]–[53].

This study contributes to this direction by proposing a novel

approach for bug reproduction with promising results.

GUI Component Understanding. Several tools focus on

the accessibility of the user interface [17], [54]–[59] and

filling in missing descriptions for GUI components [21],

[60], [61]. LabelDroid [60] automatically predicted the text

labels of image-based buttons by learning from large-scale

commercial apps in Google Play. COLRA [21] leveraged

the contextual information of components to generate non-

predefined text labels more accurately. In contrast to the above

works, our approach focuses on matching GUI components

to text descriptions rather than generating text descriptions.

Besides, there are several works [22], [62], [63] focused on test

migration on mobile apps and matching semantically similar

GUI components between apps. This study designs a multi-

modal reproducing step matching method with GUI events,

which can also motivate the studies about the GUI component

understanding.

VIII. CONCLUSION

In order to improve the effectiveness and benefit of auto-

matic reproduction, this paper proposes a context-aware bug

reproduction approach ScopeDroid which automatically repro-

duces crashes from text descriptions of mobile bug reports. We

first construct the STG and extract the contextual information,

then design a multi-modal neural matching network to match

GUI events and reproducing steps. Using the initial STG and

the matching information, we plan the path for reproducing

the bugs, and enrich the STG iteratively. We evaluate the

ScopeDroid on 102 bug reports from 69 popular Android apps,

it can successfully reproduce 65 (63.7%) of the crashes, largely

outperforming the baselines. The evaluation of usefulness and

robustness of ScopeDroid also demonstrates promising results.

IX. ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-

ence Foundation of China Grant No.62232016, No.62072442

and No.62272445and Youth Innovation Promotion Association

Chinese Academy of Sciences.

2346

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “Applause,” https://www.applause.com/blog/
app-abandonment-bug-testing.

[2] “Github,” https://appium.io/.
[3] “Bugzilla keyword descriptions,” https://bugzilla.mozilla.org/

describekeywords.cgi.
[4] “Google code,” https://code.google.com.
[5] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. J. Halfond,

“Recdroid: automatically reproducing android application crashes from
bug reports,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019,
pp. 128–139.

[6] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automatically
translating bug reports into test cases for mobile apps,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, F. Tip and E. Bodden, Eds. ACM, 2018, pp. 141–152.

[7] H. Liu, M. Shen, J. Jin, and Y. Jiang, “Automated classification of actions
in bug reports of mobile apps,” in ISSTA ’20: 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual
Event, USA, July 18-22, 2020, S. Khurshid and C. S. Pasareanu, Eds.
ACM, 2020, pp. 128–140.

[8] S. Li, J. Guo, M. Fan, J. Lou, Q. Zheng, and T. Liu, “Automated bug
reproduction from user reviews for android applications,” in ICSE-SEIP
2020: 42nd International Conference on Software Engineering, Software
Engineering in Practice, Seoul, South Korea, 27 June - 19 July, 2020,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 51–60. [Online].
Available: https://doi.org/10.1145/3377813.3381355

[9] V. Ambriola and V. Gervasi, “Processing natural language requirements,”
in 1997 International Conference on Automated Software Engineering,
ASE 1997, Lake Tahoe, CA, USA, November 2-5, 1997. IEEE Computer
Society, 1997, pp. 36–45.

[10] Y. Li, J. He, X. Zhou, Y. Zhang, and J. Baldridge,
“Mapping natural language instructions to mobile UI action
sequences,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-
10, 2020, D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault,
Eds. Association for Computational Linguistics, 2020, pp. 8198–8210.
[Online]. Available: https://doi.org/10.18653/v1/2020.acl-main.729

[11] D. Arsan, A. Zaidi, A. Sagar, and R. Kumar, “App-based task
shortcuts for virtual assistants,” in UIST ’21: The 34th Annual ACM
Symposium on User Interface Software and Technology, Virtual Event,
USA, October 10-14, 2021, J. Nichols, R. Kumar, and M. Nebeling,
Eds. ACM, 2021, pp. 1089–1099. [Online]. Available: https:
//doi.org/10.1145/3472749.3474808

[12] T. Wendland, J. Sun, J. Mahmud, S. H. Mansur, S. Huang, K. Moran,
J. Rubin, and M. Fazzini, “Andror2: A dataset of manually-reproduced
bug reports for android apps,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021, pp.
600–604.

[13] Y. Zhang, Y. Sui, and J. Xue, “Launch-mode-aware context-sensitive
activity transition analysis,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 598–608.

[14] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rountev, “Static window transition graphs for android,” Automated
Software Engineering, vol. 25, no. 4, pp. 833–873, 2018.

[15] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 23–26.

[16] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[17] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[18] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[19] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in

Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 153–164.

[20] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-duplicate detection
in web app model inference,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 186–197.

[21] F. Mehralian, N. Salehnamadi, and S. Malek, “Data-driven accessibility
repair revisited: on the effectiveness of generating labels for icons
in android apps,” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 107–118.

[22] L. Mariani, A. Mohebbi, M. Pezzè, and V. Terragni, “Semantic matching
of gui events for test reuse: are we there yet?” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 177–190.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[24] R. Nogueira and K. Cho, “Passage re-ranking with bert,” arXiv preprint
arXiv:1901.04085, 2019.

[25] W. Yang, Y. Xie, A. Lin, X. Li, L. Tan, K. Xiong, M. Li, and J. Lin,
“End-to-end open-domain question answering with bertserini,” arXiv
preprint arXiv:1902.01718, 2019.

[26] N. Poerner and H. Schütze, “Multi-view domain adapted sentence
embeddings for low-resource unsupervised duplicate question detection,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 1630–1641.

[27] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 845–
854.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[29] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
Gatford, “Okapi at trec-3,” Nist Special Publication Sp, 1995.

[30] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the use of lucene for
information retrieval research,” in ACM SIGIR, 2017.

[31] “Pytorch,” https://pytorch.org/.
[32] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings

using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: http:
//arxiv.org/abs/1908.10084

[33] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[34] “Appium,” https://www.selenium.dev/.
[35] Y. Zhao, T. Su, Y. Liu, W. Zheng, X. Wu, R. Kavuluru, W. G. Halfond,

and T. Yu, “Recdroid+: Automated end-to-end crash reproduction from
bug reports for android apps,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 31, no. 3, pp. 1–33, 2022.

[36] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code using
statistical machine translation (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 574–584.

[37] J. Wei and K. Zou, “EDA: Easy data augmentation techniques
for boosting performance on text classification tasks,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 6383–6389.
[Online]. Available: https://www.aclweb.org/anthology/D19-1670

[38] “Monkey,” https://developer.android.com/tools/help/monkey.html.
[39] “Selenium,” https://www.selenium.dev/.
[40] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports

via text mining: An industrial case study,” in 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE, 2010,
pp. 11–20.

[41] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

2347

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 



[42] D. Jin, M. B. Cohen, X. Qu, and B. Robinson, “Preffinder: Getting
the right preference in configurable software systems,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 151–162.

[43] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan, “Dase: Document-
assisted symbolic execution for improving automated software testing,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 620–631.

[44] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,” in Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 673–686.

[45] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality of the
steps to reproduce in bug reports,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 86–
96.

[46] S. Feng and C. Chen, “Gifdroid: automated replay of visual bug reports
for android apps,” in 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE). IEEE, 2022, pp. 1045–1057.

[47] D. Nurmuradov and R. Bryce, “Caret-hm: recording and replaying
android user sessions with heat map generation using ui state clustering,”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 400–403.

[48] J. Yan, H. Zhou, X. Deng, P. Wang, R. Yan, J. Yan, and J. Zhang,
“Efficient testing of gui applications by event sequence reduction,”
Science of Computer Programming, vol. 201, p. 102522, 2021.

[49] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013, pp.
72–81.

[50] A. J. Ko and B. A. Myers, “Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors,” in
Proceedings of the SIGCHI conference on Human Factors in computing
systems, 2006, pp. 387–396.

[51] J. Bell, N. Sarda, and G. Kaiser, “Chronicler: Lightweight recording
to reproduce field failures,” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 362–371.

[52] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella, “Reproducing
field failures for programs with complex grammar-based input,” in 2014

IEEE Seventh International Conference on Software Testing, Verification
and Validation. IEEE, 2014, pp. 163–172.

[53] M. White, M. Linares-Vásquez, P. Johnson, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Generating reproducible and replayable bug reports
from android application crashes,” in 2015 IEEE 23rd International
Conference on Program Comprehension. IEEE, 2015, pp. 48–59.

[54] S. P. Reiss, Y. Miao, and Q. Xin, “Seeking the user interface,” Automated
Software Engineering, vol. 25, no. 1, pp. 157–193, 2018.

[55] C. Chen, S. Feng, Z. Xing, L. Liu, S. Zhao, and J. Wang, “Gallery
dc: Design search and knowledge discovery through auto-created gui
component gallery,” CSCW, 2019.

[56] F. Behrang, S. P. Reiss, and A. Orso, “Guifetch: supporting app
design and development through gui search,” in Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems.
ACM, 2018.

[57] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar, “Learning
design semantics for mobile apps,” in Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, 2018, pp.
569–579.

[58] X. Zhang, A. S. Ross, and J. Fogarty, “Robust annotation of mobile
application interfaces in methods for accessibility repair and enhance-
ment,” in Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology, 2018, pp. 609–621.

[59] B. Wang, G. Li, X. Zhou, Z. Chen, T. Grossman, and Y. Li,
“Screen2words: Automatic mobile ui summarization with multimodal
learning,” in The 34th Annual ACM Symposium on User Interface
Software and Technology, 2021, pp. 498–510.

[60] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhut, G. Li, and J. Wang, “Unblind
your apps: Predicting natural-language labels for mobile gui components
by deep learning,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 2020, pp. 322–334.

[61] Y. Li, G. Li, L. He, J. Zheng, H. Li, and Z. Guan, “Widget caption-
ing: generating natural language description for mobile user interface
elements,” arXiv preprint arXiv:2010.04295, 2020.

[62] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 54–65.

[63] S. Talebipour, Y. Zhao, L. Dojcilović, C. Li, and N. Medvidović,
“Ui test migration across mobile platforms,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 756–767.

2348

Authorized licensed use limited to: York University. Downloaded on August 19,2023 at 02:47:06 UTC from IEEE Xplore.  Restrictions apply. 


