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ABSTRACT

One of the challenging issues of the existing static analysis tools

is the high false alarm rate. To address the false alarm issue, we

design bug detection rules by learning from a large number of

real bugs from open-source projects from GitHub. Specifically, we

build a framework that learns and refines bug detection rules for

fewer false positives. Based on the framework, we implemented ten

patterns, six of which are new ones to existing tools. To evaluate the

framework, we implemented a static analysis tool, FeeFin, based

on the framework with the ten bug detection rules and applied the

tool for 1,800 open-source projects in GitHub. The 57 detected bugs

by FeeFin has been confirmed by developers as true positives and

44 bugs out of the detected bugs were actually fixed.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis;

Software testing and debugging;

KEYWORDS

Static bug finder, bug detection rules, bug patterns

ACM Reference Format:

Jaechang Nam, Song Wang, Yuan Xi, and Lin Tan. 2018. Poster: Designing

Bug Detection Rules for Fewer False Alarms. In ICSE’18 Companion: 40th
International Conference on Software Engineering Companion, May 27-June
3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3183440.3194987

1 INTRODUCTION

Static bug detection tools has been widely adopted in industry [1–

5, 14]. Google has a program analysis ecosystem, TRICORDER [14]

and Facebook has its own static analysis tool, Facebook Infer [4].

There are various commercial static analysis tools as well [1–3,

5]. The widespread adoption of static bug detection techniques

provides solid evidence that static code analysis is economically

beneficial to help developers find real bugs and improve software

quality during software development and maintenance phases.

However, false alarms from the static analysis tools prevent

developers to actively use them [7, 8, 10–12, 15]. Since the large
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number of false alarms from static analysis tools causes code inspec-

tion overhead so that developers are reluctant to use static analysis

tools while developing software products [10]. One of the major

reasons that static analysis tools generate too many false alarms is

the incomplete rules that are designed with limited buggy cases. For

example, when developing bug detection rules, bugs were collected

from the small number of projects [9, 13].

To address the false alarm issue, we conducted a case study that

investigates whether large scale, iterative rule refinement by using

bug histories from hundreds of open-source projects is effective. We

conjecture the scope of our study as shown in Figure 1. The grey

area (A) shows all bugs that are not detected and fixed in the world.

The circle B represents bugs that can be detected by existing static

bug detection tools. The intersection between A and B shows true

positives. However, as reported in previous studies [8, 10], the rest

area of B often contains false positives. While conducting the case

study, we implemented our own bug detection tool, FeeFin, that

can detect bugs with few false alarms as in the circle C.
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Figure 1: The Scope of Our Case Study

2 APPROACH

To implement FeeFin, we take the following steps as in Figure 2.

(1) Manual Patch Analysis: Collect potential bug patterns by

manually analyzing patches from open-source projects: We

manually analyzed 1,622 patches, whose number of the mod-

ified lines are at most five, from four open-source projects,

Lucene, Jackrabbit, Hadoop-common, and HBase.

(2) Feedback-based Detection Rule Design: Iteratively refine

bug detection rules by using false positives from hundreds

of open-source projects after FeeFinwas applied on them.

(3) FeeFin: Implement final detection rules from (2).

These steps are repeated whenever FeeFin generates false positives.

In this study, we identified ten bug patterns and refined detection

rules based on false positives from FeeFin detection results. The ten
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Figure 2: Overview of the FeeFin framework (FPs = false positives)

Table 1: New bugs detected by Snapshot FeeFin. Bug pat-

terns that did not detect any new bugs were excluded. (# DB:

detected bugs, # RT: reported bugs, # TP: true positives con-

firmed, # FP: false positives confirmed, # WC: waiting for

confirmation, # FX: fixed bugs by developers)

Bug Pattern # DB # RT # TP # FP # WC # Fix

Group 1 (599 Projects)

CompareSameValue 5 5 0 5 0 0

EqualToSameExpression 8 6 3 0 3 2

IllogicalCondition 2 2 1 0 1 1

MissingLForLong 1 1 0 0 1 0

SameObjEquals 33 26 15 0 11 12

WrongIncrementer 14 11 8 0 3 5

Subtotal 63 51 27 5 19 20

Group 2 (948 Projects)

CompareSameValue 6 3 2 1 0 2

EqualToSameExpression 3 0 0 0 0 0

IncorrectDirectoySlash 2 2 0 2 0 0

MissingLForLong 1 1 0 0 1 0

RedundantInstantiation 1 1 1 0 0 1

SameObjEquals 15 6 5 0 1 3

WrongIncrementer 7 6 4 1 1 2

Subtotal 35 19 12 4 3 8

Group 3 (333 Projects)

CompareSameValue 1 1 0 0 1 0

EqualToSameExpression 2 1 1 0 0 1

IllogicalCondition 1 1 1 0 0 1

MissingLForLong 2 2 0 0 2 0

SameObjEquals 12 12 7 0 5 7

WrongIncrementer 13 10 9 0 1 7

Subtotal 31 27 18 0 9 16

Total 129 97 57 9 31 44

bug patterns are as follows: CompareSameValue, EqualToSameEx-
pression, IllogicalCondition, IncorrectDirectoySlash, IncorrectMapIter-
ator, MissingLForLong, RedundantException, RedundantInstantiation,
SameObjEquals, WrongIncrementer. The detailed descriptions of the

bug patterns and rules are available online [6].

3 RESULT

We applied the FeeFin on 599 open-source projects of Apache Soft-

ware Foundation and Google in GitHub. After the rule refinement,

we applied FeeFin on the same 599 projects to check if the rule re-

finement was correctly conducted by detecting known bugs. FeeFin

detected 160 bugs and had only one false positive.

To check if FeeFin can effectively detect unknown bugs, we first

collected the new bugs detected by FeeFin on the 599 open-source

projects (Group 1). We then applied FeeFin on top 1,281 GitHub

open-source projects (Group 2 and Group 3) as in Table 1. FeeFin

with ten bug patterns could detect 129 potential bugs. Among them,

97 cases were reported to issue tracking systems and 54 were con-

firmed by developers as true positives and only 9 were false alarms.

The rest cases were still waiting for developer confirmation. Out of

the 54 true positives, 40 bugs were already fixed by developers.
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