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Abstract—Automatic unit test generation that explores the in-
put space and produces effective test cases for given programs
have been studied for decades. Many unit test generation tools
that can help generate unit test cases with high structural cover-
age over a program have been examined. However, the fact that
existing test generation tools are mainly evaluated on general
software programs calls into question about its practical effec-
tiveness and usefulness for machine learning libraries, which are
statistically-orientated and have fundamentally different nature
and construction from general software projects.

In this paper, we set out to investigate the effectiveness of exist-
ing unit test generation techniques on machine learning libraries.
To investigate this issue, we conducted an empirical study on five
widely-used machine learning libraries with two popular unit test
case generation tools, i.e., EVOSUITE and Randoop. We find
that (1) most of the machine learning libraries do not maintain a
high-quality unit test suite regarding commonly applied quality
metrics such as code coverage (on average is 34.1%) and mutation
score (on average is 21.3%), (2) unit test case generation tools,
i.e., EVOSUITE and Randoop, lead to clear improvements in
code coverage and mutation score, however, the improvement is
limited, and (3) there exist common patterns in the uncovered
code across the five machine learning libraries that can be used
to improve unit test case generation tasks.

Index Terms—Empirical software engineering, test case gen-
eration, testing machine learning libraries

I. INTRODUCTION

Software unit testing is widely recognized as a crucial part
of software development process to foster and assure soft-
ware quality. However, writing effective unit test cases is an
extremely costly and time-consuming practice [1]. To reduce
such a burden for developers, many automatic techniques and
tools based on different mechanisms have been proposed, e.g.,
EVOSUITE [2] generates unit test cases based on genetic al-
gorithms, Randoop [3, 4] generates unit test cases by using
feedback-directed approaches. To evaluate the effectiveness
and usefulness of these tools, many studies have been con-
ducted to compare the quality of automatically generated and
manually written unit test suites [5, 6, 7, 8]. Results confirm
that the automated test generation tools, e.g., EVOSUITE and
Randoop, are effective at producing unit test suites with high

*This work was done when Dr. Nagappan was with Microsoft Research.

code coverage and these tools can also be an useful aid to
help write unit test cases. However, the fact that most of these
studies used randomly selected general projects leaves unan-
swered the more directly relevant question: Do the automatic
unit test generation techniques also work for machine learning
libraries?

We are witnessing a wide adoption of Machine Learning
(ML) models in many software systems lately. Software
applications powered by ML are being used in critical sectors
of our daily lives; from finance and energy, to health and
transportation [9, 10, 11]. Thus, building reliable and secure
ML systems has become an increasingly critical challenge
for software developers. However, ML libraries are often
statistically-orientated, and have fundamentally different
nature and construction compared to general software
projects [10, 12], which makes the usefulness of existing
automatic test generation tools on them unknown.

In this paper, we set out to investigate the effectiveness
of the widely-used automatic unit test generation techniques
on ML libraries. Specifically, we select five widely-used ML
libraries, i.e., Weka [13], Stanford CoreNLP [14], Mallet [15],
OpenNLP [16], and Mahout [17]. Additionally, to better un-
derstand ML libraries, inspired by existing studies [10, 12], we
decompose a ML library into three different types of compo-
nents, i.e., data process, core model, and util (De-
tails are in Section II-B). We use two typical automatic unit
test generation tools, i.e., EVOSUITE and Randoop, as the
experiment objectives following prior studies [5, 6].

For our study, we first perform an empirical study on the
five ML libraries to unveil the effectiveness of their current
unit test suites regarding commonly applied quality metrics
such as code coverage and mutation score [18]. We then apply
EVOSUITE and Randoop on these ML libraries to generate
unit tests and check whether EVOSUITE and Randoop could
improve test effectiveness on these libraries, regarding code
coverage and mutation score, by comparing the automatically
generated tests against the existing manually created ones.
Note that, to better understand the effectiveness and scope of
the two unit test generation tools, we apply them on the three



different components, i.e., data process, core model,
and util from each experimental ML library.

We find that most ML libraries do not maintain a high-
quality unit test suite regarding code coverage (on average,
34.1%) and mutation score (on average, 21.3%). Our manual
analysis show that most test effort of ML libraries are spent
on testing a subset of valid functionalities while leaving a
large portion of code uncovered. In addition, the examined unit
test generation tools, i.e., EVOSUITE and Randoop, can lead
to clear improvements in code coverage and mutation score,
however, the improvement is limited. Our manual investigation
on randomly selected 150 classes from the five libraries show
that there exist common patterns in the uncovered code across
the five ML libraries which can be used to improve the unit
test case generation tasks for future research.

This paper makes the following contributions:
• We conduct a comprehensive investigation of current unit

test practices on five widely-used machine learning li-
braries.

• We examine the effectiveness and usefulness of two
widely-used automatic unit test generation tools on five
machine learning libraries.

• We identify gaps between existing automatic unit test
generation techniques and unit testing practices on ma-
chine learning libraries.

• We discuss general lessons learned and future directions
from the application of the automatic unit test generation
to machine learning libraries.

The rest of this paper is organized as follows. Section II
describes the background on automatic unit test generation
and machine learning libraries. Section III shows the setup of
our empirical studies. Section IV presents the results of our
study. Section V discusses open questions and the threats to
the validity of this work. Section VI surveys the related work.
Finally, we summarize this paper in Section VII.

II. BACKGROUND

A. Automatic Unit Test Generation

Software unit testing is widely adopted to test individual
units/components of software projects. A unit test is an exe-
cutable piece of code that validates a functionality of a class
or a method under test performing as designed. While there
are many techniques to automatically generate unit tests, we
focus on two types of typical and scalable approaches based
on random generation of call sequences, i.e., Randoop, and
search-based optimization of call sequences, i.e., EVOSUITE,
in this work.

1) Random Testing: Random testing is a basic approach
for test generation [19], which consists of invocation of func-
tions with random inputs. Guided random testing is a refined
approach that starts with random input data, then uses extra
knowledge to guide input data generation. One typical exam-
ple of random testing is feedback-directed random testing [4],
which enhances random test generation by incorporating feed-
back collected from executing test inputs that is used to avoid

generating duplicate and illegal input data. Feedback-directed
based approaches build test inputs incrementally, and then the
newly created test inputs extend previous ones. These test
inputs are executed as soon as they are created. The results
collected from these executions will then be used to guide
the generation of new test inputs. We use the representative
feedback-directed unit test generation tool, i.e., Randoop, in
our experiments.

2) Search-based Testing: Search-based software testing is
an approach that transforms the unit test generation tasks into
optimization problems [20], where the objective of the test
generation is implemented by a fitness function that guides
the search. Genetic algorithm is widely used as the search
techniques for test generation [21]. In the genetic algorithm,
randomly selected candidate solutions are evolved by applying
evolutionary operators, such as mutation and crossover, result-
ing in new offspring individuals, with better fitness values.
The widely used objective function for unit test generation is
the code coverage of the generated tests [22]. In this work,
we examine the typical search-based unit test generation tool,
i.e., EVOSUITE.
B. Machine Learning Libraries

Machine learning is a type of artificial intelligence technique
that requires huge volumes of data to be able to converge for
making meaningful inferences, decisions, or predictions [23].
Most machine learning techniques share a common basic pro-
cedure. The first step when constructing a ML model is to
collect data from a domain where specific concepts can be
learned using some algorithms. Once data is collected, often
a pre-processing step will be conducted before it can be used
for learning. The most common pre-processing operations in-
clude data format converting, noise data filtering, and feature
engineering. The result of data pre-possessing often can sig-
nificantly affect the quality of trained models. Once the data
is cleaned and features are extracted or selected properly, a
learning algorithm is used to infer relations capturing hidden
patterns in the data. During this learning process, the parame-
ters of the algorithm are tuned to fit the input data through an
iterative process. After training steps, the model is evaluated,
and can be deployed in a specific application environment
and interact with other components of the application to finish
expected tasks.

A ML library is a collection of machine learning, data min-
ing, or natural language processing algorithms, which provides
usable and easily extensible API for both software developers
and research scientists. To facilitate these algorithms, most
ML libraries often contain data processing and utility compo-
nents [10, 12].

To understand how existing automatic unit test generation
tools can help test the different steps of ML models, i.e., data
pre-processing and model building, we broke a ML library
into the following three components at class level:

• data process: Classes that contain APIs to pre-
process data before building machine learning models,
e.g., data format transformation, data sampling,



data normalization, noise data filtering, and feature
engineering related tasks.

• core model: Classes that implement the core ML
algorithms. For example, Classification (e.g., image
classification, software bug prediction), Regression
(e.g., temperature prediction, software fault density
prediction), Clustering (e.g., pattern recognition, image
segmentation), Translation, Named Entity Recognition,
Sentiment Analysis, Topic Segmentation, etc.

• util: Classes that provide miscellaneous services for
evaluating models (e.g., cross-validation), measuring per-
formance ( e.g., confusion matrix), internationalization,
loading and outputting data, etc.

Note that, machine learning can be classified into
conventional machine learning and deep learning. Machine
learning tasks like Classification, Regression, Clustering,
Translation, Named Entity Recognition, Sentiment Analysis,
and Topic Segmentation, belong to conventional machine
learning. Deep learning [24] adopts multiple layers of
nonlinear processing units for feature extraction and
transformation. Typical deep learning algorithms often
follow some widely used neural network structures like
Convolutional Neural Networks (CNNs) [25] and Recurrent
Neural Networks (RNNs) [26]. This paper only focuses on
conventional machine learning libraries as most deep learning
libraries such as TensorFlow [27], Theano [28], PyTorch [29],
Scikit-learn [30], are developed in Python, while existing
widely-used automatic unit test generation tools are designed
for object oriented languages such as Java, C++, and C#,
which fit most conventional machine learning libraries.

III. EMPIRICAL STUDY SETUP

This section describes our experiment methodology. The
main objective of this study is to evaluate the effectiveness of
existing widely-used unit test generation tools in ML libraries,
and to understand the barriers for machine learning developers
when adopting these tools.

A. Research Questions

To achieve the mentioned goal, we have designed experi-
ments to answer the following research questions:

RQ1: What is the quality of the current unit testing in ML
libraries?

The studied five ML libraries have been developed for years.
They also maintain a stable unit test suite to test the provided
functionalities. This RQ first reveals the quality of existing unit
test in the machine learning libraries regarding their testing
coverage and mutation scores.

A large number of widely-adopted ML libraries originated
from academic research studies and are maintained by
researchers (i.e., academic-led). Meanwhile, with the rapid
adoption of AI technologies, many open-source ML libraries
have been developed by the open-source community (i.e.,
community-led). Little is known about the difference in unit
testing practices between academic-led and community-led

ML libraries. In this RQ, we further explore the unit testing
quality of ML libraries from these two different categories
to better understand the difference in unit testing practices
between academic-led and community-led ML libraries.

RQ2: How effective are automatic unit test generation tools
on ML libraries?

Recent studies [5, 7, 31, 32] confirmed that the automatic test
generation tools, i.e., EVOSUITE and Randoop, are effective
at generating unit test suites with high code coverage and
mutation scores for general software projects. This RQ intends
to assess the capability of the two automatic unit test genera-
tion tools in ML libraries. Specifically, we use Randoop and
EVOSUITE to generate test cases for each class in the five ML
libraries and further evaluate the effectiveness of the generated
unit test cases by examining the increased code coverage and
mutation score in these classes.

RQ3: What is the covered and uncovered code with original
unit test suites in ML libraries?

To understand the testing focus of these ML libraries, i.e.,
which parts of a ML library have been tested and which parts
have not been tested with the original unit test suites, we
conduct a manual analysis to check the covered and uncovered
code after executing the original test cases from each ML
library.

RQ4: To what extent can automatic unit test generation tools
help test ML libraries?

Even with the test cases generated by automatic unit test gen-
eration tools, not all code can be covered [7, 31]. Following
the results of RQ3, this RQ checks to what extent the test
cases generated, by Randoop and EVOSUITE, for these ML
libraries can help cover code missed by the original unit test
suites of ML libraries. Based on the analysis, we further ex-
plore the potential strategies to improve unit test generation
tasks for ML libraries in Section V.

B. Studied Unit Test Generation Tools

In this work, two widely-used mature unit test generation
tools that can generate JUnit supported test cases are selected,
i.e., Randoop and EVOSUITE .
Randoop implements feedback-directed random test gen-

eration which first builds test inputs incrementally, and then
the newly created test inputs extend the previous ones. It can
generate tests containing assertions that capture the current
state. To generate unit tests for each class, we used the default
configurations and set the time limit to 3 minutes as sug-
gested by [32]. EVOSUITE generates test suites with the aim
of maximising code coverage (e.g., branch coverage), minimis-
ing the number of unit tests and optimising their readability.
The generated tests include assertions that capture the current
behaviour of the implementation. In our experiments, we use
the default configurations of EVOSUITE.

In this work, we run both Randoop and EVOSUITE on a
4.0GHz i7-3930K desktop with 16GB of memory.



C. Subjects of Study

In this work, we set out to investigate five Java-
based widely-used ML libraries, i.e., Weka [13], Stanford
CoreNLP [14], OpenNLP [16], MALLET [15], and
Mahout [17].

Weka (Waikato Environment for Knowledge Analysis) is
a ML library developed at the University of Waikato, and
has been downloaded over 3.6 million times [6]. It provides
multiple algorithms for data pre-processing, attribute selec-
tion, classification and regression, clustering, association rules
mining, etc. Stanford CoreNLP is one of the dominating ML
based toolkits for the processing of natural language text devel-
oped by the Natural Language Processing Group at Stanford
University. It supports services for NLP tasks, e.g., language
detection, tokenization, sentence segmentation, part-of-speech
tagging, named entity extraction, chunking, etc. MALLET, de-
veloped by University of Massachusetts Amherst in 2002, is a
Java-based ML library for document classification, topic mod-
eling, information extraction, and other machine learning ap-
plications to text.

The above three ML libraries were originated from
academic research studies. We also collect two open source
community-led ML libraries, i.e., Apache OpenNLP and
Apache Mahout. Apache OpenNLP library is a machine
learning based toolkit for the processing of natural language
text, which provides similar NLP services as Stanford
CoreNLP. Apache Mahout is a powerful, scalable machine-
learning library that runs on top of Hadoop MapReduce.
It provides machine learning algorithms for clustering,
classification and batch based collaborative filtering, etc.
Table I shows the statistic of the five ML libraries.

D. Classifying Classes in Machine Learning Libraries

We conduct a manual study to group each class in a machine
learning library into three categories, i.e., data process,
core model, and util. For each class in a machine learn-
ing library, three of the authors independently use the follow-
ing steps to conduct the manual classification tasks:

• Step 1: We read the Javadoc documentation of the class to
understand its functionality. A category will be assigned
to the class based on its major intent. Specifically, if the
class provides the services related to data process, we
categorize it as data process, if the class implements
a machine learning algorithm, we categorize it as core
model. Note that, if the class involves both data process
and machine learning algorithm (< 3% of all classes
analyzed), we label it as core model only.

• Step 2: If a decision cannot make based on the description
of the class’s API as the description might not contain
enough information, we further check the source code
following the instructions in Step 1 to label the class.

• Step 3: A class that does not belong to data process
and core model categories will be grouped as util.

During this manual analysis, all disagreements were discussed
until a consensus was reached. The results of this phase have
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Fig. 1: Percentage of the three types of components in each
experimental machine learning library.

a Cohens kappa of 0.77, which is a substantial level of agree-
ment [33]. Figure 1 shows the distribution of the three different
types of classes in the five ML libraries. Surprisingly, util
category is dominating across all the projects, which takes up
to 81.2% of all the classes (in Mahout) and is 54.6% on aver-
age. Only 30% classes are core model classes across these
five ML libraries and the percentage of classes belonging to
data process varies dramatically across the five projects
and ranges from 0.3% (Mahout) to 26.4% (OpenNLP).

Overall, Weka and Mahout have dramatically unbalanced
distributions among the three categories. Our further investi-
gation on the two projects finds possible reasons for this. Un-
like CoreNLP, OpenNLP, or MALLET, which support unstruc-
tured data, Weka requires specific data format, i.e., arff [13],
to run its machine learning algorithms. Although data with
some other structured formats (e.g., csv, json, etc.) can also
be loaded but they have to be saved to arff format for later
use. In addition, Weka does not support unstructured data.
Most of Weka’s data process classes focus on data format
transformation. Mahout has fewer data process classes
since it is mainly used to provide machine learning analysis
in Hadoop processing pipeline and it maintains a large number
of collection data structures that belong to util.

E. Metrics for Evaluating Testing Quality

To measure the quality of a unit test suite given a project,
following existing work [34], we use both code coverage [35]
and mutation score [36] as the metrics.

Our coverage analysis was performed using JaCoCo1, which
can measure instruction and branch coverage. The instruction
coverage refers to Java bytecode instructions and thus is sim-
ilar to statement coverage on source code. As JaCoCo’s defi-
nition of branch coverage counts only branches of conditional
statements, not edges in the control flow graph, we only use
instruction coverage for measuring code coverage.

Mutation testing generates program variants (i.e., mutants)
for the original program under test using mechanical transfor-
mation rules (i.e., mutation operators). Each mutant is the same
with the original program except for the mutated statement.
A mutant is killed by a test suite if any test from the
suite failed with the mutant. Mutation score is defined as the
percentage of killed mutants with the total number of mutants.
A higher mutation score means a better quality of a test suite.
Existing studies [37, 38, 39] have shown that mutation faults

1https://www.eclemma.org/jacoco/

https://www.eclemma.org/jacoco/


TABLE I: Details of the experimental machine learning libraries.
Project Type Description Version #KLOC #Class #Test Case
Weka Academic-Led A general machine learning library. 3.9.4 340 1,616 4,071
Stanford CoreNLP Academic-Led A set of machine learning based NLP tools. 3.9.2 573 1,720 1,262
MALLET Academic-Led A machine learning for language toolkit. 2.1 77 615 184
Apache OpenNLP Community-Led A machine learning based toolkit for NLP. 1.9.2 71 672 785
Apache Mahout Community-Led A distributed machine learning framework. 2.12 25 142 2,538

TABLE II: The number of generated mutations on each category of
classes in the five machine learning libraries.

Weka CoreNLP MALLET OpenNLP Mahout
data process 3,788 24,521 2,868 3,149 18
core model 21,168 34,306 16,600 7,215 6,087
util 42,180 38,055 8312 3,260 18,687

are close to real faults. Along this line, mutation testing has
been used to evaluate the quality of existing test suites [40, 41].

In this work, we use the widely-used mutation test frame-
work PITest [42] to generate mutants and measure the muta-
tion score of a unit test suite. Note that PITest contains many
different mutation operators for generating different mutants,
in this work we use the default 11 operators list in its website2.

IV. EMPIRICAL ANALYSIS

A. RQ1: Current Unit Test Quality

To answer this question, we first execute the original unit
test suite provided by these machine learning libraries, which
are JUnit test cases. As we described in Section III-E, we use
JaCoCo to collect the coverage information and use PITest to
generate mutation faults and further get mutation scores on
each project. These five libraries are maintained by Maven.
To enable JaCoCo and PITest, we manually add the JaCoCo
and PITest maven plugins into each project’s Maven configu-
ration file. JaCoCo calculates the coverage for each class via
checking whether a specific instruction is covered by at least
one test case. PITest is configured to mutate specified classes
in a project and check the generated mutants against specified
unit test cases.

Table II shows the numbers of mutants generated for dif-
ferent types of classes in each library. We further compute
the Spearman correlation between the number of mutants and
the number of classes in each category from these libraries.
The high correlation value (0.74) indicates that the number
of mutants generated for a category has a positive correlation
with the number of classes in the category, e.g., Weka has more
mutants on core model and util than data process
since the number of classes from Weka’s core model and
util components are larger than that of data process
component. This is reasonable since the mutation operators
provided by PITest do not have potential bias for specific
programs [42]. In this question, we run PITest with all classes
and the original unit tests from each library.

Table III shows the average coverage and mutation score
for classes in the three different categories in each machine
learning library. Surprisingly, the code coverage on these li-
braries is low and the overall coverage ranges from 16.1% (on

2https://pitest.org/quickstart/mutators/

CoreNLP) to 58.9% (on Mahout), which is significantly lower
that the code coverage on 100 randomly chosen general open-
source projects, i.e., around 70% [43]. The overall mutation
score on these libraries ranges from 10.9% (on CoreNLP) to
46.0% (on Mahout) and on average is 21.3%, which is also
lower than the average mutation score of a set of 154 top
open source general software project collected from Github,
i.e., around 40% [44].

In addition, as we categorize the ML libraries into two
different categories, i.e., academic-led and community-led ,
and decompose a ML library into three different components,
i.e., data process, core model, and util, we further
explore the quality of unit tests for different categories and
different components, as shown in Table III. Overall, the two
open source community-led ML libraries have both higher
coverage and mutation scores than that of academic-led
ML libraries. Specifically, the average coverage on the
three academic-led ML libraries is 20.0%, which is 36.7%
lower than that of community-led ML libraries. The average
mutation score of academic-led ML libraries is 11.5%, which
is 24.4% lower than that of community-led ML libraries. We
further conduct the Wilcoxon signed-rank test to compare the
unit testing quality regarding coverage and mutation scores
between academic-led and community-led ML libraries.
Results suggest that community-led machine learning
libraries significantly (p < 0.05) outperform academic-led
ML libraries regarding either code coverage or mutation
scores.

We also observe an extremely lower code coverage and mu-
tation score in at least one category from each of the academic-
led ML libraries. For example, the util category in project
Weka has a significantly lower code coverage (i.e., 3.3%) and
mutation score (i.e., 1.6%) compared to the other two cate-
gories, i.e., code coverage is larger than 40% and mutation
score is larger than 24%. The same phenomenon can be ob-
served on the data process category in CoreNLP, and the
core model category in MALLET. We show the detailed
distributions of code coverage of classes from each category
in Figure 2, and further conduct the Wilcoxon signed-rank test
(p < 0.05) to compare the unit testing quality regarding code
coverage among the three different categories in each project.
Results show that the data process and core model in
Weka have a significantly higher code coverage than util. In
CoreNLP, util has a significantly higher code coverage than
data process and core model. In MALLET, util and
data process have a significantly higher code coverage
than core model. We do not find any significant differ-
ences regarding the code coverage among the three categories



TABLE III: The average coverage (i.e., Coverage) and mutation score (i.e., MScore) of the unit test suite for each machine
learning library. Overall indicates the results on all the classes in a project.

Class Type Weka CoreNLP MALLET OpenNLP Mahout
Coverage MScore Coverage MScore Coverage MScore Coverage MScore Coverage MScore

data process 43.5 24.8 12.2 5.1 31.5 20.3 61.7 38.1 91.7 38.9
core model 44.1 28.6 17.8 11.1 11.0 7.9 50.6 16.6 63.8 50.3
util 3.3 1.6 18.1 14.3 23.9 17.6 54.6 34.1 57.5 44.6
Overall 23.9 11.5 16.1 10.9 16.7 12.1 54.5 25.8 58.9 46.0
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Fig. 2: The distribution of code coverage for data process (i.e., ), core model (i.e., ), and util (i.e., ) in each
project.

from the two community-led ML libraries. Note that we also
observe a similar trend in mutation scores, but we do not
show the detailed distribution of mutation scores due to space
limitations. This indicates that the testing effort of academic-
led ML libraries is unbalanced among different components.

Current unit test suite in ML libraries has lower quality
regarding code coverage (on average, 34.1%) and mutation
score (on average, 21.3%). In addition, the testing effort
of academic-led ML libraries is unbalanced distributed and
their unit test quality is significantly worse than that of
community-led ML libraries.

B. RQ2: Effectiveness of Test Generation Tools
To answer this question, we run Randoop and EVOSUITE

to generate test cases for each of the five ML libraries as
described in Section III-B. With the generated test cases,
we further run JaCoCo to collect the coverage information
for classes from the three different categories, i.e., data
process, core model, and util, on each library.
Note that, both Randoop and EVOSUITE generated flaky
or uncompilable test classes. In order to collect coverage
information and mutation scores, we have removed these flaky
or uncompilable test cases with the approaches suggested
in [32]. Specifically, first, we removed all non-compiling test
classes. Second, we executed each compilable test suite five
times, and removed all new flaky tests from the executions.
This process was repeated until all remaining tests passed
five times in an iteration.

Table IV presents the number of generated test cases for
classes of each category in each project, the absolute coverage
of the generated test cases, and the additional coverage com-
pared to the original unit test suite. Note that we did not run
PITest for each category of classes collecting mutation scores
as we cannot finish running PITest within a reasonable time
frame (i.e., 100 hours) for most projects with large numbers
of generated test cases (i.e., ranging from 5K to 140K). To

explore the mutation scores of the generated test cases from
Randoop and EVOSUITE, we randomly selected 20 classes
from each category of each ML library and ran PITest with
them to generate mutation faults and further obtain mutation
scores. We show the additional mutation scores compared to
mutation scores of the original unit test suite in Table V.

From Table IV, we can see that the number of generated
test cases significantly vary in different projects, e.g., overall
the two tools generate more test cases in Weka and CoreNLP
than that in OpenNLP, MALLET, and Mahout. One of the
possible reasons for this is that Weka and CoreNLP have a
lot more classes where Randoop and EVOSUITE can collect
more method sequences to generate test cases. We also observe
that Randoop generates more test cases than EVOSUITE in
four of the five projects, which is because Randoop does not
target a specific class under test [32].

Column ‘∆ Coverage’ shows the increment in code
coverage of test cases generated by Randoop and
EVOSUITE, from which we can see that EVOSUITE
has a much higher increased code coverage (an average of
17.6 percentage points) than Randoop (an average of 5.2
percentage points) and we further conduct the Wilcoxon
signed-rank test (p < 0.05) to compare the increased code
coverage between Randoop and EVOSUITE in these
ML libraries. Results confirm that EVOSUITE produces a
significantly higher increased code coverage than Randoop.
However, we also find that even with the test cases generated
by Randoop and EVOSUITE, the percentage of uncovered
code in these projects are still high, i.e., ranges from
20.1% (Mahout with EVOSUITE) to 81.5% (CoreNLP with
Randoop) and is 45.4% on average, which indicates the
limited improvements of these tools.

Table V shows the increment in mutation score of test cases
generated by Randoop and EVOSUITE on sample classes. As
we can see from the table, both Randoop and EVOSUITE
can improve the mutation scores on these ML libraries. In
addition, similar with the trend in increased code coverage,



TABLE IV: The number of generated test cases (i.e., #generated test), the absolute coverage (i.e., Coverage), and the increased
code coverage (i.e., ∆ Coverage) of Randoop and EVOSUITE on the five experimental machine learning libraries.

Project Category Randoop Evosuite
#generated test Coverage (%) ∆ Coverage (%) #generated test Coverage (%) ∆ Coverage (%)

Weka

data process 6,574 62.8 19.3 1,935 75.9 32.4
core model 6,923 45.1 1.0 5,179 44.8 0.7
util 25,696 18.5 15.2 6,061 25.4 22.1
Overall 39,193 32.4 8.5 13,175 41.8 17.9

CoreNLP

data process 66,022 18.1 5.9 4,119 40.6 28.4
core model 42,925 20.1 2.3 7,380 44.2 26.4
util 34,493 19.2 1.1 3,920 39.8 21.7
Overall 143,440 18.5 2.4 15,419 40.6 24.5

MALLET

data process 5,022 41.4 9.9 1,364 36.0 4.5
core model 8,581 22.8 11.8 3,012 21.9 10.9
util 524 29.3 5.4 339 47.8 23.9
Overall 14,310 27.0 10.3 4,715 31.8 15.1

OpenNLP

data process 20,264 64.6 2.9 1,177 73.8 12.1
core model 27,422 57.1 6.5 1,989 51.8 1.2
util 37,970 56.5 1.9 1,884 77.1 22.5
Overall 85,656 58.8 4.3 5,050 64.0 9.5

Mahout

data process 792 91.8 0.1 13,156 100 8.3
core model 3,930 65.0 1.2 10,575 66.0 2.2
util 4,866 57.7 0.2 14,582 84.3 26.8
Overall 9,588 59.3 0.4 38,313 79.9 21.0

TABLE V: Increased mutation score (i.e., ∆ MScore) of
Randoop and EVOSUITE on sample classes.

Project Randoop Evosuite
∆ MScore (%) ∆ MScore (%)

Weka 17.5 31.8
CoreNLP 15.1 24.2
MALLET 8.4 17.9
OpenNLP 10.3 14.5
Mahout 2.3 19.0

EVOSUITE has much higher increased mutation scores (on av-
erage is 21.5%) than Randoop (on average is 10.7%), which
is confirmed by our Wilcoxon signed-rank test (p < 0.05).

EVOSUITE and Randoop lead to clear improvements in
code coverage and mutation score compared to the original
unit test suites of ML libraries. However, on average, 45.4%
code is still uncovered with the generated test cases.

C. RQ3: Covered & Uncovered Code

Results of RQ1 show that the studied five machine learning
libraries have low test quality regarding either code coverage
or mutation score. In this RQ, to understand the testing focus
of these ML libraries, we conduct an manual analysis and
explore which parts of a machine learning library have been
tested and which parts have not been tested with the origi-
nal unit test suites provided by these ML libraries. For our
analysis, we randomly selected 10 classes from each category
(i.e., data process, core model, and util) of each
ML library, i.e., in total 150 classes are collected. We fetch
the the test cases of each class, and collect the covered code
and uncovered code for each class by using JaCoCo.

We first manually analyze the original test cases to check the
covered functionalities of ML libraries. Surprisingly, almost
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Fig. 3: The distribution of tested functionalities in the examined
classes from academic-led (a) and community-led libraries (b).

all libraries only test a part of supported valid functionalities.
Taking the class weka.classifiers.trees.J48 from
project Weka as an example, which is a decision tree based
classifier. For testing this class, developers created one test
case in which an object of J48 with default parameters was
created and then the classifier was trained and tested with its
testing data, while other valid parameters are not covered. We
further calculate the number of functionalities tested. Figure 3
shows the distributions of the number of functionalities tested
in the examined classes from academic-led (i.e., Figure 3a)
and community-led (i.e., Figure 3b) libraries respectively. For
academic-led libraries, we can see that around 35% classes
have only tested one or two functionalities and only about 45%
classes test more than 5 functionalities, while for community-
led libraries, more than 65% classes have tested 5 or more
different functionalities. Nevertheless, among the sampled 150
classes, each class has an average of 15 valid functionalities.



Based on the 150 classes, we further check the uncovered
code from each class to understand what has been missed
from current unit test suite of machine learning libraries. Three
authors work together to manually categorize the uncovered
code into five different types. We use code from Weka library
as examples to illustrate each category as follows.

Lack of testing valid behaviors (VB). A class often has
multiple valid behaviors, e.g., a parameter can be assigned
with different values, while only a set of valid behaviors
have been tested. Below is a VB example from class J48
(i.e., an algorithm used to generate a decision tree). Method
setOptions() is used to set up the essential options
before building the J48 classifier. The option ‘N’ showed in
the code (line 3) is used for pruning the built decision tree,
which could affect the performance of the built decision tree
and the default value is assigned in line 7. The corresponding
unit case of J48 did not specify a value for ‘N’ when calling
method setOptions(), which leaves line 5 uncovered.

1 public void setOptions (String[] options)
throws Exception {

2 ...
3 String numFoldsString = Utils.getOption(’N’,

options);
4 if (numFoldsString.length() != 0) {
5 m_numFolds=Integer.parseInt(numFoldsString);
6 } else {
7 m_numFolds = 3;}
8 ...
9 }

Lack of testing invalid behaviors (IVB). A class also
has possible invalid behaviors, e.g., a parameter often has
a valid scope, values outside the scope will be invalid,
while not all invalid behaviors have been tested. Below is a
IVB example from class RandomTree (i.e., an algorithm
used to generate a random tree based classifier). Method
buildClassifier() is used to build RandomTree
classifier. The method first checks the validity of parameters,
in which ‘m KValue’ is number of attributes used to build
the classifier. Developers can set ‘m KValue’ before calling
buildClassifier(), a valid ‘m KValue’ ranges from
1 to the size of the used attribute set. The corresponding
unit case of RandomTree did not test any invalid value for
‘m KValue’, which leaves line 5 uncovered.

1 public void buildClassifier(Instances data)
throws Exception {

2 ...
3 // Make sure K value is in range

4 if (m_KValue > data.numAttributes() - 1) {
5 m_KValue = data.numAttributes() - 1;
6 }
7 ...
8 }

Lack of testing exception (EX). In Java, developers can
throw an exception in a method by using the throw keyword,
which will cause an exception to be raised and will require the
calling method to catch the exception or throw the exception
to the next level in the call stack. JUnit enables developers
to test exception by using the ExpectedException rule.

We find that most exceptions in these libraries have not been
tested. Below is a EX example from class CSVLoader (i.e.,
a class used to load CSV format data for building classifiers).
Method setOptions() is used to set up the parameters
of CSVLoader. The method first parses data from the input
arguments and then checks the validity of parameters. ‘B’ is
the size of the in-memory buffer used to load data, a valid ‘B’
should be larger than 1 (line 7), if the value is smaller than
1, the method will throw an Exception. The corresponding
unit case of CSVLoader did not test any value for ‘B’ that
can triage the exception throw statement, which leaves line 8
uncovered.

1 public void setOptions(String[] options)
throws Exception {

2 ...
3 // ’B ’: The size of the in memory buffer

4 tmpStr = Utils.getOption(’B’, options);
5 if (tmpStr.length() > 0) {
6 int buff = Integer.parseInt(tmpStr);
7 if (buff < 1) {
8 throw new Exception("Buffer size must be

>= 1");
9 }

10 setBufferSize(buff);}
11 ...
12 }

Lack of testing auxiliary methods (AUX). Most classes
provide auxiliary methods to interact with attributes or
perform other tasks. We find that most auxiliary methods
in these libraries have not been tested. Below is a AUX
example from class GaussianProcesses (i.e., a class
that implements Gaussian processes for regression analysis).
Method getStandardDeviation() is used to get
standard deviation of the prediction at the given instance.
The method was used inside GaussianProcesses as
an auxiliary method. However, the corresponding unit case
of GaussianProcesses did not test this method, which
leaves it uncovered.

1 public double getStandardDeviation(Instance
inst) throws Exception {

2 ...
3 }

Lack of testing message handling behaviors (MEB). A class
often provides a series of methods for handling behaviors
to help print messages for developers. Our analysis reveals
that a large number of message handling behaviors in these
libraries have not been tested. Below is a MEB example from
class DecisionTable (i.e., a class that build a decision
table based classifier). Method printFeatures() is
used to print string description of the features selected. The
method was used inside DecisionTable as a message
handling method. However, the corresponding unit case of
DecisionTable did not test this method, which leaves
this method uncovered.

1 public String printFeatures() {
2 int i; String s = "";
3 ...
4 return s;
5 }



TABLE VI: Distribution of uncovered code in each ML library
(in percentage).

VB (%) IVB (%) EX (%) AUX (%) MEB (%)
Weka 23.5 6.0 21.4 24.3 24.8
CoreNLP 13.7 8.2 5.6 53.3 19.2
MALLET 15.8 3.6 17.1 58.5 4.8
OpenNLP 30.6 5.0 22.3 29.7 12.4
Mahout 19.8 11.4 16.7 40.6 11.5
Overall 16.5 7.6 17.7 42.4 15.8

With the above five categories of uncovered code, we man-
ually categorized each of the uncovered code block from the
150 studied classes into one specific category, and then we
obtain the ratios of the five categories on each ML library.
Table VI shows the distribution of uncovered code from each
machine learning library regarding the above five categories.
For example, category VB takes up 23.5% among all the un-
covered code blocks in Weka.

As we can see from the table, overall the ratios of the five
different categories vary among different projects. However,
AUX is dominating across the five ML libraries (ranges from
24.3% to 58.5%), which takes up 42.4% of all the uncov-
ered code blocks in these ML libraries. The Wilcoxon signed-
rank test (p < 0.05) also confirms that the ratio of AUX
is significant higher than other categories. We also find that
categories VB, EX, and MEB also have ratios higher than 15%
of all the uncovered code blocks. Comparing to the other four
categories, the ratio of category IVB is minor (ranges from
3.6% to 11.4%), one of the possible reasons is that the size
of code blocks about invalid behaviors is smaller.

Overall, the unit test suites in ML libraries mainly focus
on a subset of valid functionalities. In addition, there exists
common patterns among the uncovered code of the studied
ML libraries.

D. RQ4: Improvement of Unit Test Generation Tools

In RQ3 (Section IV-C), we show the five different categories
about the uncovered code in these ML libraries. We then con-
duct a further analysis to explore which part of source code
can be covered by using test cases generated by Randoop
and EVOSUITE on the 150 classes collected in RQ3. Specif-
ically, for each class, we collected its uncovered code blocks
after executing the original unit test suite and the covered
code blocks after executing test cases generated by Randoop
and EVOSUITE. Then, for each piece of the uncovered code
blocks (after executing the original unit test suite), we fur-
ther check whether it is covered by test cases generated by
Randoop and EVOSUITE. For each category of uncovered
code on a ML library, we calculate the percentage of removed
uncovered code blocks after executing test cases generated by
Randoop and EVOSUITE, e.g., Randoop can help remove
9.1% uncovered code of the original unit test suite of Weka
on category VB. The details are shown in Table VII.

As we can see from the table, both Randoop and
EVOSUITE can help reduce a larger portion of uncovered

TABLE VII: Removed uncovered code blocks after executing
test cases generated by Randoop and EVOSUITE (in per-
centage).

VB (%) IVB (%) EX (%) AUX (%) MEB (%)

Weka Randoop 9.1 14.3 26.0 54.0 60.3
EVOSUITE 41.8 42.9 44.0 86.0 96.6

CoreNLP Randoop 16.0 6.7 20.0 25.8 93.3
EVOSUITE 36.0 40.0 20.0 66.7 100

MALLET Randoop 46.2 0 21.4 45.8 50.0
EVOSUITE 46.2 33.3 21.4 47.9 50.0

OpenNLP Randoop 13.5 0 14.8 36.1 86.7
EVOSUITE 40.5 16.7 18.5 41.7 93.3

Mahout Randoop 10.5 18.1 6.2 23.1 27.3
EVOSUITE 42.1 54.5 75.0 66.7 81.8

Overall Randoop 15.2 11.8 19.0 38.8 63.8
EVOSUITE 40.0 43.1 36.4 64.1 93.5

code for the five different uncovered code categories. In
addition, we can also see that EVOSUITE removes much
more uncovered code (ranges from 36.4% to 93.5%) than
that of Randoop (ranges from 11.8% to 63.8%), and we
further conduct the Wilcoxon signed-rank test (p < 0.05) to
compare the percentages of removed uncovered code between
EVOSUITE and Randoop. Results suggest that EVOSUITE
performs significantly better than Randoop on each category
of uncovered code.

We can also observe that both Randoop and EVOSUITE
perform better on AUX and MEB categories, i.e., overall at
least 38% of them can be removed by Randoop and at least
64% of them can be removed by EVOSUITE, while overall
at most 19% uncovered code from other three categories (VB,
IVB, and EX) can be removed by Randoop and at most
43% of them can be removed by EVOSUITE. Our Wilcoxon
signed-rank test (p < 0.05) shows that the performances of
both Randoop and EVOSUITE on AUX and MEB are sig-
nificantly better than that of other three categories. The main
reason is that most AUX and MEB related methods do not
require input arguments or only need simple input arguments,
which makes it easy for both Randoop and EVOSUITE to
generate compilable and valid sequences of method calls to
cover them. However, to cover VB, IVB, and EX, one needs
test cases with valid parameters, invalid parameters, differ-
ent parameter values, different input data, etc., which often
cannot generate by existing unit test generation tools, e.g.,
EVOSUITE and Randoop.

Both EVOSUITE and Randoop can significantly help
cover AUX and MEB, while the performance on other three
categories, i.e., VB, IVB, and EX, is limited.

V. DISCUSSION

A. Implications

Our study reveals several interesting findings that can serve
as the practical guidelines for improving unit test generation
tasks for ML libraries.
Combining unit test generation with parameter analysis:
Our manual analysis in Section IV-D shows that most of the
uncovered code from VB category is caused by missing test-
ing valid parameters. Different from general software projects,



most ML libraries contain a large number of parameters. How-
ever, neither EVOSUITE nor Randoop can help generate test
cases with valid parameters as most parameters are maintained
in property documents, thus one of the future directions to
improve unit test generation for ML libraries is combining
existing test generation with parameter analysis.
Combining unit test generation with data generation: Most
of existing unit test generation tools (e.g., EVOSUITE and
Randoop) only focus on generating test cases by selecting
method call sequences and finding arguments from previously-
constructed inputs. However, ML libraries are data-driven, to
cover most IVB and some EX, test cases with special training
or input data are needed. Thus, another future direction to
improve unit test generation for ML libraries is combining
existing test generation with test data generation together to
generate method call sequences with newly generated input
data.
Transferring unit test across ML libraries: Different from
general software projects, most ML libraries share the same
knowledge domain and often provide the same data processing
steps, machine learning algorithms, and utility support ser-
vices, which makes it possible to transfer unit test cases of
a specific machine learning component between ML libraries,
e.g., the studied Weka and MALLET share around 50 classi-
fication algorithms with the same or similar parameters. Thus,
transferring unit tests across ML libraries that share similar
algorithms could be an applicable attempt to generate unit test
for ML libraries.

B. Threats to Validity

Internal Validity: Our study uses EVOSUITE and
Randoop for automatic test generation. It is possible
using different automatic test generation tools may yield
different results. Nevertheless, these two tools are modern test
generation tools, and their generated tests (both in format and
coverage) is similar to these produced by other modern test
generation tools, such as TestFul [45], JavaPathFinder [46],
Pex [47], JCrasher [48], and others. In this work, following
existing studies [5, 6, 7, 8], we use code coverage to measure
the quality of unit test suites, given the fact that there exists
debates on the correlation between code coverage and test
effectiveness [49], we plan to examine the effectiveness of
unit tests with more criteria.

External Validity: In this work, all the experiment sub-
jects are open source projects and written in Java. Although
they are popular projects and widely used in both academic
research studies and real-world applications, our findings may
not be generalizable to commercial projects or projects in other
ecosystems. Thus, future research should revisit our study in
machine learning models with other languages. To mitigate
this threat, we plan to explore the effectiveness of on Python
projects in the future. However, note that our findings does not
have to rely on language specific features and therefore we
believe the findings in this work are still valuable for guiding
the unit test practice with other program languages.

VI. RELATED WORK

A. Automatic Test Generation

Over the past years, researchers have made many advance-
ments to solve the unit test generation problem. As random
testing can be easily scaled to large and complex systems,
random test-data generation has been widely explored [50, 48,
51, 52, 53, 3, 4]. JTest [52] is a commercial tool that leveraged
random testing to generate test data that meets structural cover-
age. JCrasher [48] created sequences of method calls for Java
programs and reported sequences that throw certain types of
exceptions. Eclat [51] and Randoop [3, 4] used random search
to create tests that are likely to expose fault. All these tools
use random search without enough guidance which could lead
to achieving low code coverage.

To improve random testing, search-based algorithms
have been leveraged to generate test cases [2, 45, 54].
eToc [55] used genetic algorithms to generate test data to
test primitive types and strings. TestFul [45], AutoTest [54],
and EvoSuite [2] are typical tools that automated test case
generation by using genetic algorithms. Their objective is to
reach the maximum coverage for a given criterion (e.g., cover
all branches in the system) by using evolutionary algorithms.
Symbolic execution is an alternative approach to improve
random testing [46, 56, 46], such as JPF-symbc [57] and
Pex [47]. Such approaches are not scalable because they
cannot deal with complex statements, native function call, or
external libraries [58].

Almost all of the existing unit test case generation tools
target at producing test cases for general software projects,
and studies have already showed that they can help produce
unit test suites with high code coverage for general software
projects [5, 6, 7, 18]. This work conducts the first study to
evaluate the effectiveness of automatic unit test generation
tools on machine learning libraries.

B. Machine Learning Testing

To test machine learning algorithms, metamorphic testing
based approaches have been proposed to infer possible “test
oracle” of an algorithm to indicate what the correct output
should be for different inputs [59, 60, 61, 62, 63, 64, 65].
Murphy et al. [63] discussed the properties of machine learning
algorithms that may be adopted as metamorphic relations to
detect implementation bugs. Along this line, Xie et al. [59]
conducted the first study about leveraging metamorphic testing
to test the implementations of two machine learning classifi-
cation algorithms, i.e., KNN, and Naive Bayes.

Recently, many studies have been conducted to survey new
techniques to test machine learning [66, 10, 12, 67, 68, 69,
70, 68]. Hang et al. [66] analyzed the main challenges of
testing two machine learning algorithms (i.e., Naive Bayesian
classifier and DNN classifier) that perform a classification
task. Masuda et al. [67] examined the challenges of software
quality assurance for ML-as-a-services (MLaas), which are
machine learning services available through APIs on the
cloud. Ishikawa et al. [69] discussed the foundational concepts



that may be used in any and all machine learning testing
approaches. Ma et al. [71] and Huang et al. [72] surveyed the
security of deep learning models. Guo et al. [70] characterized
deep learning development and deployment across different
frameworks and platforms. Braiek et al. [10] and Zhang
et al. [12] reviewed current existing testing practices for
machine learning and deep learning frameworks. Results of
the above surveys showed that most recent techniques to test
machine learning mainly focused on testing deep learning
models, e.g., Pei et al. [9] presented the first white-box
testing of deep learning models, Tian et al. [73] proposed to
utilize fuzz testing to generate more test data for autonomous
driving cars, Ma et al. [74] proposed new mutation operators
to evaluate the effectiveness of test cases on deep learning
models, and Nejadgholi et al. [68] studied the test oracle
practice in deep learning libraries.

Prior studies on testing machine learning mainly focus on
specific machine learning algorithms or the correctness of gen-
erated machine learning models. In this work, we present the
first important step to understand how developers perform unit
testing in machine learning libraries, which is not studied by
prior work.

VII. CONCLUSION

This paper conducts the first study to investigate the effec-
tiveness of existing unit test generation techniques on machine
learning libraries. To investigate this issue, we have conducted
an empirical study on five widely-used machine learning li-
braries with two popular unit test case generation tools, i.e.,
EVOSUITE and Randoop. Our analysis finds that (1) most of
the machine learning libraries do not maintain a high-quality
unit test suite regarding commonly applied quality metrics
such as code coverage (on average is 34.1%) and mutation
score (on average is 21.3%), (2) unit test case generation tools,
i.e., EVOSUITE and Randoop, lead to clear improvements
in code coverage and mutation score, however, the improve-
ment is limited, and (3) there exist common patterns in the
uncovered code across the five machine learning libraries that
can be used to improve unit test case generation tasks.
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