
CLEAR: Contrastive Learning for API Recommendation
Moshi Wei

York University
Toronto, Canada

moshiwei@yorku.ca

Nima Shiri Harzevili
York University
Toronto, Canada
nshiri@yorku.ca

Yuchao Huang
Institute of Software Chinese

Academy of Sciences
yuchao2019@iscas.ac.cn

Junjie Wang
Institute of Software Chinese

Academy of Sciences
junjie@iscas.ac.cn

Song Wang
York University
Toronto, Canada

wangsong@yorku.ca

ABSTRACT
Automatic API recommendation has been studied for years. There
are two orthogonal lines of approaches for this task, i.e., information-
retrieval-based (IR-based) and neural-based methods. Although
these approaches were reported having remarkable performance,
our observation shows that existing approaches can fail due to
the following two reasons: 1) most IR-based approaches treat task
queries as bags-of-words and use word embedding to represent
queries, which cannot capture the sequential semantic information.
2) both the IR-based and the neural-based approaches are weak
at distinguishing the semantic difference among lexically similar
queries.

In this paper, we propose CLEAR, which leverages BERT sen-
tence embedding and contrastive learning to tackle the above two is-
sues. Specifically, CLEAR embeds the whole sentence of queries and
Stack Overflow (SO) posts with a BERT-based model rather than the
bag-of-word-based word embedding model, which can preserve the
semantic-related sequential information. In addition, CLEAR uses
contrastive learning to train the BERT-based embedding model for
learning precise semantic representation of programming termi-
nologies regardless of their lexical information. CLEAR also builds
a BERT-based re-ranking model to optimize its recommendation
results. Given a query, CLEAR first selects a set of candidate SO
posts via the BERT sentence embedding-based similarity to reduce
search space. CLEAR further leverages a BERT-based re-ranking
model to rank candidate SO posts and recommends the APIs from
the ranked top SO posts for the query.

Our experiment results on three different test datasets confirm
the effectiveness of CLEAR for both method-level and class-level
API recommendation. Compared to the state-of-the-art API recom-
mendation approaches, CLEAR improves the MAP by 25%-187% at
method-level and 10%-100% at class-level.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510159

CCS CONCEPTS
•Computingmethodologies→ Semantic networks; •Applied
computing → Document searching; • Information systems
→ Recommender systems.

KEYWORDS
API recommendation, contrastive learning, semantic difference

ACM Reference Format:
Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song
Wang. 2022. CLEAR: Contrastive Learning for API Recommendation. In
44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3510003.3510159

1 INTRODUCTION
Over the past decades, open-source software development has re-
ceived extensive attention from the software engineering com-
munity. This attention leads to a tremendous demand for already
devised libraries or APIs which facilitate software development
and maintenance. Developers often search for existing APIs or
code snippets on the Internet to obtain the functions they wish to
implement [51].

To help with API search, many automated API recommendation
approaches have been proposed [11, 14, 16, 22, 24, 34, 35, 39]. There
are two orthogonal lines of approaches for this task, i.e., informa-
tion retrieval based, e.g., BIKER [14], and neural-based methods,
e.g., DeepAPI [11]. BIKER [14] uses bag-of-word-based word em-
bedding (i.e., a word2vec model built on Java SO posts) and IDF
(inverse document frequency) vocabulary to calculate the similarity
score between two text descriptions and then leverages a query’s
similarity with both SO posts and API documentations to recom-
mend appropriate APIs for the query. DeepAPI [11] formulates the
API recommendation as a machine translation problem, i.e., given a
natural language query, it aims to translate it into an API sequence.
Specifically, it adapts a Recurrent Neural Network (RNN) Encoder-
Decoder model to encode a query into a fixed-length context vector
and recommends an API sequence based on the context vector for
the query. Although these approaches achieved remarkable perfor-
mance, by replicating these studies, we found two major problems
that can affect their effectiveness.

https://doi.org/10.1145/3510003.3510159
https://doi.org/10.1145/3510003.3510159
https://doi.org/10.1145/3510003.3510159

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

The first problem is that these IR-based approaches (e.g., BIKER)
treat queries and SO posts as bag-of-words and use word embed-
ding to represent queries [12], which cannot capture the semantic-
related sequential information. For example, given a real-world
query “Convert String to Calendar Object in Java”1, BIKER can-
not recommend the correct API and the top API recommended by
BIKER is “java.time.LocalDate.parse” from the most similar
post identified by BIKER, i.e., “Convert Java Gregorian Calendar to
String”2, whose intent is opposite to the intent of the query. BIKER
fails to retrieve the correct answer for the above query because
of its bag-of-words-based representation, which cannot capture
the semantic-related sequential information. To properly represent
the semantic-related sequential information of the text descrip-
tions, the embedding of queries and SO posts has to be considered
comprehensively instead of using bag-of-words.

The second problem is that both the IR-based and the neural-
based approaches areweak at distinguishing the semantic difference
among quires that are lexically similar. For example, given a real-
world query “Filereader.read() method not working”3, neither BIKER
nor DeepAPI can recommend a correct API. Specifically, The most
likely API recommended by BIKER is “java.io.RandomAccessFile
.read” from the post “BufferedReader read() not working”4, as the
text descriptions of the query and the post are almost identical ex-
cept the terminology “Filereader” and “BufferedReader”. How-
ever, the answer to this query is “java.io.OutputStreamWriter
.flush”. The root cause of such a failure of BIKER is that the
two quires are lexically close but semantically different. BIKER’s
word2vec embedding relies on the context of the words in a text
description. However, the above example shows that only using the
context of the words is not enough to distinguish the semantic of the
query in API recommendation tasks. For DeepAPI, we experiment
with the above two queries “Filereader.read() method not working”
and “BufferedReader read() not working”, while DeepAPI generates
the same API sequence for both queries, i.e., {“String.length”, “Ob-
ject.toString” }, which is incorrect as these two queries have different
semantics. One of the reasons for such a failure is that DeepAPI uses
an RNN Encoder-Decoder base architecture to encode every query
into a fixed-length context vector and generates an API sequence
based on the overall context of the query. Thus, due to the above
nature of RNN, DeepAPI often fails for similar queries that have
different key words [1, 10].

To alleviate the above two problems, we propose CLEAR, an
API recommendation approach based on BERT sentence embed-
ding [7] and contrastive learning [25]. Specifically, to solve the
first issue, CLEAR uses a BERT-based model to embed text de-
scriptions of queries and SO posts, which produces the embedding
of the whole sentence of an API query while taking sequential
information into consideration rather than combining the embed-
ding of each word (i.e., bag-of-words). For solving the second issue,
CLEAR uses contrastive learning to train the BERT sentence em-
bedding model for learning semantically equivalent representation
1https://stackoverflow.com/questions/5301226/convert-string-to-calendar-object-in-
java
2https://stackoverflow.com/questions/24741696/convert-java-gregorian-calendar-to-
string
3https://stackoverflow.com/questions/36427839/filereader-read-method-not-
working
4https://stackoverflow.com/questions/43190995/bufferedreader-read-not-working

of queries or SO posts regardless their lexical information. Given
a query, CLEAR first selects a set of candidate SO posts via the
BERT sentence embedding-based similarity to reduce search space.
CLEAR further leverages a BERT-based classification model to re-
rank candidate SO posts and recommend the APIs from the ranked
top SO posts for the query.

In order to evaluate the effectiveness of CLEAR, we re-use the
dataset from BIKER [14]. Specifically, we have developed three test
sets derived from BIKER’s dataset for testing. The first is BIKER’s
manually created test dataset, the second is randomly selected 1k
sample SO posts to alleviate potential human bias. Since around
10% posts in SO contain multiple APIs, in order to test the per-
formance on the scenario of multi-API answers, we added a third
test dataset, which is 1K randomly selected sample SO posts with
multiple APIs in answers. We use the corpus that excludes these
testing data as our training dataset to train CLEAR. The results
show that CLEAR outperforms the state-of-the-art information
retrieval based and neural-based approaches (i.e., BIKER [14] and
DeepAPI [11] respectively) significantly at both method- and class-
level on all three test sets. We also conduct a case study to evaluate
CLEAR against the latest SO posts, and the results confirm the
effectiveness and practical values of CLEAR. This paper makes the
following contributions:

• We propose CLEAR, a novel API recommendation approach,
which uses the BERT sentence embedding model to repre-
sent queries for capturing sequential semantic information
and leverages contrastive training to train the BERT model
for learning precise semantic representation of queries re-
gardless of their lexical information.

• We evaluate CLEAR using three different test datasets, in-
cluding test data from previous studies, 1k randomly selected
SO posts, and 1k randomly selected SO posts with multi-API
answers. Our experiment results confirm that CLEAR can
significantly outperform the state-of-the-art baselines.

• We conduct a case study on the latest SO posts to evaluate the
performance of CLEAR and our results suggest the practical
value of CLEAR.

• We release the source code of CLEAR and the dataset of our
experiments to help other researchers replicate and extend
our study5.

The rest of this paper is structured as follows. Section 2 describes
the background of this study. Section 3 presents the framework of
the proposed CLEAR. Section 4 introduces experimental design,
baselines, and research questions. Section 5 analyzes the experiment
results. Section 6 discusses open questions and the threats to the
validity of this work. Section 7 surveys the related work and Section
8 summarizes this paper.

2 BACKGROUND
2.1 Language Embedding
Language embedding technique is a method for converting words
or sentences into numerical vectors [7, 28, 36]. The deep learning-
based language models have been widely examined to be useful
in capturing implicit semantics for natural language sentences.

5Reproduction package link: https://github.com/Moshiii/CLEAR-replication

CLEAR: Contrastive Learning for API Recommendation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

There exist studies of language embedding on both word-level [20,
27] and sentence-level [7, 28, 36]. Typical deep learning language
embedding models include GPT [32] and BERT [7].

GPT [32] introduces minimal task-specific parameters and is
trained on the downstream tasks by simply fine-tuning all pre-
trained parameters. BERT [7] is deep learning language embedding
based on transformer units. It uses a 12-layer or 24-layer trans-
former layer with a multi-head attention mechanism as feature
extraction, and then uses a regression function to generate the final
output. BERT model can be used for multiple tasks, e.g., sentence
embedding, classification, question-answer tasks, sentence tagging,
etc., with different minor adaptions [7].

In this paper, we use the BERT model for two different tasks.
First, we use BERT as sentence embedding to represent the text
of queries and SO posts for preserving their semantic information
regardless of their lexical information. Second, we use BERT as a
binary SO post classifier to re-rank the retrieved SO posts for a
given query. For both the two tasks, we use RoBERTa model, a state-
of-the-art BERT variant [17]. For sentence embedding, we adopt the
contrastive learning process to train the model, we provide an input
sample to the model and take the output vector of the model as the
sentence embedding of the input. For re-ranking posts, following
existing work [7], we use the joint embedding training process to
train the classifier, which takes paired posts as input and the label
is whether or not they have the same APIs.

The difference of RoBERTa to the original BERT model is that
RoBERTa applied different training processes and distillations in
training [29], which reduces the number of parameters while in-
creasing the robustness of the BERT model.

2.2 Contrastive Learning
Contrastive learning [25] is a deep neural network training process
that takes paired sentences as input and uses the similarity in
the paired sentences as labels. The training goal is to learn the
relationship between sentences, i.e., whether two sentences are
semantically similar regardless of their lexical similarity. Hoffer
et al. [13] proposed the triplet network for contrastive training. It
requires a triplet (𝑆, 𝑃, 𝑁) as the input, where 𝑆 corresponds to the
original query, 𝑃 refers to the positive equivalent of 𝑆 , and 𝑁 is the
negative one.

In this work, we use contrastive learning to train a RoBERTa [17]
model for sentence embedding. For a given post in the training data,
its positive posts are posts with the same answer and negative posts
are posts with different answers.

2.3 Joint Embedding Training
Joint embedding training [7] was widely used to train BERT as
a classification model. Figure 1 shows the architecture of joint
embedding training for BERT. BERT [7] provides a special token
[𝑆𝐸𝑃], which allows two posts to be concatenated as input. In joint
embedding training, [𝑆𝐸𝑃] is used to identify the end of the first
post. The process of joint embedding training is fine-tuning the
model with pairs of posts to the target that if given two semantic
equivalent posts, the model returns 1, otherwise returns 0. The
loss function we use for joint embedding training is the classic

Figure 1: Joint embedding training

cross-entropy loss function (i.e., 𝐿𝑜𝑠𝑠):

𝐿𝑜𝑠𝑠 = −(𝑦 ∗ 𝑙𝑜𝑔(𝑦) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑦)) (1)

where 𝑦 indicates whether the given two posts are semantically
equivalent, and 𝑦 is the prediction of the re-ranking model.

In this work, we leverage joint embedding training to train a
RoBERTa based classification model to re-rank the retrieved SO
posts for a given query.

3 APPROACH
Figure 2 shows the pipeline of CLEAR, which consists of two parts:
language model building (section 3.1) and searching relevant APIs
(section 3.2). The language model building process contains four
steps, i.e., post triplets construction (Section 3.1.1), BERT sentence
embedding with contrastive learning (Section 3.1.2), candidate posts
filtering (Section 3.1.3), and the joint embedding training based re-
ranking model (Section 3.1.4).

3.1 Building BERT-base Language Models
3.1.1 Post Triplets Construction. The format of the training
data used in the contrastive training process is different from the
traditional natural language processing tasks, e.g., sentiment analy-
sis, where the inputs are sentences and the outputs are the labels.
Contrastive training requires triplets as inputs [13]. Every single
triplet is a combination of three posts, which are an input query 𝑆 ,
a positive sample post 𝑃 that is semantically equivalent to 𝑆 , and a
negative sample post 𝑁 that is not related to 𝑆 and 𝑃 . Therefore, the
training corpus needs to be converted to triplets. For example, given
an input query “Java string split with multiple delimeters”, the triplet
(𝑆, 𝑃, 𝑁) can be (“Java string split with multiple delimeters”,“How
to split a path using StringTokenizer?”,“How to load a file across the
network and handle it as a String”). Algorithm 1 shows the process
of generating training triplets.

Our triplets generation algorithm has two parameters, i.e., 𝑝 is
the number of positive samples and 𝑛 is the number of negative
sampling for a training instance. When generating the triplets, each
question needs to be paired with positive and negative samples. For
each question 𝑖𝑡𝑒𝑚 in 𝑇 , we use function get_equivalent_subset()
to get its positive posts, i.e., posts that have the same answer with
𝑖𝑡𝑒𝑚. In addition, we consider posts that have a different answer
from 𝑖𝑡𝑒𝑚 as the negative posts of 𝑖𝑡𝑒𝑚.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

Figure 2: Overview of our proposed CLEAR.

Algorithm 1: Triplets Generator
Result: Tuple list of element (S, P, N)
def getTriplets(p: int, n: int, T: list<question, answer>):

result_list = new list() // initialize empty result list
for item in T do

S = item[0] //question sentence
answer = item[1]
T_P= get_equivalent_subset(T, answer)
T_N = set(T) - set(T_P)
P_list = random_sample(T_P, p)
N_list = random_sample(T_N, n)
for item P in P_list do

for item N in N_list do
result_list.append(S, P, N)

end
end

end
return result_list

Note that, the ratio between positive and negative samples is
important in contrastive training, different configurations may im-
pact the result significantly [15, 41]. In our algorithm, To find the
best configurations, i.e., 𝑝 and 𝑛, we perform a grid search with a
list of candidate values for both 𝑝 and 𝑛, which are 1, 3, 5, 10, and
15. We use 𝑝 and 𝑛 that can achieve the best performance in our
experiment (details are in Section 4.2). For APIs that do not have
𝑝 positive samples, we use all their positive samples. We perform
random sampling on the APIs that exceed 𝑝 or 𝑛 to limit the number
of positive or negative samples.

3.1.2 BERT Sentence Embedding Model. In this step, we use
contrastive training to train the RoBERTa based sentence embed-
dingmodel with the post triplets created in Section 3.1.1. The goal of
this process is to learn a semantic presentation, with which similar
samples stay close to each other, while dissimilar ones are far apart.
Figure 4 shows an illustration for this process. In the Figure, green
points are positive posts that have the same API “Arrays.asList”
with query 𝑆 , and the red points are negative posts of 𝑆 . With
contrastive learning, the center green point 𝑆 plays the role of an
anchor, the positive samples are pulled towards the anchor and the
negative samples are pushed away from the anchor.

Figure 3: Architecture for contrastively trainning RoBERTa
based sentence embedding model

Figure 3 shows the architecture of the contrastive learning used
in our work, in which the RoBERTa [17] model is the base model
for sentence embedding, and we use a Pooling layer to connect the
RoBERTa model and the triple network. Triple network has two
layers, the first layer is three identical deep neural network models
for feature extraction of input sentences. The feature extraction
layer can also be replaced with other models or algorithms. The
second layer of the triplet network is a loss function based on the
cosine distance operator. The purpose of the loss function is to
minimize the distance between similar sentences and maximize the
distance between unrelated sentences. The training objective is to
fine-tune the network so that the distance between the question
𝑆 and the positive question 𝑃 is closer than the distance between
the question 𝑆 and the negative question 𝑁 . Formally, the training
objective is to minimize the following function:

𝑚𝑎𝑥 (| |𝐸𝑠 − 𝐸𝑝 | | − | |𝐸𝑠 − 𝐸𝑛 | | + 𝜖, 0) (2)

where 𝐸𝑠 , 𝐸𝑝 , and 𝐸𝑛 are the sentence embeddings of question 𝑆 ,
𝑃 , and 𝑁 . 𝜖 is the margin of the distance between 𝑆 and 𝑁 . By
default, 𝜖 is set to 1, which means that the cosine distance between
a question and its irrelevant question should be 1.

CLEAR: Contrastive Learning for API Recommendation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

S

N

N

P

P

how to convert foreign characters in java?
java.lang.Integer.toString

how to convert comma-separated string to list?
java.util.Arrays.asList

how to initialize list<string> object in java?
java.util.Arrays.asList

converting array to list in java
java.util.Arrays.asList

how to convert a number to a string collection
java.lang.Integer.toString

Figure 4: Contrastive training for a single post.

3.1.3 Candidate Posts Filter. In this step, with the BERT sen-
tence embedding built-in Section 3.1.2, we further filter out irrele-
vant questions for a given query and keep top-k questions for de-
tecting candidate APIs. Following existing work [14], CLEAR keeps
top-50 similar questions as the candidates, since retrieving toomany
questions can introduce noise to the recommendation process. In
this step, we use the euclidean distance between two questions as
the metric to filter out irrelevant questions.

Note that, although our experimental results show that directly
using the 50 candidate questions from the filter for API recom-
mendation can achieve better performance than both BIKER and
DeepAPI (details are in Section 5.1), we observe that there exist
noisy questions in the retrieved 50 candidate questions from the
filter (one of the possible reasons is the low quality of SO posts [30]),
which could hurt the performance of API recommendation. Thus, a
re-ranking model for the candidate posts is needed and details are
in the next section.

3.1.4 Candidate Post Re-ranking Model. The objective of our
filter model (details are in Section 3.1.3) is to filter out the number of
irrelevant posts from the entire search space, while this re-ranking
model is to optimize the ranking of the left 𝑘 candidate posts from
the filter model.

For semantic embedding re-ranking tasks, we choose the same
BERT model, i.e., RoBERTa [17], the state-of-the-art BERT-based
model for semantic embedding re-ranking tasks, as the base model.
Then, we fine-tune it with joint embedding training, which turns
the RoBERTa into a classification model (details are in Section 2),
the label is whether two posts have the same APIs. For training the
model, we first use the filter model (details are in Section 3.1.3) to
find the top-50 similar posts, i.e., 𝑇𝑠 = {𝑠1, 𝑠2, 𝑠3, ...𝑠50}, for a post 𝑝
in our training dataset. We then create 50 pairs from the post, i.e.,
𝑝𝑎𝑖𝑟𝑠 = {< 𝑝, 𝑠1 >, < 𝑝, 𝑠2 >, < 𝑝, 𝑠3 >, ... < 𝑝, 𝑠50 >} and the label
of each pair is whether they have the same APIs. In total, we have
around 1.7M pairs to train the RoBERTa based classification model.
We use the predicted possibility to rank the 50 candidate posts.

3.2 Search APIs
Given a natural language described query 𝑄 , the first step is to re-
trieve the top-k candidate questions from SO. CLEAR first uses the
trained RoBERTa based sentence embedding model to transform it

into an embedding. CLEAR then uses the filter model to filter out
irrelevant posts and get a list of candidates’ posts based on the BERT
sentence embedding. Then, in the re-ranking phase, the re-ranking
model calculates the probability that 𝑄 and a given candidate post
have the same label, we use the probability to rank the 50 candidate
posts. We then extract the APIs from the ranked posts and output
them as the recommendation to the query 𝑄 . After obtaining the
ranked list of candidate APIs, CLEAR also summarizes supplemen-
tary information for 𝑄 to describe the API usage examples and
help users decide which API should be chosen for their tasks. The
supplementary information summarized by CLEAR considers two
aspects, i.e., the title of similar questions and code snippets from
these questions.

Note that, CLEAR recommends APIs at method-level by default.
It can be easily adapted to class-level recommendations as well. In
the case of API class searching, we remove the method name of the
candidate API to adjust the candidate API to the class level.

4 EXPERIMENT DESIGN
4.1 Dataset
To evaluate the performance of CLEAR, we reuse SO data from the
state-of-the-art approach BIKER [14], which were collected from
the official data dump of SO by following criteria: 1) the question
is related to Java JDK programming, 2) the question should have
a positive score, and 3) at least 1 answer to the question contains
API entities and the answer’s score should be positive.

The APIs were extracted from the code snippets in markdown
scripts of the accepted answers in SO. In a markdown script, code
snippets are wrapped by <code> tags. One can use regular expres-
sions to localize the code snippets and further extract the APIs. In
total, BIKER’s dataset contains 33K Java-related questions. BIKER
also provided a test dataset for evaluating its performance, which
was manually created with a set of well-designed criteria, e.g., one
of their criteria is the score of the question itself should be at least
five, the details about the process are in their Section 4. The test
data contains 413 questions along with their ground truth APIs. We
use the title of these 413 questions as the query for API search.

Note that, BIKER’s test dataset mainly contains SO posts with
high quality, which cannot reflect the overall quality of SO posts.
Thus, we have also created two different random test datasets which
contain randomly selected SO posts for removing human bias (de-
tails are in Section 4.3).

4.2 Experiment Settings
We use Google Colab [2] professional version for fine-tuning the
models. The CPU we use is two Intel Xeon 2.20GHz CPU with
5G cache. The GPU resource we use is one NVIDIA V100 graphic
card with 13G memory. We fine-tune the filtering model and the
re-ranking model for five epochs each and then select the model
with the best performance on the validation set.

The triplets generation algorithm in CLEAR has two parameters,
i.e., the number of positive samples (𝑝) and the number of nega-
tive samples (𝑛), which could affect the performance of CLEAR.
To find the best values of these two parameters, we tune them
together. For 𝑝 and 𝑛, we experiment with five discrete values,
i.e., 1, 3, 5, 10, and 15, which results in a combination of 25 model

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

Table 1: Performance comparison of different (P)ositive sam-
pling and (N)egative sampling settings.

P\N 1 3 5 10 15
1 0.004 0.032 0.027 0.036 0.027
3 0.184 0.332 0.392 0.463 0.416
5 0.376 0.512 0.552 0.766 0.76
10 0.524 0.704 0.652 0.828 0.784
15 0.624 0.684 0.736 0.72 0.784

configurations. Because the fine-tuning on the full data is very
time-consuming, we perform the grid search on the model with
a quarter of the training data. We train the filtering model until
full convergence or up to 5 epochs to sufficiently train the models.
The random seed is locked across the models to make sure the
random sampling on positive and negative samples is consistent.
We randomly select 5K posts as the test data for tuning these two
parameters, and we use the accuracy of our filter model as a metric
during our tuning. Following existing studies [6, 40], we use the
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦@1 as the metric for parameter tuning, which is calculated
as #(𝑓 𝑖𝑟𝑠𝑡 𝑚𝑎𝑡𝑐ℎ 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)/#(𝑡𝑒𝑠𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠).

Table 1 shows the result of 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦@1 based on different pa-
rameter settings, in which the row and column indices are the
numbers of positive and negative samples respectively. Overall, the
performance of CLEAR increases with the increase of positive and
negative samples, and the performance of CLEAR reaches the peak
at the point where the number of positive and negative samples are
both equal to 10. Thus, we set 10 positive samples and 10 negative
samples for each training instance when training CLEAR in our
experiments. In the case that there are less than 10 positive and
negative samples, we include all positive and negative samples.

4.3 Evaluation Datasets
To comprehensively evaluate the performance of CLEAR, we adopt
three test datasets covering three different scenarios, i.e., high-
quality SO posts (i.e., BIKER’s test dataset), real-wold random SO
posts, and SO posts with multi-API answers as our observation
shows that around 10% posts in SO contain multiple APIs. The
details of the three datasets are as follows:

• BIKER test dataset: is the evaluation dataset of BIKER,
which contains 413manually selected and verified SO queries
with API answers.

• Random test dataset: contains 1K random selected SO
queries with API answers from BIKER’s training dataset.

• Multi-API test dataset: contains 1K random SO queries
with multi-API answers from BIKER’s training dataset.

During our experiments, questions from the test datasets and
their duplicate questions were excluded from the training dataset.

4.4 Baselines
We compared CLEAR with BIKER [14], RACK [35], and Deep-
API [11], which are three state-of-the-art API recommendation
techniques. To show the impact of contrastive training, we also
introduce a variant of the filter model without adopting the con-
trastive training, which is the pre-trained RoBERTa model. Note

that, BIKER and our CLEAR share a common procedure, i.e., a filter
model to retrieve top k candidate posts and a re-ranking model
to re-rank the candidate posts. Thus, we also introduce the filer
models of BIKER and our CLEAR as the baselines.

Baseline1 (BIKER) [14]: first uses a mixture of TF-IDF and
a trained Word2vec model to calculate the similarity of a given
query and the SO posts and then the top 50 posts are selected
as the candidates. Finally, it re-ranks the 50 candidates by using
the similarity between the query and the corresponding official
API document descriptions. To comprehensively compare it with
CLEAR, we employ two related baselines, i.e., BIKER-filter (BIKER
without re-ranking) and BIKER-complete (the whole approach).

Baseline2 (RACK) [35]: is a keyword-API mapping system that
recommends APIs by matching keywords from the query. The
keyword-API is constructed by mining the statistical relationship
between the SO questions and the accepted answers of questions.
Please note that RACK only recommends API at the class level.

Baseline3 (DeepAPI) [11]: models API recommendation task as
a machine translation problem. It uses a Recurrent Neural Network
(RNN) Encoder-Decoder model to encode a given query into a fixed-
length context vector, and generate an API-method sequence based
on the context vector. The author of DeepAPI provided an online
tool for testing and evaluation. However, the website is not available
currently due to the budget limit. Initially, we contacted the authors
for their trained models, unfortunately, the author claimed that
they did not maintain the trained models anymore. Then, we used
its reproduction package6 and rigorously follow its instruction
to re-train the DeepAPI model from scratch with its dataset. The
training process takes 15 days and we achieve similar performance
(regarding BLUE scores) as reported in the paper of DeepAPI. The
reproduction model represents the best effort we made to reproduce
the DeepAPI model. In this work, the evaluation of the DeepAPI
model is performed on the reproduced model.

Baseline5 (Pre-trained RoBERTa filter): is the pre-trained
RoBERTa model. We compare CLEAR-filter with RoBERTa to ex-
plore the performance increase introduced by contrastive learning.
We use the same pre-trained RoBERTa model as used in CLEAR.

Baseline5 (CLEAR-filter): Since CLEAR has two steps, i.e., the
filter model, and the re-ranking model, we separate the filter model
from the re-ranking model to show the performance increase intro-
duced by both of them.

4.5 Performance Measures
Following existing studies [14], we use Mean reciprocal rank(MRR)
[31, 45], Mean average precision(MAP) [38], 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , and
𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , to evaluate the performance of API recommendation
approaches. MRR and MAP are the widely accepted measurements
for information retrieval. MRR measures the effort needed to find
the first correct answer in the recommended list and MAP considers
the ranks of all correct answers.

We also evaluate the performancewith 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ,
where 𝑘 can be 1, 3, 5, and 10. For the search result of a query, pre-
cision and recall can be defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)@𝑘

#(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠) (3)

6https://github.com/guxd/deepAPI

CLEAR: Contrastive Learning for API Recommendation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)@𝑘

#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠) (4)

where the #(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑) refers to the number of cor-
rectly recommended API, the #(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠) refers to the num-
ber of total retrieved APIs, and the #(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠) refers to the
number of APIs in the answers of the queries.

4.6 Research Questions
To evaluate the performance of CLEAR, we design experiments to
answer the following research questions:

RQ1: How effective is CLEAR comparing with existing API recom-
mendation baselines at method-level?

RQ2: How effective is CLEAR comparing with existing API recom-
mendation baselines at class-level?

RQ3: How does random sampling of triplet generation affect the
performance of CLEAR?

In RQ1 and RQ2, we set out to investigate the performance of
the CLEAR on method- and class-level API recommendation tasks.
To demonstrate its advantages, we compare CLEAR with state-of-
the-art baselines (details are in Section 4.4). In RQ3, we explore the
impact of the random sampling process in the triplet generation
algorithm (details are in Section 3.1.1) on the performance of CLEAR.

4.7 Statistical Testing
In this paper, we use a parametric test to check the statistically
significant difference in performance of different API recommen-
dation baselines. We use the parametric Wilcoxon signed ranked
test [50], which has been widely used in many software engineering
studies [21, 46–48]. The advantage of the Wilcoxon test is that it
does not require the results to follow any specific distribution. A
p-value smaller than 0.05 indicates that the difference between the
two baselines’ performance is statistically significant.

5 RESULT ANALYSIS
This section presents our experiment results and answers the three
research questions asked in Section 4.6 regarding the effectiveness
of CLEAR at method-level API recommendation (Section 5.1) and
class-level API recommendation (Section 5.2) and the impact of
randomness in CLEAR (Section 5.3).

5.1 RQ1: Effectiveness of CLEAR at
Method-level

ExperimentalMethod. To answer this research question, we com-
pare CLEAR with the baselines listed in Section 4.4 on the three
different test datasets listed in Section 4.3. Note that, we exclude
RACK in this research question as it recommends API at class-level
only. Since BIKER’s authors have published the replication pack-
age7, we directly use it to conduct experiments and compare with
CLEAR. For DeepAPI, as we described in Section 4.4, we use the
re-trained model for our experiments. Since DeepAPI recommends
API sequence for a given query, we consider a recommendation is
correct if any one of the APIs in the sequence is the ground truth

7https://www.dropbox.com/s/fr4gdbyfn58ytm8/BIKER.zip?dl=0

API of the query (the same comparison manner has also been used
in the comparison of BIKER and DeepAPI in BIKER’s paper [14]).

Results. Table 2 shows the result of CLEAR compared with the
other baselines. As shown in the Table 2, overall CLEAR outper-
forms both BIKER (including both its filter model and re-ranking
model) and DeepAPI. Note that, BIKER has the same performance
reported in this work and its original paper [14]. However, different
from the comparison reported in BIKER’s paper [14], where Deep-
API’s MRR and MAP are 0.183 and 0.155, in this study DeepAPI
reports muchworse performance, i.e., all MRRs andMAPs are below
0.1. The reason is that in paper [14], DeepAPI was evaluated on the
online tool released by DeepAPI’s authors, we re-trained DeepAPI
with its reproduction package (details are in Section 4.4). On BIKER
test data, the 𝑟𝑒𝑐𝑎𝑙𝑙@1 of CLEAR-complete is 0.6309, indicating
that there is at least one right answer in the first candidates in
63.09% cases. Comparing the BIKER-filter model and CLEAR-filter
model, the CLEAR-filter model outperforms the BIKER-filter model
by 46.43% and 50.18% on MAR and MAP. In terms of precision
and recall, CLEAR-filter model improves the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@1, 3, 5, 10
by 51.45%, 120.44%, 151.37%, 166.49%, 𝑟𝑒𝑐𝑎𝑙𝑙@1, 3, 5, 10 by 52.61%,
31.63%, 22.25%, 4.005% respectively, which shows the effectiveness
of our filter model.

On the random test data, CLEAR-complete model outperforms
BIKER-complete model in all the measurements. Comparing to
BIKER-completemodel, CLEAR-completemodel improves by 185.88%
on MRR, 195.15% on MAP, 314.94%, 541.88% 732.24% 1132.05%
on 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@1, 3, 5, 10, and 326.29%, 180.50%, 133.18%, 87.45% on
𝑟𝑒𝑐𝑎𝑙𝑙@1, 3, 5, 10 respectively. Onmulti-API test data, CLEAR-complete
mode outperforms BIKER-complete mode by 104.09% on MRR and
105.24% on MAP. In terms of precision and recall, CLEAR-complete
improves the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@1, 3, 5, 10 by 287.09%, 506.31%, 711.52%,
1126.38% and 𝑟𝑒𝑐𝑎𝑙𝑙@1, 3, 5, 10 by 301.99%, 165.70%, 130.77%, 87.35%
respectively. Compared to the RoBERTa model, CLEAR’s filter
model achieves better performance on all the three test datasets,
which indicates that contrastive learning can help learn a precise
semantic representation of programming tasks.

We have also conducted the Wilcoxon signed-rank test (𝑝 <

0.05) to compare the performance of CLEAR and baselines. the test
result suggests that CLEAR achieves significantly better perfor-
mance than all the baselines.

CLEAR significantly outperforms the state-of-the-art baselines
at method-level API recommendation and CLEAR’s perfor-
mance remains stable across different test datasets.

5.2 RQ2: Effectiveness of CLEAR at Class-level
Experimental Method. To answer this research question, we per-
form the same evaluation method on the baselines and CLEAR. We
use the same three test datasets with API methods removed to com-
pare API answers at the class level. To compare with RACK, we run
experiments with RACK’s replication8. For both BIKE and DeepAPI,
we use the same manner as the experiment at method-level API
recommendation in Section 5.1.

8https://github.com/masud-technope/RACK-Replication-Package

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

Table 2: Performance comparison at method-level (RQ1)

Method-level BIKER-filter BIKER-complete DeepAPI RoBERTa CLEAR-filter CLEAR-complete

BIKER test data

MRR 0.4318 0.6225 0.0313 0.4098 0.6319 0.7551
MAP 0.4260 0.6175 0.0102 0.4088 0.6398 0.7655

Precision

P@1 0.2777 0.4642 0.0088 0.2341 0.4206 0.4682
P@3 0.2328 0.2486 0.0073 0.2632 0.5132 0.5502
P@5 0.2071 0.1698 0.0140 0.2563 0.5206 0.5531
P@10 0.1928 0.0956 0.0123 0.2305 0.5138 0.5563

Recall

R@1 0.2678 0.4503 0.0029 0.2321 0.4087 0.6309
R@3 0.5019 0.7142 0.0066 0.4980 0.6607 0.7638
R@5 0.5972 0.8134 0.0227 0.6130 0.7301 0.7956
R@10 0.7440 0.9166 0.0403 0.7182 0.7738 0.8551

Random test data

MRR 0.2448 0.2813 0.0336 0.2912 0.7573 0.8042
MAP 0.2357 0.2724 0.0104 0.2855 0.7612 0.8040

Precision

P@1 0.1420 0.1740 0.0080 0.1940 0.6680 0.7220
P@3 0.1266 0.1103 0.0057 0.1746 0.6669 0.7080
P@5 0.1160 0.0830 0.0131 0.1673 0.6495 0.6909
P@10 0.1074 0.0546 0.0137 0.1524 0.6233 0.6727

Recall

R@1 0.1298 0.1620 0.0023 0.1783 0.6383 0.6906
R@3 0.2673 0.3011 0.0052 0.3093 0.8078 0.8446
R@5 0.3298 0.3791 0.0203 0.3791 0.8523 0.8840
R@10 0.4418 0.4976 0.0423 0.4724 0.8954 0.9328

Multi-API test data

MRR 0.2296 0.2879 0.0355 0.2988 0.6495 0.5876
MAP 0.2212 0.2804 0.0115 0.2895 0.6392 0.5755

Precision

P@1 0.1280 0.1860 0.004 0.1970 0.6770 0.7200
P@3 0.1166 0.1156 0.0073 0.1766 0.6489 0.7009
P@5 0.1162 0.0850 0.018 0.1692 0.6365 0.6898
P@10 0.1120 0.0542 0.0153 0.1585 0.6183 0.6647

Recall

R@1 0.1155 0.1703 0.0011 0.1800 0.6406 0.6846
R@3 0.2440 0.3126 0.0065 0.3183 0.7806 0.8306
R@5 0.3188 0.3795 0.0278 0.3891 0.8335 0.8758
R@10 0.4443 0.4856 0.0472 0.4979 0.8793 0.9098

Results. Table 3 shows the result of CLEAR compared with the
other baseline approaches at the class level. Overall, CLEAR out-
performs other baselines on each of the three datasets. Among
the three baselines, similar to method-level API recommendations,
BIKER reports better performance than RACK and DeepAPI.

On BIKER test data, the recall@1 of CLEAR-complete is 80.95%,
indicating that there is at least one right answer in the top three
candidates in 80.95% cases. Comparing the CLEAR-complete model
with RACK, the CLEAR-complete model outperforms RACK by
187.65% in MRR and 196.76% in MAP. In terms of precision and re-
call, CLEAR-complete improves the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@1, 3, 5, 10 by 236.11%,
566.25%, 906.04%, 1684.76% and 𝑟𝑒𝑐𝑎𝑙𝑙@1 by 242.86%, 158.87%, 144.96%,
129.77% respectively. Comparing the CLEAR-complete model with
the BIKER-complete model, the CLEAR-complete model outper-
forms the BIKER-complete model by 7.70% in MRR and 9.43% in
MAP. On the random test data, CLEAR outperforms RACK, BIKER,
and DeepAPI in all the measurements. Comparing the CLEAR-
complete model with RACK, CLEAR-complete outperforms RACK
by 273.41% in MRR, 298.55% in MAP, 432.89% in precision@1,
and 455.62% in Recall@1. On the multiple-API test data, CLEAR-
complete model outperforms RACK by 187.33% in MRR, 197.04%
in MAP. In terms of precision and recall, CLEAR-complete outper-
forms RACK the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@ 1, 3, 5, 10 by 393.20%, 642.09%, 941.02%,
1617.85% and 𝑟𝑒𝑐𝑎𝑙𝑙@1, 3, 5, 10 by 399.01%, 193.87%, 159.94%, 124.76%
respectively. Compared to the RoBERTa model, CLEAR filter model

achieves consistently better performance on each of the three
datasets, indicating the effectiveness of contrastive learning.

The Wilcoxon signed-rank test (𝑝 < 0.05) also suggests that
CLEAR achieves significantly better performance than all other
baseline approaches.

CLEAR significantly outperforms the state-of-the-art baselines
at class-level API recommendation and CLEAR’s performance
remains stable across the three test datasets.

5.3 RQ3: Impact of Random Sampling
Experimental Method. In CLEAR’s triplet generation, for queries
with more than 10 positive or negative samples, CLEAR randomly
selects 10 for each query. To understand how does random sampling
affects the performance of CLEAR, we re-run the triplet generation
100 times. Please note that fine-tuning the model with full training
triplets is very time-consuming so we perform this experiment on
a subset of the training triplets containing 92k pairs (i.e., a quarter
of the full training triplets).

Result. Table 4 shows the impact of random sampling on the
performance of CLEAR measured by the Average Error and Coeffi-
cient of Variation (CV). As we can see from the table, the average
error on MRR is 0.85%, indicating that the difference of MRR in-
troduced by random sampling between different runs is 0.85% on

CLEAR: Contrastive Learning for API Recommendation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Performance comparison at class-level (RQ2)

Class-level BIKER-filter BIKER-complete RACK DeepAPI RoBERTa CLEAR-filter CLEAR-complete

BIKER test data

MRR 0.6397 0.8138 0.3047 0.0172 0.5761 0.7059 0.8765
MAP 0.6343 0.8138 0.3001 0.0008 0.5769 0.7156 0.8906

Precision

P@1 0.2777 0.4642 0.2420 0.0044 0.3690 0.7777 0.8134
P@3 0.2328 0.2486 0.1203 0.0014 0.4404 0.7513 0.8015
P@5 0.2071 0.1698 0.0777 0.0079 0.4269 0.7380 0.7817
P@10 0.1928 0.0956 0.0420 0.0070 0.4095 0.7182 0.7496

Recall

R@1 0.4623 0.6865 0.2361 0.0001 0.3611 0.5436 0.8095
R@3 0.7559 0.9067 0.3472 0.0001 0.7202 0.8253 0.8988
R@5 0.8531 0.9563 0.3750 0.0018 0.8214 0.8750 0.9186
R@10 0.9424 0.9880 0.4067 0.0035 0.9226 0.8988 0.9345

Random test data

MRR 0.4060 0.4515 0.2343 0.0206 0.4426 0.8467 0.8749
MAP 0.3961 0.4408 0.2207 0.0010 0.4410 0.8536 0.8796

Precision

P@1 0.1420 0.1740 0.1520 0.0060 0.3030 0.7800 0.8100
P@3 0.1266 0.1103 0.0989 0.0026 0.2976 0.7719 0.8093
P@5 0.1160 0.0830 0.0722 0.0076 0.2925 0.7611 0.7989
P@10 0.1074 0.0546 0.0431 0.0085 0.2810 0.7400 0.7809

Recall

R@1 0.2473 0.3103 0.1395 0.0002 0.2833 0.7473 0.7751
R@3 0.4573 0.4881 0.2728 0.0003 0.4988 0.8806 0.9113
R@5 0.5568 0.5571 0.3308 0.0016 0.5908 0.9133 0.9403
R@10 0.6633 0.6880 0.3968 0.0039 0.7063 0.9395 0.9606

Multi-API test data

MRR 0.3829 0.4458 0.2511 0.0193 0.4351 0.7702 0.7215
MAP 0.3763 0.4371 0.2406 0.001 0.4288 0.7684 0.7147

Precision

P@1 0.1280 0.1860 0.1620 0.002 0.3040 0.7720 0.7990
P@3 0.1166 0.1156 0.1069 0.0013 0.2843 0.7513 0.7933
P@5 0.1162 0.0850 0.0758 0.0094 0.2803 0.7415 0.7891
P@10 0.1120 0.0542 0.0448 0.0087 0.2698 0.7312 0.7696

Recall

R@1 0.2263 0.3048 0.1525 0.0077 0.2811 0.7340 0.7610
R@3 0.4341 0.4901 0.3003 0.0016 0.4830 0.8458 0.8825
R@5 0.5298 0.5620 0.3548 0.0024 0.5756 0.8853 0.9223
R@10 0.6688 0.6668 0.4208 0.0045 0.6905 0.9226 0.9458

Table 4: Impact the random sampling in triplet generation

Metric MRR MAP
Average Error 0.85% 0.84%
Coefficient of Variation (CV) 0.004 0.011

average. The Coefficient of Variation is calculated by𝐶𝑉 = 𝜎/𝜇 [8],
where 𝜎 is the standard deviation and 𝜇 is the mean. The CV of our
result suggests that the difference introduced by random sampling
is negligible.

The impact of random sampling in triplet generation on the per-
formance of CLEAR is negligible, which shows the robustness
of CLEAR.

6 DISCUSSIONS
This section discusses open questions regarding the performance
and threads to validity of CLEAR .

6.1 Why CLEAR Outperforms Existing
Baselines?

To understand why CLEAR significantly outperforms the base-
lines introduced in Section 4.4, we visualize the embedding of the
API search space of the model before and after contrastive train-
ing. Specifically, we use the Uniform Manifold Approximation and
Projection (UMAP) [18] approach to reduce the dimension of the

BERT-based sentence embedding to two dimensions. Then we la-
bel the embedding vectors with the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [3], an
unsupervised cluster classification approach for the coloring.

Figure 5 shows the visualization, in which the upper graph shows
the sentence embedding visualization of the training samples on the
model before we apply contrastive training, in which the points rep-
resent the sentence embedding vectors in two-dimensional space
and the color of the points indicates the APIs. From the visualiza-
tion, we can see that the majority of the APIs are mixed and the
boundary of each API is not clear. This graph shows clearly that it
is very hard to draw the decision boundary for different clusters in
the model before contrastive training. Since the training target of
contrastive training is to minimize the distance between semanti-
cally equivalent sentences and maximize the distance between the
irrelevant sentence, the margin between clusters should be larger
and clearer after training.

To support the above hypothesis, we also apply the same visu-
alization approach to the fine-tuned model after we applied con-
trastive training. Figure 5 lower graph shows the sentence embed-
ding visualization of the training samples after contrastive training.
From this figure, we can see clear cluster patterns of the query em-
bedding vectors. Most of the APIs are from dense clusters and the
margin space between clusters is relatively clear. This visualization
supports our hypothesis of contrastive training, meaning that the
contrastive training does pull semantic equivalent queries together
and separates the irrelevant vectors apart.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

Table 5: Recommendation results (i.e., APIs and top similar questions) of CLEAR for example queries. ✓ indicates the ground-
truth API and ✗ indicates the recommended API is incorrect.

Question API answers
input query How to convert DateFormat "Fri Jan 08 13:48:16 GMT+05:30 2021" to java.sql.Date ✓java.text.SimpleDateFormat.parse
1st How to parse "Thu Aug 04 00:00:00 IST 2011" to "04-08-2011"? ✓java.text.SimpleDateFormat.parse
2nd Converting "2010-02-15T20:05:28.000Z" in GMT format using Java ✓java.text.SimpleDateFormat.parse
3rd Convert String date into java.util.Date in the dd/MM/yyyy format ✗java.text.DateFormat.format
4th Date format and the hour is always 12:00:00.000 ✗java.time.Instant.parse
input query How to retrive value from property file which are present outside of the app ✓java.util.Properties.load
1st How to close the fileInputStream while reading the property file ✓java.util.Properties.load
2nd Using Maven properties to connect to a database ✗java.lang.System.getProperty
3rd Why do we need Properties class in java? ✗java.util.Properties.load
4th Issue reading a file path from a Properties file ✗java.util.Properties.store

Figure 5: Visualization of API question sentence embedding before
(i.e., the upper image) and after (i.e., the lower image) contrastive
training.

6.2 CLEAR in the Real-world Practice
We run CLEAR, BIKER, RACK, and DeepAPI on 50 recent Java-
related questions from Stack Overflow9. Comparing the top 10
recommended APIs, CLEAR successfully recommends APIs for
34 queries, BIKER successfully recommends APIs for 23 queries,
RACK successfully recommends APIs for 4 queries, and DeepAPI
successfully recommends APIs for 2 queries.

We selected two random examples that can be solved byCLEAR only
for demonstration. Table 5 shows the recommendation results of
CLEAR for the two example latest SO posts. The first example is
about converting date formats, we can see that CLEAR can under-
stand the concept of time in multiple formats and pick the keyword
“convert” correctly. The result shows that CLEAR is not suffering
from the lexical similarity pitfall concerning the time format and
9*The full list can be found in the reproduction package

is able to recommend correct APIs. The second example is about
property file access,the semantic of the question is “how to load
property files” and the CLEAR is able to get the keywords that are
the most related to the question, i.e., “property file” and “retrieve”.
We also see that the keyword “reading”, the synonym of “retrieve”,
is correctly recognized as well.

Through the above two case studies, we can see that the CLEAR is
more effective in capturing the semantic of the API queries regard-
less of the lexical information, thus can be used for API recommen-
dation in a real-world application.

6.3 Threat to Validity
Internal Validity. Our code has been checked to ensure our im-
plementation is correct and the questions in the testing dataset are
not included in the question base. And we reuse the replication
packages of the baselines to ensure their correctness. In addition,
although the dataset collected from SO is being filtered by heuristic
rules, there are still noises in the dataset due to the openness of SO,
which may affect the performance of the CLEAR.
External Validity. In this work, we used the dataset published
by BIKER to demonstrate the effectiveness of CLEAR, which only
supports Java API recommendations. The performance of CLEAR
can be different on API recommendation for other programming
languages. In addition, as the dataset only contains questions from
Stack Overflow, CLEAR might perform differently on data collected
from other online forums. Future study is needed to examine the
performance of CLEAR on data from other sources.
ConstructValidityWeuseMRR,MAP, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 , and 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘

to measure the performance of API recommendation [14, 35], our
approach might have different performance under other metrics. In
this work, we assume that SO questions with the same API answer
as semantically equivalent when contrastively training our BERT-
based sentence embedding. Future study is needed to examine our
assumption on API Q&A pairs from other sources or other tasks.

7 RELATEDWORK
7.1 API Recommendation
There are many existing studies on API recommendation, includ-
ing API invocation sequences mining [19], dependency graph-
based API phrases mining [4], API recommendation for feature

CLEAR: Contrastive Learning for API Recommendation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

requests [43], query-API keyword mapping with crowed knowl-
edge [35], code snippet synthesis [33], similarity-based API recom-
mendation with language model [14], and API recommendation
based on similarity of functionality verb phrases in functionality
descriptions and user queries [53].

McMillan et al. [19] first presented portfolio, an API recommen-
dation tool that returns code snippets for a programming query.
Thung et al. [43] introduced historical feature requests combined
with official API documents information for API recommendation
for new feature requests. Nguyen et al. [23] proposed GRALAN, a
graph-based language model for object-oriented source codes. Liu
et al. [16] improved the ranking of the top-10 result of GRALAN
by introducing API usage path information to the graph system.
Nguyen et al. [22] used statistical learning on the commit changes
information for API recommendation. Gu et al. [11] first introduced
a deep learning model to API learning which achieves end-to-end
API sequence generation. CLEAR uses RoBERTa as the base model,
which is different from DeepAPI. Rahman et al. [35] presented
RACK, an API recommendation tool leveraging the real API usage
data from Stack Overflow [26]. The difference between the RACK
and CLEAR is that CLEAR uses a language model instead of key-
word mapping. Huang et al. [14] proposed BIKER, which filters the
candidate APIs based on the similarity against SO questions and
then re-ranks the candidates based on the similarity against offi-
cial API documentation description. The main difference between
BIKER and CLEAR is that CLEAR uses contrastive training instead
of unsupervised training in the model building stage.

7.2 API Usage Pattern Mining
Xie et al. [52] proposed MAPO, an API usage pattern mining tool
with various code pattern mining algorithms. Thummalapenta et
al. [42] proposed PARSEWeb, a java code reuse example genera-
tion tool build upon open-source java code data. Tseng et al. [44]
proposed UP-miner, a toolset that contains thirteen java utility
code pattern mining algorithms that improve the performance of
UP-miner. Fowkes et al. [9] presented PAM, a parameter-free proba-
bilistic algorithm for mining the API usage patterns. Wen et al. [49]
proposed an API miss-use detection tool that can detect API misuse
patterns of Java libraries. Chen et al. [5] first applied an unsuper-
vised technique to create analogical API mappings of third-party
libraries. Ren et al. [37] built an API-constraint knowledge graph
for API-misuse detection purpose.

8 CONCLUSION
In this paper, we propose CLEAR, a novel approach for API rec-
ommendation. CLEAR uses the BERT-based model for embedding,
which produces the embedding of the whole sentence of an API
query while considering semantic-related sequential information. It
uses contrastive training to better capture the semantics of the API
queries regardless of the lexical information. Our experiment re-
sults confirm the effectiveness of the CLEAR for both methods- and
class-level API recommendation. Our case study with CLEAR on
the latest SO posts further demonstrates its practical value.

In the future, we plan to extend CLEAR to other tasks such as
third-party API recommendation, Linux command search, code
snippet search, and program patch search.

9 ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feedback
which helped improve this paper. This work is supported by the
Natural Sciences and Engineering Research Council of Canada
(NSERC), the National Natural Science Foundation of China under
grant No.62072442, and Youth Innovation Promotion Association
Chinese Academy of Sciences.

REFERENCES
[1] Laura Aina, Kristina Gulordava, and Gemma Boleda. 2019. Putting words

in context: LSTM language models and lexical ambiguity. arXiv preprint
arXiv:1906.05149 (2019).

[2] Ekaba Bisong. 2019. Google colaboratory. In Building Machine Learning and Deep
Learning Models on Google Cloud Platform. Springer, 59–64.

[3] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based
clustering based on hierarchical density estimates. In Pacific-Asia conference on
knowledge discovery and data mining. Springer, 160–172.

[4] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. 1–11.

[5] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Long Xiong Ong. 2019.
Mining likely analogical apis across third-party libraries via large-scale unsu-
pervised api semantics embedding. IEEE Transactions on Software Engineering
(2019).

[6] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big self-supervised models are strong semi-supervised learners.
arXiv preprint arXiv:2006.10029 (2020).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Brian Everitt and Anders Skrondal. 2002. The Cambridge dictionary of statistics.
Vol. 106. Cambridge University Press Cambridge.

[9] Jaroslav Fowkes and Charles Sutton. 2016. Parameter-free probabilistic API
mining across GitHub. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering. 254–265.

[10] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[11] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. 631–642.

[12] Zellig S Harris. 1954. Distributional structure. Word 10, 2-3 (1954), 146–162.
[13] Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In

International workshop on similarity-based pattern recognition. Springer, 84–92.
[14] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API

method recommendation without worrying about the task-API knowledge gap. In
2018 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 293–304.

[15] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. arXiv preprint arXiv:2004.11362 (2020).

[16] Xiaoyu Liu, LiGuo Huang, and Vincent Ng. 2018. Effective API recommendation
without historical software repositories. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 282–292.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[18] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[19] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. 111–120.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[21] Jaechang Nam and Sunghun Kim. 2015. Clami: Defect prediction on unlabeled
datasets (t). In 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 452–463.

[22] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N Nguyen, and Danny Dig. 2016. API code recommendation
using statistical learning from fine-grained changes. In Proceedings of the 2016 24th

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang

ACM SIGSOFT International Symposium on Foundations of Software Engineering.
511–522.

[23] Anh Tuan Nguyen and Tien N Nguyen. 2015. Graph-based statistical language
model for code. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 858–868.

[24] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. 2019. Focus: A recommender system
for mining api function calls and usage patterns. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 1050–1060.

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[26] Stack Overflow. 2008. https://stackoverflow.com/.
[27] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[28] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[29] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. arXiv preprint arXiv:1802.05668 (2018).

[30] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David
Fullerton. 2014. Improving low quality stack overflow post detection. In 2014 IEEE
international conference on software maintenance and evolution. IEEE, 541–544.

[31] Dragomir R Radev, Hong Qi, Harris Wu, and Weiguo Fan. 2002. Evaluating
Web-based Question Answering Systems.. In LREC. Citeseer.

[32] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[33] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. Swim: Synthesizing
what i mean-code search and idiomatic snippet synthesis. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 357–367.

[34] Mohammad Masudur Rahman and Chanchal Roy. 2018. Effective reformulation
of query for code search using crowdsourced knowledge and extra-large data
analytics. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 473–484.

[35] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 349–359.

[36] Radim Řehřek, Petr Sojka, et al. 2011. Gensim—statistical semantics in python.
Retrieved from genism. org (2011).

[37] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and
Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-Constraint
Knowledge Graph. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 461–472.

[38] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[39] Rodrigo Silva, Chanchal Roy, Mohammad Rahman, Kevin Schneider, Klerisson
Paixao, and Marcelo Maia. 2019. Recommending comprehensive solutions for
programming tasks by mining crowd knowledge. In 2019 IEEE/ACM 27th Interna-
tional Conference on Program Comprehension (ICPC). IEEE, 358–368.

[40] Jake Snell, Kevin Swersky, and Richard S Zemel. 2017. Prototypical networks for
few-shot learning. arXiv preprint arXiv:1703.05175 (2017).

[41] Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and Amanda Gonsalves. 2020.
Data imbalance in classification: Experimental evaluation. Information Sciences
513 (2020), 429–441.

[42] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. 204–213.

[43] Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. 2013. Automatic
recommendation of API methods from feature requests. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 290–300.

[44] Vincent S Tseng, Cheng-Wei Wu, Jun-Han Lin, and Philippe Fournier-Viger. 2015.
UP-miner: a utility pattern mining toolbox. In 2015 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE, 1656–1659.

[45] EM Voorhees. 1999. Proceedings of the 8th text retrieval conference. TREC-8
Question Answering Track Report (1999), 77–82.

[46] Junjie Wang, Song Wang, Jianfeng Chen, Tim Menzies, Qiang Cui, Miao Xie, and
Qing Wang. 2019. Characterizing crowds to better optimize worker recommen-
dation in crowdsourced testing. IEEE Transactions on Software Engineering 47, 6
(2019), 1259–1276.

[47] Song Wang, Chetan Bansal, and Nachiappan Nagappan. 2021. Large-scale in-
tent analysis for identifying large-review-effort code changes. Information and
Software Technology 130 (2021), 106408.

[48] Song Wang, Nishtha Shrestha, Abarna Kucheri Subburaman, Junjie Wang, Moshi
Wei, and Nachiappan Nagappan. 2021. Automatic Unit Test Generation for Ma-
chine Learning Libraries: How Far Are We?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1548–1560.

[49] MingWen, Yepang Liu, RongxinWu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing library API misuses via mutation analysis. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 866–877.

[50] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196–202.

[51] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22, 6 (2017), 3149–3185.

[52] Tao Xie and Jian Pei. 2006. MAPO: Mining API usages from open source repos-
itories. In Proceedings of the 2006 international workshop on Mining software
repositories. 54–57.

[53] Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin
Zhang, and Wenyun Zhao. 2020. API method recommendation via explicit
matching of functionality verb phrases. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1015–1026.

https://stackoverflow.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Language Embedding
	2.2 Contrastive Learning
	2.3 Joint Embedding Training

	3 Approach
	3.1 Building BERT-base Language Models
	3.2 Search APIs

	4 Experiment Design
	4.1 Dataset
	4.2 Experiment Settings
	4.3 Evaluation Datasets
	4.4 Baselines
	4.5 Performance Measures
	4.6 Research Questions
	4.7 Statistical Testing

	5 Result Analysis
	5.1 RQ1: Effectiveness of CLEAR at Method-level
	5.2 RQ2: Effectiveness of CLEAR at Class-level
	5.3 RQ3: Impact of Random Sampling

	6 Discussions
	6.1 Why CLEAR Outperforms Existing Baselines?
	6.2 CLEAR in the Real-world Practice
	6.3 Threat to Validity

	7 Related Work
	7.1 API Recommendation
	7.2 API Usage Pattern Mining

	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

