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ABSTRACT
Identifying and optimizing open participation is essential to the
success of open software development. Existing studies highlighted
the importance of worker recommendation for crowdtesting tasks
in order to detect more bugs with fewer workers. However, these
studies mainly focus on one-time recommendations with respect to
the initial context at the beginning of a new task. This paper argues
the need for in-process crowdtesting worker recommendation. We
motivate this study through a pilot study, revealing the prevalence
of long-sized non-yielding windows, i.e., no new bugs are revealed
in consecutive test reports during the process of a crowdtesting task.
This indicates the potential opportunity for accelerating crowdtest-
ing by recommending appropriate workers in a dynamic manner,
so that the non-yielding windows could be shortened.

To that end, this paper proposes a context-aware in-process
crowdworker recommendation approach, iRec, to detect more bugs
earlier and potentially shorten the non-yielding windows. It con-
sists of three main components: 1) the modeling of dynamic test-
ing context, 2) the learning-based ranking component, and 3) the
diversity-based re-ranking component. The evaluation is conducted
on 636 crowdtesting tasks from one of the largest crowdtesting plat-
forms, and results show the potential of iRec in improving the
cost-effectiveness of crowdtesting by saving the cost and shorten-
ing the testing process.
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1 INTRODUCTION
Abundant internet resources has driven software engineering activ-
ities to be more open than ever. Besides free, successful open source
software and cheap, on-demand web storage and computation fa-
cilities, more and more companies are leveraging on crowdsourced
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software development to obtain solutions and achieve quality ob-
jectives faster, cheaper [1–3]. As an example, uTest has more than
400,000 software experts with diverse expertise spanning more than
200 countries to validate various aspects of digital quality [2].

Various methods and approaches have been proposed to sup-
port utilizing crowdtesting to substitute or aid in-house testing
for reducing cost, improving quality, and accelerating schedule
[19, 24, 53, 66]. One of the most essential functions is to identify
appropriate workers for a particular testing task [13, 14, 51, 60].
This is because the shared crowdworker resources, while cheap,
are not free. To help identify appropriate workers for crowdtesting
tasks, many different approaches have been proposed by model-
ing the workers’ testing environment [51, 60], experience [13, 60],
capability [51], or expertise with the task [13, 14, 51], etc. Unfortu-
nately, these approaches have limited applicability for the highly
dynamic and volatile crowdtesting processes. They merely provide
one-time recommendation at the beginning of a new task, without
considering constantly changing context information of ongoing
testing processes.

This study aims at filling in this gap and shedding light on the
necessity and feasibility of dynamically in-process worker recom-
mendation. From a pilot study conducted on real-world crowdtest-
ing data (Section 2.2), this study first reveals the prevalence of
long-sized non-yielding windows, i.e., consecutive testing reports
containing no new bugs during crowdtesting process. 84.5% tasks
have at least one 10-sized non-yielding window, and an average of
39% of spending is wasted on these non-yielding windows. This in-
dicates the ineffectiveness of current crowdtesting practice because
these non-yielding windows would 1) cause wasteful spending of
task requesters; 2) potentially delay the progress of crowdtesting.
It also implies the potential opportunity for accelerating testing
process by recommending appropriate crowdworkers in a dynamic
manner, so that the non-yielding windows could be shortened.

This paper proposes a context-aware in-process crowdworker
recommendation approach (named iRec) to dynamically recom-
mend a diverse set of capable crowdworkers based on various con-
textual information at a specific point of crowdtesting process,
aiming at shortening the non-yielding window and improving bug
detection efficiency.

iRec consists of three main components: testing context model-
ing, learning-based ranking, and diversity-based re-ranking. First,
the testing context model is constructed in two perspectives, i.e.,
process context and resource context, to capture the in-process
progress-oriented information and crowdworkers’ characteristics
respectively. Second, a total of 26 features are defined and extracted
from both process context and resource context; based on these
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features, the learning-based ranking component learns the prob-
ability of crowdworkers being able to detect bugs within specific
context. Third, the diversity-based re-ranking component adjusts
the ranked list of recommended workers based on the dynamic
diversity measurement to potentially reduce duplicate bugs.

iRec is evaluated on 636 crowdtesting tasks (involving 2,404
crowdworkers and 80,200 reports) from one of the largest crowdtest-
ing platforms. Results show that iRec could shorten the non-yielding
window by a median of 50% - 58% in different application scenarios,
and consequently have potential of saving testing cost by a median
of 8% - 12%. It significantly outperforms four commonly-used and
state-of-the-art baseline approaches.

This paper makes the following contributions:
• The formation of the in-process crowdworker recommen-
dation problem based on the empirical investigation on
real-world crowdtesting data. This is the first study to
explore the in-process worker recommendation prob-
lem to the best of our knowledge.

• The crowdtesting context model which consists of two per-
spectives, i.e., process context and resource context to facili-
tate in-process crowdworker recommendation.

• The development of the learning-based ranking method to
learn appropriate crowdworkers who can detect bugs in a
dynamic manner.

• The development of the diversity-based re-ranking method
to adjust the ranked workers to reduce duplicate bugs.

• The evaluation of the proposed iRec on 636 crowdtesting
tasks (involving 2,404 crowdworkers and 80,200 reports)
from one of the largest crowdsourced testing platforms, with
affirmative results1.

2 BACKGROUND AND MOTIVATION
2.1 Background
In practice, a task requester prepares the task (including the soft-
ware under test and test requirements), and distributes it online.
Crowdworkers can freely sign in their interested tasks and submit
testing reports in exchange of monetary prizes. Managers then
inspect and verify each report to find the detected bugs. There
are different payout schema in crowdtesting [53, 66], e.g., pay by
report. As discussed in previous work [51, 53], the cost of a task is
positively correlated with the number of received reports.

The following lists important concepts with examples in Table 1:
Test Task is the input to a crowdtesting platform provided by a

task requester. It contains a task ID, and a list of test requirements
in natural language.

Test Report is the test record submitted by a crowdworker. It
contains a report ID, a worker ID (i.e., who submit the report), a task
ID (i.e., which task is conducted), the description of how the test was
performed and what happened during the test, bug label, duplicate
label, and submission time. Specifically, bug label indicates whether
the report contains a bug2; and duplicate label indicates with which
the report is duplicate. Note that, in the following paper, we refer to
“bug report” (also short for “bug”) as the report whose bug label is
1https://github.com/wangjunjieISCAS/InProcessRecommendation
2In our experimental platform, a report corresponds to either 0 or 1 bug, and there is
no report containing more than 1 bug.

Table 1: Important concepts and examples
Test Task

Task ID T000012
Requirement 1 Browse the videos through list mode IQIYI, rank the videos using differ-

ent conditions, check whether the rank is reasonable.
Requirement 2 Cache the video, check whether the caching list is right.

Test Report
Report ID R1002948308
Task ID T000012
Worker ID W5124983210
Description I list the videos according to the popularity. It should be ranked accord-

ing to the number of views. However, there were many confused rank-
ings, for example, the video “Shibuya century legend” with 130 million
views was ranked in front of the video “I went to school” with 230 mil-
lion views.

Bug label bug
Duplicate label R1002948315, R1002948324
Submission time Jan 30. 2016 15:32

Crowdworker
Worker Id W5124983210
Device Phone type: Samsung SN9009

Operating system: Android 4.4.2
ROM type: KOT49H.N9009
Network environment:WIFI

Historical
Reports

R1002948308, R1037948352

bug, refer to “test report” (also short for “report”) as any submitted
report, and refer to “unique bug” as the report whose bug label is
bug and duplicate label is null.

Crowdworker is a registered worker in a crowdtesting platform,
and is denoted by worker ID, and his/her device. It is associated
with the historical reports he/she submitted. Note that, in our exper-
imental dataset which spans across six months, we did not observe
the crowdworkers’ device change; thus this paper assumes each
crowdworker corresponds to a stable device variable.

2.2 Non-yielding Windows in Crowdtesting
Processes

Most open call formats of crowdtesting frequently lead to ad hoc
worker behaviors and ineffective outcomes. In some cases, workers
may choose tasks they are not good at and end up with finding
none bugs. In other cases, many workers with similar experience
may submit duplicate bug reports and cause wasteful spending of
the task requester. More specifically, an average of 80% duplicate
reports are observed in our dataset.

To better understand this issue, we examine the bug arrival
curve for 636 historical tasks from real-world crowdtesting projects
(details are in Section 4.2). We notice that there are frequently non-
yielding windows, i.e., the flat segments, of the increasing bug arrival
curve. Such flat windows correspond to a collection of test reports
failing to reveal new bugs, i.e., either no bugs or only duplicate bugs.
We refer to the length of a non-yielding window as the number of
consecutive test reports.

Figure 1: Bug arrival curve

Figure 1 illustrates the
bug arrival curve of an
example task with high-
lighted non-yielding win-
dows (length >10, only
for illustration purpose).
The non-yielding win-
dows can 1) cause waste-
ful spending on these
non-yielding reports; 2)
potentially delay the progress of crowdtesting.
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(a) Non-yielding windows (b) Crowdworkers’ activeness (c) Crowdworkers’ preference

Figure 2: Observations based on Baidu dataset

We further investigate this phenomenon and present a sum-
marized view in Figure 2a. The x-axis shows the length of the
non-yielding window, while the y-axis shows the relative position
of the non-yielding window expressed using the task’s progress. We
can observe that the long-sized non-yielding window is quite com-
mon during crowdtesting process. There are 84.5% (538/636) tasks
with at least one 10-sized non-yielding window, 67.8% (431/636)
tasks with at least one 15-sized window. Furthermore, these long-
sized non-yielding windows mainly take place in the second half
of crowdtesting processes. For example, 90.7% (488/538) 10-sized
non-yielding windows happened at the latter half of the process.

We further explore the cost waste of these non-yielding windows.
Specifically, an average of 39% cost3 is wasted on these 10- or
longer-sized non-yielding windows of all experimental tasks, and
an average of 32% cost is wasted on these 15- or longer-sized non-
yielding windows. In addition, an average of 33 hours4 are spent on
these 10- or longer-sized non-yielding windows of all experimental
tasks.

The prevalence of long-sized non-yielding windows indicates
that current workers possibly have similar bug detection capabil-
ity with previous workers on the same task. In order to break the
flatness, we investigate the potential root causes and study if we
can learn from the dynamic, underlying contextual information in
order to mitigate such situation. This also suggests the unsuitabil-
ity of existing one-time worker recommendation approaches, and
indicates the need for in-process crowdworker recommendation.

2.3 Characterizing CrowdWorker’s Bug
Detection Capability

This subsection presents more explorations about the characteris-
tics of crowdworkers which can influence their test participation
and bug detection performance to motivate the modelings of testing
context.

Activeness. Figure 2b shows the distribution of crowdworkers’
activity intensity. The x-axis is the random-selected 20 crowdwork-
ers among the top-50 workers ranked by the number of submitted
reports, and the y-axis is 20 equal-sized time interval which is ob-
tained by dividing the whole time space. We color-code the blocks,
3Following previous work [51, 53], we treat the number of reports as the amount of
cost.
4We measure the duration of each non-yielding window using the time difference
between the last and first report’s submission time associated with that window.

using a darker color to denote a worker submitting more reports
during the specific time interval. We can see that the crowdwork-
ers’ activities are greatly diversified and not all crowdworkers are
equally active in the crowdtesting platform at specific time. Intu-
itively, the inactive crowdworkers would be less likely to conduct
the task, let alone detect bugs.

Preference. Figure 2c shows the distribution of crowdworkers’
activity at a finer granularity. The x-axis is the same as Figure 2b,
and the y-axis is the random-selected 20 terms (which capture the
content under testing) from the top-50 most popular descriptive
terms (see Section 3.1 for details). The block in the heat map demon-
strates the number of reports which are submitted by the specific
worker and contain the specific term. We color-code the blocks,
using a darker color to denote a worker submitting reports with
corresponding terms more frequently, i.e., worker’s preference in
different aspects. The differences across columns in the heat map
further reveal the diversified preference across workers. Consid-
ering there are usually dozens of crowdtesting tasks open in the
platform, even if a crowdworker is active, he/she cannot take all
tasks. Intuitively, if a crowdworker has a preference on the specific
aspects of a task, he/she would show greater willingness in taking
the task and further detecting bugs.

Expertise. Similarly, we explore the heat map with the terms
from the crowdworkers’ bug reports (rather than reports), we ob-
serve a similar trend. Due to space limit, we leave the detailed
figure in our website. This indicates the crowdworkers’ diversified
expertise over different crowdtesting tasks. We also conduct corre-
lation analysis between the number of bug reports (i.e., denoting
expertise) and number of reports (i.e., denoting preference) for each
pair of the 20 crowdworkers on the top-50 most popular terms, the
median coefficients is 0.26 indicating these two types of character-
istics are not tightly correlated with each other. Preference focuses
more on whether a crowdworker would take a specific task, and
expertise focuses more on whether a crowdworker can detect bugs
in the task.

To summarize, the exploration results reveal that workers have
greatly diversified activeness, preferences, and expertise, which sig-
nificantly affect their availability on the platform, choices of tasks,
and quality of their submissions. To guarantee the effectiveness of
recommendation, a worker is desirable to be active in the platform,
and equipped with satisfactory preference and expertise for the
given tasks. Thus, all these factors need to be precisely captured
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Figure 3: Overview of iRec

and jointly considered within the recommendation approach. Be-
sides, the approach should also consider the diversity among the
recommended set of workers so as to reduce duplicates and further
improve bug detection performance.

3 APPROACH
Figure 3 shows the overview of the proposed iRec. It can be au-
tomatically triggered when the size of non-yielding window ex-
ceeding a certain threshold value (i.e., recThres) is observed during
crowdtesting process, as introduced in Section 2.2. For brevity, we
use the term recPoint to denote the point of time under recommen-
dation, as illustrated at the top-right corner of Figure 3.

iRec has three main components. First, it models the time-
sensitive testing contextual information in two perspectives, i.e.,
the process context and the resource context, respectively, with
respect to the recPoint during the crowdtesting process. The process
context characterizes the process-oriented information related to
the crowdtesting progress of the current task, while resource con-
text reflects the availability and capability factors concerning the
competing crowdworker resources in the crowdtesting platform.
Second, a learning-based ranking component extracts 26 features
from both process context and resource context, and learns the
success knowledge of the most appropriate crowdworkers, i.e., the
workers with the greatest potential to detect bugs abstracted from
historical tasks. Third, a diversity-based re-ranking component ad-
justs the ranked list of recommended workers by optimizing the
worker diversity in order to potentially reduce duplicate bugs.

3.1 Data Preprocessing
To extract the time-sensitive contextual information at recPoint, the
following data are obtained for further processing (refer to Section
2.1 for more details of these concepts): 1) test task: the specific
task currently under testing and recommendation; 2) test reports:
the set of already received reports for this specific task up till the
recPoint; 3) all registered crowdworkers (with historical reports a
crowdworker submitted, including reports in this specific task); 4)
historical test tasks.

There are two types of textual documents in our data repository:
one is test reports and the other is test requirements. Following
the existing studies [48, 52], each document goes through standard
word segmentation, stopwords removal, with synonym replacement
being applied to reduce noise. As an output, each document is
represented using a vector of terms.

Descriptive term filtering. After the above steps, we find that
some terms may appear in a large number of documents, while
some other terms may appear in only very few documents. Both of
them are less predictive and contribute less in modeling the testing
context. Therefore, we construct a descriptive terms list to facilitate
the effective modeling. We first preprocess all the documents in the
training dataset (see Section 4.3) and obtain the terms of each docu-
ment. We rank the terms according to the number of documents in
which a term appears (i.e., document frequency, also known as df ),
and filter out 5% terms with the highest document frequency and
5% terms with the lowest document frequency (i.e., less predictive
terms) following previous work [13, 51]. Note that, since the doc-
uments in crowdtesting are often short, the term frequency (also
known as tf ), which is another commonly-used metric in informa-
tion retrieval [43], is not discriminative, so we only use document
frequency to rank the terms. In this way, the final descriptive terms
list is formed and used to represent each document in the vector
space of the descriptive terms.

3.2 Testing Context Modeling
The testing context model is constructed in two perspectives, i.e.,
process context and resource context, to capture the in-process
progress-oriented information and crowdworkers’ characteristics
respectively.

3.2.1 ProcessContext. Tomodel the process context of a crowdtest-
ing task, we first represent the task’s requirements in the vector
space of descriptive terms list and denote it as task terms vector.
We then use the notion of test adequacy to measure the testing
progress regarding to what degree each descriptive term of task
requirements (i.e., task terms vector) has been tested.

TestAdeq: the degree of testing for each descriptive term tj in
task terms vector. It is measured as follows:

TestAdeq(tj) =
number of bug reports with tj

number of received bug reports in a task
(1)

where tj ∈ task terms vector. The larger TestAdeq(tj ), the more
adequate of testing for the corresponding aspects of the task. This
definition enables the learning of underlying knowledge to match
workers’ expertise or preference with inadequate-tested terms at a
finer granularity.

3.2.2 Resource Context. Based on the observations from Sec-
tion 2.3, activeness, preference, and expertise of crowdworkers are
integrated to model the resource context of a general crowdtesting
platform. In addition, we include device of crowdworkers as a sepa-
rate dimension of resource context, since several studies reported
its diversifying role in crowdtesting environment [51, 60].

1)Activenessmeasures the degree of availability of crowdwork-
ers to represent relative uncertainty associated with inactive crowd-
workers. Activeness of a crowdworkerw is characterized using the
following four attributes :
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LastBug: Duration (in hours) between recPoint and the time
when workerw’s last bug is submitted.

LastReport: Duration (in hours) between recPoint and the time
when workerw’s last report is submitted.

NumBugs-X : Number of bugs submitted by workerw in past
X time, e.g., past 2 weeks.

NumReports-X : Number of reports submitted by workerw in
past X time, e.g., past 8 hours.

Based on the concepts in Table 1, we can derive the above
attributes of worker w from the historical reports submitted by
him/her.

2)Preferencemeasures to what degree a potential crowdworker
might be interested in a candidate task. The higher the preference,
the greater the worker’s willingness/potential in taking the task/de-
tecting bugs. Preference of a crowdworkerw is characterized using
the following attribute:

ProbPref : the preference of workerw regarding each descriptive
term. In other words, it is the probability of recommending the
workerw when aiming at generating a report with specific term tj .
It is measured based on bayes rules [41] as follows:

ProbPref (w, tj) = P(w |tj ) =
tf (w, tj )∑

wk
tf (wk , tj )

·

∑
wk

df (wk )

df (w)
(2)

where tf (w, tj) is the number of occurrences of tj in historical
reports of workerw , df (w) is the total number of reports submitted
by workerw , and k is an iterator over all available crowdworkers
at the platform.

Asmentioned in Section 3.1, after data preprocessing, each report
is expressed with a set of descriptive terms. This attribute can be
derived from the crowdworker’s historical submitted reports.

3) Expertise measures a crowdworker’s capability in detecting
bugs. When a crowdworker brings in matching expertise required
for the given task, he/she would have greater possibility in detecting
bugs. Expertise of a crowdworker w is characterized using the
following attribute:

ProbExp: the expertise of workerw regarding each descriptive
term. It is measured similarly as ProbPref as follows:

ProbExp(w, tj) = P(w |tj ) =
tf (w, tj )∑

wk
tf (wk , tj )

·

∑
wk

df (wk )

df (w)
(3)

where tf (w, tj) is the number of occurrences of tj in historical
bug reports of worker w , df (w) is the total number of bug reports
submitted by workerw , and k is an iterator over all available crowd-
workers at the platform.

The difference between ProbProf and ProbExp is that the former
is measured based on worker’s submitted reports, while the latter is
based on worker’s submitted bug reports, following the motivating
studies in Section 2.3. The reason why we characterize expertise in
terms of each term is because it enables the more precise matching
with the inadequate-tested terms, and the identification of more
diverse workers for finding unique bugs in a much-finer granularity.

4) Device measures the device-related attributes of the crowd-
worker which is critical in testing an application and in revealing
device-related bugs [56]. Device of a crowdworkerw is character-
ized using all his/her device-related attributes including: Phone
type used to run the testing task, Operating system of the de-
vice model, ROM type of the phone,Network environment under

which a task is run. These are necessary to reproduce the bugs
for the software under test, shared among various crowdtesting
platforms [19, 66].

3.3 Learning-based Ranking
Based on the dynamic testing context model, a learning-based rank-
ing method is developed to derive the ranks of crowdworkers based
on their probability of detecting bugs with respect to a particular
testing context.

3.3.1 Feature Extraction. 26 features are extracted based on the
process context and resource context for the learning model, as
summarized in Table 2. Features 1-12 capture the activeness of
a crowdworker. Previous work demonstrated the developer’s re-
cent activity has greater indicative effect on his/her future behav-
ior than the activity happened long before [51, 69], so we extract
the activeness-related features with varying time intervals. Fea-
tures 13-19 capture the matching degree between a crowdworker’s
preference and the inadequate-tested aspects of the task. Features
20-26 capture the matching degree between the a crowdworker’s
expertise and the inadequate-tested aspects of the task. Note that,
since the learning-based ranking method focuses on learning and
matching the crowdworker’s bug detection capability related to the
descriptive terms of a task, we do not include the device dimension
of resource context.

The first group of 12 features can be calculated directly based
on the activeness attributes defined in the previous section. The
second and third group of features are obtained in a similar way by
examining the similarities. For brevity, we only present the details
to produce the third group of features, i.e. 20-26.

Table 2: Features for learning to rank

Category ID Feature

Activeness
indexing

1 LastBug
2 LastReport
3-7 NumBugs-8 hours, NumBugs-24 hours,

NumBugs-1 week, NumBugs-2 week, NumBugs-
all (i.e., in the past)

8-12 NumReports-8 hours, NumReports-24 hours,
NumReports-1 week, NumReports-2 week,
NumReports-all (i.e., in the past)

Preference
matching

13-14 Partial-ordered cosine similarity, partial-ordered
euclidean similarity between worker’s preference
and test adequacy

15-19 Partial-ordered jaccard similarity between
worker’s preference and test adequacy with the
cutoff threshold of 0.0, 0.1, 0.2, 0.3, 0.4

Expertise
matching

20-21 Partial-ordered cosine similarity, partial-ordered
euclidean similarity between worker’s expertise
and test adequacy

22-26 Partial-ordered jaccard similarity between
worker’s expertise and test adequacy with the
cutoff threshold of 0.0, 0.1, 0.2, 0.3, 0.4

Previous work has proven extracting features from different per-
spectives can help improve the learning performance [9, 26, 40],
so we extract the similarity-related features from different view-
points. Cosine similarity, euclidean similarity, and jaccard similarity
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are the three commonly-used similarity measurements and have
proven to be efficient in previous researches [16, 17, 48, 52], there-
fore we utilize all these three similarities for feature extraction. In
addition, a crowdworker might have extra expertise beyond the
task’s requirements (i.e., the test adequacy), to alleviate the po-
tential bias introduced by the unrelated expertise, we define the
partial-ordered similarity to constrain the similarity matching only
on the descriptive terms within the task terms vector.

Partial-ordered cosine similarity (POCosSim) is calculated
as the cosine similarity between test adequacy and a worker’s
expertise, with the similarity matching constraint only on terms
appeared in task terms vector.

POCosSim =
∑
xi ∗ yi√∑
x 2
i

√∑
y2
i

(4)

,where xi is 1.0 - TestAdeq(ti ), yi is ProbExp(w, ti ), and ti is the ith
descriptive term in task terms vector.

Partial-ordered euclidean similarity (POEucSim) is calcu-
lated as the euclidean similarity between test adequacy and a
worker’s expertise, with a minor modification on the distance cal-
culation.

POEucSim =


√∑
(xi − yi )2, i f xi >= yi

0, i f xi < yi ,
(5)

,where xi and yi is the same as in POCosSim.
Partial-ordered jaccard similarity with the cutoff thresh-

old of θ (POJacSim) is calculated as the modified jaccard similarity
between test adequacy and a worker’s expertise based on the set of
terms whose probabilistic values are larger than θ .

PO JacSim =
A ∩ B
A

(6)

,where A is a set of descriptive terms whose (1.0 -TestAdeq(ti ))
is larger than θ , and B is a set of descriptive terms whose Prob-
Exp(w, ti ) is larger than θ .

3.3.2 Ranking. We employ LambdaMART, which is the state-of-
the-art learning to rank algorithm and reported as effective in many
learning tasks of SE [58, 68].

Model training. For every task in the training dataset, at each
recPoint, we first obtain the process context of the task and resource
context for all crowdworkers, then extract the features for each
crowdworker in Table 2. We treat the crowdworkers who submitted
new bugs after recPoint (not duplicate with the submitted reports)
as positive instances and label them as 1. As reported by existing
work that unbalanced data could significantly affect the model
performance [45, 46], to make our dataset balanced, we randomly
sample an equal number of crowdworkers (who didn’t submit bugs
in the specific task) with the positive instances and label them as
0. The instances close to the boundary between the positive and
negative regions can easily bring noise to the machine learner,
therefore, to facilitate the generation of more effective learning
model, we choose crowdworkers who are different from the positive
instances [10, 40], i.e., to select those majority instances which are
away from the boundary.

Ranking based on trained model. At the recPoint, we first
obtain the process context and resource context for all crowdwork-
ers, extract the features in Table 2, and apply the trained model
to predict the bug detection probability of each crowdworker. We

sort the crowdworkers based on the predicted probability in a de-
scending order, and treat a ranked list of higher-ranked recNum
crowdworkers (recNum is an input parameter since usually only a
small set of crowdworkers is considered for recommendation) as
the output of the learning-based ranking component, i.e., initial
ranking in Figure 3.

3.4 Diversity-based Re-ranking
To produce less duplicate reports and improve the bug detection per-
formance, as discussed in Section 2.3, we develop a diversity-based
re-ranking method to adjust the initial ranking of crowdworkers to
optimize the diversity among crowdworkers.

3.4.1 Diversity Measurement. We first measure the diversity
delta of a worker with respect to current re-ranked list of workers S
(see Sec. 3.4.2 for details) in two dimensions, i.e., expertise diversity
delta and device diversity delta.

Expertise diversity delta gives higher score to these workers
who have most different expertise from the workers in the current
re-ranked list.

ExpDiv(w, S) =
∑
tj

ProfExp(w, tj) ×
∏
wk ∈S

(1.0 − ProfExp(wk, tj)) (7)

where the later part (i.e.,
∏
) estimates the extent to which tj is

tested by the workers on current re-ranked list.
Device diversity delta gives higher scores to these workers

who can bring more new device’s attributes (e.g., phone type, op-
erating system, etc.) to those of the workers on current re-ranked
list, so as to facilitate the exploration in new testing environment.

DevDiv(w, S) = (w′s attributes) − ∪wk ∈S (w
′
ks attributes) (8)

where w′s attributes is a set of attributes of w′s device, i.e., Sam-
sung SN9009, Android 4.4.2, KOT49H.N9009, WIFI as in Table 1.

3.4.2 Re-ranking. Supposewe have a ranked list of recommended
workers (w1 - wrecNum) produced by the learning-based ranking
method, and an empty list of re-ranked list S , the re-ranking al-
gorithm first moves w1 to S , then executes the following steps
iteratively (suppose current re-ranked list having r workers): 1○
Calculate ExpDiv(w, S), DevDiv(w, S) for the remaining workers in
ranked list; 2○ Sort the workers respectively based on ExpDiv(w, S)
andDevDiv(w, S) descending, and obtain the expertise index expI (w)

and device index expI (w) (e.g., expI (w) = 1 for the worker with
the largest ExpDiv(w, S)); 3○ Obtain the combined diversity for
each worker by ExpI (w)+ divRatio×DevI (w) (where divRatio is an
input parameter denoting the relative weight of device diversity
compared with expertise diversity), and move the worker with the
smallest value into S . The reason why we use index rather the orig-
inal value for the combined diversity is to alleviate the influence of
extreme value.

4 EXPERIMENT DESIGN
4.1 Research Questions

• RQ1: (Performance Evaluation) How effective is iRec for
crowdworker recommendation?

For RQ1, we first present some general views of iRec for worker
recommendation. To further demonstrate its advantages, we then
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compare its performance with four state-of-the-art and commonly-
used baseline methods (details are in Section 4.5).

• RQ2: (Context Sensitivity) To what degree iRec is sensitive
to different categories of context?

The basis of this work is the characterization of the test context
model (details are in Section 3.2). RQ2 examines the performance
of iRec when removing different sub-category of the context, to
understand the context sensitivity of recommendation.

• RQ3: (Diversity Gain) How much is the diversity gain by
introducing the re-ranking method in recommendation?

Besides the learning-based ranking component, we further de-
sign a diversity-based re-ranking component to adjust the original
ranking. RQ3 aims at examining its role in recommendation.

4.2 Dataset
We collected crowdtesting data from Baidu5 crowdtesting platform,
which is one of the largest industrial crowdtesting platform.

We collected the crowdtesting tasks that are closed between May.
1st 2017 and Nov. 1st 2017. In total, there are 636 mobile application
testing tasks from various domains (details are in our website), in-
volving 2,404 crowdworkers and 80,200 submitted reports. For each
testing task, we collected its task-related information, all the sub-
mitted test reports and related information, e.g., submitter, device,
etc. The minimum, average, and maximum number of reports (and
unique bugs) per task are 20 (3), 126 (24), and 876 (98) respectively.

4.3 Experimental Setup
To simulate the usage of iRec in practice, we employ a commonly-
used longitudinal data setup [44, 48, 53]. That is, all the 636 ex-
perimental tasks were sorted in the chronological order, and then
divided into 21 equally sized folds with each fold having 30 tasks
(the last fold has 36 tasks). We then employ the former N-1 folds as
the training dataset to train iRec and use the tasks in the Nth fold
as the testing dataset to evaluate the performance of worker recom-
mendation. We experiment N from 12 to 20 to ensure a relatively
stable performance because a too small training dataset could not
reach an effective model.

For each task in the testing dataset, at the triggered recPoint
(see Section 3), we run iRec and other approaches to recommend
crowdworkers. We experimented recThres from 3 to 12; and due to
space limit, we only present the results with four representative
recThres (i.e., 3, 5, 8, and 10) and leave others on our website. The
size of the experimental dataset (i.e., number of total recPoint) under
the four recThres are 676, 479, 345, and 278 respectively.

For the parameter divRatio, we tune the optimal value based on
the training dataset. In detail, for every candidate parameter value
(we experiment from 0.1 to 0.9), we obtain the FirstHit (see Section
4.4) of the recommendation result on the training set and calculate
the median value. We treat the parameter value, under which the
smallest median value is obtained, as the best one. The parameter
recNum is tuned in the same way.

4.4 Evaluation Metrics
Given a crowdtesting task, we measure the performance of worker
recommendation approach based on whether it can find the “right”
5test.baidu.com

workers who can detect bugs, and how early it can find the first
one. Following previous studies, we use the commonly-used bug
detection rate [13, 14, 51] for the evaluation.

BugDetectionRate at k (BDR@k) is the percentage of unique
bugs detected by the recommended k crowdworkers out of all
unique bugs historically detected after the recPoint for the specific
task. Since a smaller subset is preferred in crowdworker recommen-
dation, we obtain BDR@k when k is 3, 5, 10, and 20.

Besides, as our in-process recommendation aims at shortening
the non-yielding windows, we define another metric to intuitively
measure how early the first bug can be detected.

FirstHit is the rank of the first occurrence, after recPoint, where
a worker from the recommended list actually submitted a unique
bug to the specific task.

To further demonstrate the superiority of our proposed approach,
we perform one-tailed Mann Whitney U test [38] between our
proposed iRec and other approaches. We include the Bonferroni
correction [57] to counteract the impact of multiple hypothesis tests.
Besides the p-value for signifying the significance of the test, we
also present the Cliff’s delta to demonstrate the effect size of the test.
We use the commonly-used criteria to interpret the effectiveness
levels, i.e., Large (0.474-1.0), Median (0.33-0.474), Small (0.147-0.33),
and Negligible (-1, 0.147) (see details in [12]).

4.5 Ground Truth and Baselines
The Ground Truth of bug detection of a given task is obtained
based on the historical crowdworkers who participated in the task
after the recPoint. In detail, we first rank the crowdworkers based
on their submitted reports in chronological order, then obtain the
BDR@k and FirstHit based on this order.

To further explore the performance of iRec, we compare iRec
with four commonly-used and state-of-the-art baselines.

MOCOM [51]: This is a multi-objective crowdworker recom-
mendation approach by maximizing the bug detection probability
of workers, the relevance with the test task, the diversity of workers,
and minimizing the test cost.

ExReDiv [13]: This is a weight-based crowdworker recommen-
dation approach that linearly combines experience strategy, rele-
vance strategy, and diversity strategy.

MOOSE [14]: This is a multi-objective crowdworker recommen-
dation, which can maximize the coverage of test requirement, max-
imize the test experience of workers, and minimize the cost.

Cocoon [60]: This crowdworker recommendation approach is
designed to maximize the testing quality (measured in worker’s
historical submitted bugs) under the test coverage constraint.

For each baseline, we conduct worker recommendation before
the task begins; then at each recPoint, we first obtain the set of
worker who have submitted reports in the specific task (denoted
as white list workers), and use the recommended workers minus
the white list workers as the final set of recommended workers.
Note that, the reason why take out the white list workers is because
99% crowdworkers only participated one time in a crowdtesting
task in our experimental dataset; and without the white list, the
performance would be worse.

test.baidu.com
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Figure 4: Performance of iRec for FirstHit

5 RESULTS AND ANALYSIS
5.1 Answering RQ1: Performance Evaluation
Figure 4 demonstrates the FirstHit of worker recommendation un-
der four representative recThres (i.e., recThres-sized non-yielding
window is observed in Section 3), i.e., 3, 5, 8, and 10. We can easily
see that for all four recThres, FirstHit of iRec is significantly (p-
value is 0.00) and substantially (Cliff’s delta is 0.25-0.39) better than
current practice of crowdtesting. When recThres is 5, the median
FirstHit of iRec and Ground Truth are respectively 4 and 8, indicat-
ing our proposed approach can shorten the non-yielding window
by 50%. For other application scenarios (i.e., recThres is 3, 8, and 10),
iRec can shorten the non-yielding window by 50% to 58%.

Figure 5 demonstrates the BDR@k of worker recommendation
under four representative recThres. iRec significantly (p-value is
0.00) and substantially (Cliff’s delta is 0.24-0.39) outperforms cur-
rent practice of crowdtesting for BDR@k (k is 3, 5, 10, and 20).When
recThres is 5, a median of 50% remaining bugs can be detected
with the first 10 recommended crowdworkers by our proposed
iRec, with 400% improvement compared with current practice of
crowdtesting (50% vs. 10%). Besides, a median of 78% remaining
bugs can be detected with the first 20 recommended crowdworkers
by iRec, with 160% improvement compared with current practice
(78% vs. 30%). This again indicates the effectiveness of our approach
not only for the power in finding the first “right” workers, but also
in terms of the bug detection with the set of recommended workers.

We also notice that for a larger recThres, the advantage of iRec
over current practice is larger. In detail, when recThres is 3, iRec
can improve the current practice by 87% (75% vs. 40%) for BDR@20,
and when recThres is 8, the improvement is 460% (80% vs. 14%). This
holds true for other metrics. A larger recThres might indicate the
task is getting tough because no new bugs are reported in quite a
long time, and our proposed iRec can help the task get out of the
dilemma with new bugs submitted very soon.

Furthermore, for the recPoint with larger FirstHit of Ground Truth,
our proposed approach can shorten the non-yielding window in a
larger extent (due to space limit, see the figure on our website). For
example, for the recPoint whose FirstHit of Ground Truth is larger
than 3 (recThres is 5), iRec can shorten the non-yielding window
by 64% on median (5 vs. 14), while the improvement is 50% (4 vs. 8)
in the whole dataset. This further indicates the effectiveness of our
approach since for recPoint with a larger FirstHit of Ground Truth,

it is in higher demand for an efficient worker recommendation so
that the “right” worker can come soon.

In the following paper, we use the experimental setting when
recThres is 5 for further analysis and comparison due to space limit.

Comparison with Baselines. Figure 6 demonstrates the com-
parison results with four baselines. Overall, our proposed iRec
significantly (p-value is 0.00) and substantially (Cliff’s delta is 0.16-
0.23) outperforms the four baselines in terms of FirstHit and BDR@k
(k is 3, 5, 10, and 20). Specifically, iRec can improve the best baseline
MOCOM by 60% (4 vs. 10) for median FirstHit; and the improvement
is infinite for median BDR@k (e.g., 78% vs. 0 for BDR@20). This
is because all the baselines are designed to recommend a set of
workers before the task begins and don’t consider various context
information of the crowdtesting process. Besides, the aforemen-
tioned baseline approaches do not explicitly consider the activeness
of crowdworkers which is another cause of performance decline.
Furthermore, the baselines’ performance are similar to each other
which is also due to their limitations of lacking contextual details
in one-time worker recommendation

5.2 Answering RQ2: Context Sensitivity
Figure 7 shows the comparison results between iRec and its six
variants. Specifically, noAct, noPref, noExp, and noDev are different
variants of iRec without activeness, preference, expertise, and
device context respectively. Because process context cannot be
removed, noProc denotes using the process context at the beginning
of a task. We additionally present noRsr which denotes using the
resource context at the beginning of the task to further demonstrate
the necessity of precise context modeling.

We can see that without any type of the resource context (i.e.,
noAct, noPref, noExp, and noDev), the recommendation performance
would undergo a decline in both FirstHit and BDR@k. Without
activeness-related context, the FirstHit of the recommended work-
ers undergoes a largest variation, i.e., the most sensitive context
for recommendation. This might be because this dimension of fea-
tures is the only one for capturing time-related information, and
without them, the model would lack important clues for the crowd-
workers’ time-series behavior. Preference-related context exerts a
slightly larger influence on the recommendation performance than
expertise-related context, although they are modeled similarly. This
might because many crowdworkers submitted reports but didn’t
report bugs, so preference-related context is more informative than
experience-related context, thus we can build more effective learn-
ing model. The lower performance of noProc and noRsr compared
with iRec further indicates the necessity of the precise context
modeling.

5.3 Answering RQ3: Diversity Gain
Table 3 first demonstrates the average performance of iRec and
iRec without re-rank, followed by the distribution of performance
increase and decrease of iRec compared with iRec without re-rank
in all recPoint. We can see that with the re-ranking component, the
average performance can be improved by 12% to 19%. Specifically,
the re-ranking can increase the BDR@10 in 25% cases, and decrease
it in 15% cases. This is because there are large amount of dupli-
cate bugs and increasing the diversity of recommended workers
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(a) BDR@k for recThres=3 (b) BDR@k for recThres=5 (c) BDR@k for recThres=8 (d) BDR@k for recThres=10

Figure 5: Performance of iRec for BDR@k

(a) FirstHit (b) BDR@k

Figure 6: Performance comparison with baselines

(a) FirstHit (b) BDR@k

Figure 7: Context sensitivity

can help decrease the duplicate bugs so as to increase the unique
bugs. Furthermore, we can observe that there are more points with
performance increase than those with decrease for BDR@k with
larger k. This makes sense because if a crowdworker contributes
less to the diversity, he/she would be moved backward so that more
unique bugs can be detected earlier; and the larger of examined k,
the larger possibility for duplicate bugs in terms of the original list,
and more room for improvement.

Although the average value for all metrics are increased with
re-rank, we admit that the re-ranking component can not always
improve the performance. This might be because sometimes the
workers ranked earlier are not always those who can detect bugs,
and when the re-ranking moves back the similar workers who can
actually detect bugs, the bug detection performance would decline.

Table 3: Role of re-ranking
FirstHit BDR@3 BDR@5 BDR@10 BDR@20

Average performance
iRec 7.21 21% 32% 48% 67%
iRec without re-rank 8.35 18% 26% 41% 59%
improvement 13.5% 17.1% 19.6% 15.9% 12.3%

Recommending points
performance increase 39% 15% 20% 25% 26%
performance decrease 27% 9% 12% 15% 12%

Future work would design more effective re-ranking algorithm to
tackle the negative effect on the recommendation performance.

6 DISCUSSION
6.1 Benefits of In-process Recommendation
In-process worker recommendation has great potential to facili-
tate talent identification and utilization for complex, intelligence-
intensive tasks. As presented in the previous sections, the proposed
iRec established the crowdtesting context model at a dynamic,
finer granularity, and constructed two methods to rank and re-rank
the most suitable workers based on dynamic testing progress. In
this section, we discuss with more details about why practitioners
should care about such kind of in-process crowdworker recommen-
dation.

(a) at report#32 (b) at report#86

Figure 8: Illustrative examples of iRec

We utilize illustrative examples to demonstrate the benefits of
the application of iRec. Figure 8 demonstrates two typical bug
detection curve using iRec for two recPoint of the task in Figure 1.
We can easily see that with iRec, not only the current non-yielding
window can be shortened, but also the following bug detection effi-
ciency can be improved with the recommended set of workers. In
detail, in Figure 8a, we can clearly see that with the recommended
workers, the bug detection curve can rise quickly, i.e., with equal
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number of workers, more bugs can be detected. Also note that, in
real-world application of iRec, the in-process recommendation can
be conducted dynamically following the new bug detection curve so
that the bug detection performance can be further improved. In Fig-
ure 8b, although the bug detection curve can not always dominate
the current practice, the first “right” worker can be found earlier
than current practice. Similarly, with the dynamic recommendation,
the current practice of bug detection can be improved.

Table 4: Reduced cost with iRec

recThres=3 recThres=5 recThres=8 recThres=10
1st-quarter 4.8% 4.2% 2.7% 2.8%
median 12.1% 9.8% 8.6% 8.1%
3rd-quarter 21.3% 18.6% 16.7% 16.4%

Based on the metrics in Section 4.4 that are applied for single rec-
Point, we further measure the reduced cost for each crowdtesting
task if equipped with iRec for in-process crowdworker recommen-
dation. It is measured based on the number of reduced report, i.e.,
the difference of FirstHit value between iRec and Ground Truth,
following previous work [51, 53]. For a crowdtesting task with mul-
tiple recPoint, we simply add up the reduced cost of each recPoint.
As shown in Table 4, a median of 8% to 12% cost can be reduced, in-
dicating about 10% cost can be saved if equipped with our proposed
approach for in-process crowdworker recommendation. Note that,
this figure is calculated by simply summing up the reduced cost of
single recPoint based on the offline evaluation scenario adopted in
this work. However, as shown in Figure 8, in real-world practice,
the recommendation can be conducted based on the bug arrival
curve after the prior recommendation; and the reduced cost should
be further improved. Therefore, crowdtesting managers could ben-
efit tremendously from actionable insights offered by in-process
recommendation systems like iRec.

6.2 Implication of In-process Recommendation
Nevertheless, in-process crowdworker recommendation is a com-
plicated, systematic, human-centered problem. By nature, it is more
difficult to model than the one-time crowdworker recommenda-
tion at the beginning of the task. This is because the non-yielding
windows are scattered in the crowdtesting process. Although the
overall non-yielding reports are in quite large number, some of the
non-yielding windows are not long enough to apply the recom-
mendation approach or let the recommendation approach work
efficiently. Our observation reveals that an average of 39% cost is
wasted on these long-sized non-yielding windows (see Section 2.2),
but the reduced cost by our approach is only about 10% which is far
less than the ideal condition. From one point of view, this is because
the front part of the non-yielding window (i.e., recPoint in Section
3) could not be saved because it is needed for determining whether
to conduct the worker recommendation. And from another point
of view, there is still room for performance improvement.

On the other hand, the true effect of in-process recommenda-
tion depends on the potential delays due to interactions between
the testing manager, the platform, and the recommended workers.
The longer the delays are, the less the benefit can take effect. It
is critical for crowdtesting platforms, when deploying in-process
recommendation systems, to consider how to better streamline the
recommendation communication and confirmation functions, in

order to minimize the potential delays in bridging the best work-
ers with the tasks under test. For example, the platform may em-
ploy instant synchronous messaging service for recommendation
communication, and innovate rewarding system to attract more
in-process recruitment. More human factor-centered research is
needed along this direction to explore systematic approaches for
facilitating the adoption of in-process recommendation systems.

6.3 Threats to Validity
First, following existingwork [51, 53], we use the number of crowdtest-
ing reports as the amount of cost when measuring the reduced cost.
As discussed in [53], the reduced cost is equal with or positively
correlated with the number of reduced reports for all the three
typical payout schemas.

Second, the recommendation is triggered by the non-yielding
window,which is obtained based on report’s attributes. In crowdtest-
ing process, each report would be inspected and triaged with these
two attributes (i.e., bug label and duplicate label) so as to better
manage the reported bugs and facilitate bug fixing [18, 67]. This
can be done manually or with automatic tool support (e.g., [48, 49]).
Therefore, we assume our designed methods can be easily adopted
in the crowdtesting platform.

Third, we evaluate iRec in terms of each recommending point,
and sum up the single performance as the overall reduced cost. This
is limited by the offline evaluation, which is quite common choice
of previous worker recommendation approaches in SE [8, 23, 27, 44,
61]. In real-world practice, iRec can be applied dynamically based
on the new bug arrival curve formed by the prior recommended
crowdworkers. We assume when applied online, the reduction of
cost should be larger because the later recommendation can be
based on the results of prior recommendation which is proven to
be efficient compared with current practice.

Fourth, for the generalizability of our approach, a recent sys-
tematic review [66] has shown current crowdtesting services are
dominated by functional, usability, and security test of mobile ap-
plications. The dataset used in our study is largely representative
of this trend, with 632 functional and usability test tasks spanning
across 12 application domains (e.g., music, sport). The proposed
approach is based on dynamically constructing the testing context
model using NLP techniques and learning-based ranking, which is
independent of different testing types. We believe that the proposed
approach is generally applicable to supporting other testing types
such as security and performance testing, since more sophisticated
skillsets reflecting these specialty testing may be implicitly repre-
sented by corresponding descriptive terms learned in the dynamic
context. Therefore, the learning and ranking components will not
be affected and can be reused. Further verification on other testing
types or scenarios is planned as our future work.

7 RELATEDWORK
Crowdtesting has been applied to facilitate many testing tasks, e.g.,
test case generation [11], usability testing [22], software perfor-
mance analysis [37], software bug detection and reproduction [21].
There were dozens of approaches focusing on the new encountered
problems in crowdtesting, e.g., crowdtesting reports prioritization
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[16, 17, 28], reports summarization [24], reports classification [48–
50, 52], automatic report generation [30], crowdworker recommen-
dation [13, 14, 51, 60], crowdtesting management [53], etc.

There were many lines of related studies for recommending
workers for various software engineering tasks, such as bug triage [6,
7, 27, 34, 39, 44, 54, 55, 59, 61, 65], code reviewer recommendation
[15, 23, 64], expert recommendation [8, 32], developer recommenda-
tion for crowdsourced software development [29, 33, 62, 63], worker
recommendation for general crowdsourcing tasks [5, 31, 42], etc.
The aforementioned studies either recommended one worker or
assumed the recommended set of workers are independent of each
other, which is not applicable for testing activity.

Several studies explored worker recommendation for crowdtest-
ing tasks by modeling the workers’ testing environment [51, 60], ex-
perience [13, 60], capability [51], expertise with the task [13, 14, 51],
etc. However, these existing worker recommendation solutions only
apply at the beginning of the task, and do not consider the dynamic
nature of crowdtesting process.

The need for context in software engineering is officially pro-
posed by Prof. Gail Murphy in 2018 [35, 36], and she stated that the
lack of context in software engineering tools would limit the effec-
tiveness of software development. Context-related information has
been utilized in various software development activities, e.g., code
recommendation [20], software documentation [4], static analysis
[25, 47], etc. This work provides new insights about how to model
and utilize the context information in open environment.

8 CONCLUSIONS
Open software development processes, e.g. crowdtesting, are highly
dynamic, distributed, and concurrent. Existing worker recommen-
dation studies largely overlooked the dynamic and progressive
nature of crowdtesting process. This paper proposed a context-
aware in-process crowdworker recommendation approach, iRec,
to bridge this gap. Built on top of a fine-grained context model,
iRec can dynamically learn a ranked list of capable and diverse
workers from historical and ongoing contextual information at
any specific point of crowdtesting process. The evaluation results
demonstrate its potential benefits in shortening the non-yielding
window, improving bug detection efficiency, and reducing testing
cost.
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