
1

Domain Adaptation for Test Report Classification in
Crowdsourced Testing

Junjie Wang1,3, Qiang Cui1,3, Song Wang4, Qing Wang1,2,3∗
1Laboratory for Internet Software Technologies, 2State Key Laboratory of Computer Science,

Institute of Software Chinese Academy of Sciences, Beijing, China
3University of Chinese Academy of Sciences, Beijing, China

4Electrical and Computer Engineering, University of Waterloo, Canada
{wangjunjie, cuiqiang, wq}@itechs.iscas.ac.cn, song.wang@uwaterloo.ca

Abstract—In crowdsourced testing, it is beneficial to automat-
ically classify the test reports that actually reveal a fault – a true
fault, from the large number of test reports submitted by crowd
workers. Most of the existing approaches toward this task simply
leverage historical data to train a machine learning classifier and
classify the new incoming reports. However, our observation on
real industrial data reveals that projects under crowdsourced
testing come from various domains, and the submitted reports
usually contain different technical terms to describe the software
behavior for each domain. The different data distribution across
domains could significantly degrade the performance of classifica-
tion models when utilized for cross-domain report classification.

To build an effective cross-domain classification model, we
leverage deep learning to discover the intermediate representa-
tion that is shared across domains, through the co-occurrence be-
tween domain-specific terms and domain-unaware terms. Specif-
ically, we use the Stacked Denoising Autoencoders to automati-
cally learn the high-level features from raw textual terms, and
utilize these features for classification. Our evaluation on 58
commercial projects of 10 domains from one of the Chinese
largest crowdsourced testing platforms shows that our approach
can generate promising results, compared to three commonly-
used and state-of-the-art baselines. Moreover, we also evaluate
its usefulness using real-world case studies. The feedback from
real-world testers demonstrates its practical value.

Keywords-Crowdsourced testing, test report classification, do-
main adaptation, deep learning

I. INTRODUCTION

Crowdsourced testing is an emerging trend in both the soft-
ware engineering community and industrial practice [1]–[4].
Crowd workers are required to submit test reports after per-
forming testing tasks in a crowdsourced platform. Generally,
they can submit thousands of test reports due to financial in-
centive and other motivations. However, these test reports often
have many false positives, i.e., a test report supposed as failed
by a worker that actually describes a correct behavior. Project
managers or testers need to manually inspect these failed test
reports to verify whether they actually reveal a fault — a
true fault. Besides, only less than 50% of them are finally
determined as true faults [1]–[4]. Hence, the process is time-
consuming, tedious, and low-efficient. Therefore, it would be
beneficial to automatically classify the true fault from the large
amounts of test reports submitted by crowd workers.

∗Corresponding author.

Our observation on real industrial data reveals that the
projects under crowdsourced testing come from a large
variety of domains, ranging from travel, music, to safety
and photo. Different technical terms are used in the test
reports of different domains to describe the software behavior.
For instance, reports in travel domain would contain such
terms as “location”, “navigation”, and “place”, while reports
in music domain would contain such terms as “play”,
“lyrics”, and “song” (details are in Figure 2). Consequently,
the textual features derived from these two domains are
significantly different in their distributions. The different
feature distribution across domains would degrade the
performance of machine learning classifiers when utilized for
cross-domain classification. This is because most machine
learning models are designed under the assumption that
training set and test set are drawn from the same data
distribution [5].

Most of the existing approaches toward reports classification
directly leveraged the textual features to build models and
did not consider the different data distribution problem across
domains [6]–[9]. This would result in the poor performance for
cross-domain classification of crowdsourced reports. Several
existing studies simply learned a specific classifier within each
domain [10], [11]. The drawback is that usually there are not
enough labeled training data for each domain, and obtaining
labeled data is cost intensive. Our previous work [1] proposed
to select similar data instances from training set to build the
classifier. Although it can mitigate the distribution difference
problem to some extent, it would fail to take effect when only
a small number of similar instances can be found, which is
quite common in practice.

To overcome the different data distribution problem and
more effectively conduct cross-domain report classification, in
this work, we propose Domain Adaptation Report claSsifica-
tion (DARS). It leverages the Stacked Denoising Autoencoders
(SDA), which is a powerful representation learning algorithm
(also known as deep learning), to learn the high-level features
and then utilize these features for classification. In order to
abstract the high-level features, SDA discovers the intermedi-
ate representation from raw textual terms that is shared across
domains. Putting it intuitively, the intermediate representation
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is learned through the co-occurrence between the aforemen-
tioned domain-specific terms and domain-unaware terms (e.g.,
terms appeared across domains such as “button”, “open”, and
“wrong”).

We experimentally investigate the effectiveness and
advantages of DARS on 25,564 test reports of 58 commercial
projects in 10 domains from one of the Chinese largest
crowdsourced testing platforms. Results show that DARS can
achieve 0.77 F1 and 0.84 AUC on median. It significantly
outperforms three commonly-used and state-of-the-art
baseline report classification approaches. In addition, we
conduct a case study and a survey with real-world testers, to
further evaluate the usefulness of DARS. The feedback shows
that 76% testers agree with the usefulness of DARS and
would like to use it in real practice of crowdsourced testing.

This paper makes the following contributions:
• We propose the Domain Adaptation Report claSsifica-

tion (DARS) approach for cross-domain crowdsourced
reports, which can overcome the data distribution differ-
ence across domains.

• We evaluate our approach on 25,564 test reports from
58 commercial projects of 10 domains, which collected
from one of the Chinese largest crowdsourced testing
platforms, and results are promising.

• We evaluate the usefulness of DARS using real-world
case studies, and discuss the lessons learned and chal-
lenges encountered when adopting our approach in prac-
tice.

The rest of this paper is organized as follows. Section II
describes the background and motivation of this study. Sec-
tion III presents the design of our proposed approach. Sections
IV and V show the experimental setup and evaluation results
respectively. Section VI provides a detailed discussion of the
lessons learned and threats to validity. Section VII surveys re-
lated work. Finally, we summarize this paper in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Crowdsourced Testing

In this section, we present a brief background of crowd-
sourced testing to help better understand the challenges we
meet in real industrial crowdsourced testing practice.

Our experiment is conducted with Baidu crowdsourced test-
ing platform1. In general, the testers prepare testing tasks and
distribute them on the crowdsourced testing platform. Then,
the crowd workers can sign in to conduct the tasks and submit
crowdsourced test reports after finishing the tasks. Table I
demonstrates the attributes of a typical crowdsourced report. It
contains operation steps, result description, screenshots, etc.,
as well as an assessment as to whether the worker believed
that the software behaved correctly (i.e., passed), or behaved
incorrectly (i.e., failed). For each test task, the platform also
contains the name of the domain to which the related project
belongs.

1Baidu (baidu.com) is the largest Chinese search service provider.
Its crowdsourcing test platform (test.baidu.com) is also one of the
largest crowdsourced testing platforms in China.

TABLE I: An example of crowdsourced test report
Attribute Description: example
Environment Phone type: Samsung SN9009

Operating system: Android 4.4.2
ROM information: KOT49H.N9009
Network environment: WIFI

Crowd worker Id: 123456
Location: Beijing Haidian District

Testing task Id: 01
Name: Incognito mode

Input and opera-
tion steps

Input “sina.com.cn” in the browser, then click the first news.
Select “Setting” and then set “Incognito Mode”. Click the
second news in the website. Select “Setting” and then select
“History”.

Result
description

“Incognito Mode” does not work as expected. The first news,
which should be recorded, does not appear in “History”.

Screenshot
Assessment Passed or failed given by crowd worker: Failed

In order to attract more workers, testing tasks are often fi-
nancially compensated, especially for these failed reports. Un-
der this context, workers can submit thousands of test reports.
Usually, this platform delivers approximately 100 projects per
month, and receives more than 1,000 test reports per day on
average. However, some of the test reports are false positives,
i.e., a test report marked as failed that actually involves correct
behavior or behavior outside of the studied software system.

Currently in this platform, testers need to manually inspect
these failed test reports to judge whether they actually reveal
a fault – a true fault. However, inspecting 1,000 reports man-
ually could take almost half a week for a tester. Besides, only
less than 50% of them are finally determined as true faults.
Obviously, such process is time-consuming and low-efficient.

B. Stacked Denoising Autoencoders (SDA)

The Stacked Denoising Autoencoder (SDA) is an artificial
neural network for unsupervised learning of effective repre-
sentation [12], [13]. It consists of multiple layers of denosing
autoencoders.

Fig. 1: Autoencoder and Stacked Denoising Autoencoders

An autoencoder [12] (shown in Figure 1) takes an input
vector x ∈ [0, 1]

d, and codes it to a hidden representation
y ∈ [0, 1]

d′ through a deterministic mapping y = fθ(x) =
s(Wx+ b), parameterized by θ =W, b. W is a d′× d weight
matrix and b is a bias vector. The resulting latent representation
y is then decoded to a “reconstructed” vector z in input space
z = gθ′(y) = s(W ′y+b′) with θ′ =W ′, b′. The weight matrix
W ′ of the reverse mapping is constrained by W ′ = WT .
The parameters of this model are optimized to minimize the
average reconstruction error:

argmin
1

n

n∑
i=1

L(x(i), gθ′(fθ(x(i)))) (1)

baidu.com
test.baidu.com
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where L is a loss function of reconstruction cross-entry. The
autoencoder is trained by stochastic gradient descent, in which
number of training iterations is an input parameter to balance
the time cost, and error rate between the reconstructed vector
and the input vector.

The Denoising Autoencoder (DA) [13] incorporates a slight
modification to the autoencoder, i.e., corrupts the inputs before
coding them into the hidden representation. It is trained to
reconstruct (or denoise) the original input x from its corrupted
version x̃ by minimizing L(x, g(h(x̃))).

A typical choice of corruption is binary masking noise.
It sets a fraction of the features of each input to zero, in
which the level of noise is an input parameter. This is natural
for the textual features of crowdsourced test reports, where
person-specific term preferences can influence the existence
or absence of words.

The Stacked Denoising Autoencoder (SDA) [13] (shown
in Figure 1) stacks a series of DAs together to build a deep
architecture, by feeding the hidden representation of the tth

DA as input into the (t+ 1)
th DA. The training is performed

greedily, layer by layer. The latent representation in the last
DA is treated as the high-level features. The number of hid-
den layers and the number of nodes in each layer are input
parameters which can be set based on users’ demand.

C. Motivation

Most of the existing test report classification approaches
assume that the training set and test set are drawn from the
same data distribution. This means that the performance would
decline rapidly when using these approaches to classify the
new coming test reports that have different distributions with
the training set.

However, our observation on real industrial data reveals that
crowdsourced reports across domains are under different dis-
tributions. The main reason is as follows. The projects under
crowdsourced testing come from a large variety of domains,
ranging from travel, music, to safety and photo. Moreover,
different domains focus on different functional and technical
aspects. Test reports from different domains usually use spe-
cific technical terms to describe the software behavior.

We present the term clouds of the textual descriptions of
test reports for four randomly selected domains, i.e., travel,
music, safety, and photo, to illustrate the distribution difference
and its influence in Figure 2. We can easily observe that the
technical terms exert significant differences among different
domains. For instance, reports in the travel domain (the upper
left subfigure of Figure 2) contain such terms as “location”,
“navigation”, and “place”, while reports in the music domain
(the upper right subfigure of Figure 2) contain such terms as
“play”, “lyrics”, and “song”. Consequently, textual features
derived from these two domains are significantly different in
their distributions. Taken in this sense, models with textual
features, built on the reports from travel domain, may fail to
effectively classify the reports from music domain. To mitigate
this problem, new features and approaches are required.

In Figure 2, we also notice that projects across domains
share a certain amount of common terms. For example, many
projects contain such behavioral terms like “display”, “setup”,

Fig. 2: Illustrative examples for the different data distribution
of crowdsourced reports

and “download”, or describable terms like “none”, “wrong”,
and “missing”. These shared terms could help bridge the gap
across domains. More specifically, in travel domain, there are
descriptions like “display location of building”, while in music
domain, descriptions like “display lyrics of song” are quite
common. With the help of representation learning algorithm,
such terms as “lyrics”, “song” and term “location” would es-
tablish a relationship through the shared term “display”. Based
on the co-occurrence, the representation learning algorithm
would map the raw terms to high-level features. The more sim-
ilar context two terms share, the more similar their high-level
features would be. The high-level features can then be used as
input to build prediction models and predict the crowdsourced
reports.

III. APPROACH

Figure 3 illustrates the overview of Domain Adaptation
Report claSsification (DARS) approach. Generally speaking,
DARS first trains the SDA to effectively encode the input
features. Then the training set and test set are fed into the
trained SDA to generate high-level features. The classification
is then conducted based on the high-level features.

DARS consists of four major steps: 1) extract textual fea-
tures, 2) train the SDA, and 3) leverage the SDA to generate
high-level features based on textual features, and 4) build clas-
sifiers and conduct classification using the learned high-level
features.

A. Extracting Textual Features

The goal of feature extraction is to obtain features from
crowdsourced reports which can be used as input to train the
SDA. We extract these features from the text descriptions of
crowdsourced reports.

We first collect different sources of text descriptions to-
gether (input and operation steps, result description). Then we
conduct word segmentation, as the crowdsourced reports in
our experiment are written in Chinese. We adopt ICTCLAS2

for word segmentation, and segment descriptions into words.
We then remove stopwords (i.e., “on”, “the”, etc.) to reduce
noise. Because workers often use different words to express
the same concept, we introduce the synonym replacement

2ICTCLAS (http://ictclas.nlpir.org/) is widely used Chinese NLP
platform.

http://ictclas.nlpir.org/
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Fig. 3: Overview of DARS

technique to mitigate this problem. Synonym library of LTP3

is adopted.
Each of the remaining terms corresponds to a feature.

For each feature, we take the frequency it occurs in the
description as its value. We use the TF (term frequency)
instead of TF-IDF because the use of the inverse document
frequency (IDF) penalizes terms appearing in many reports.
In our work, we are not interested in penalizing such terms
(e.g., “break”,“problem”) that actually appear in many reports
because they can act as discriminative features that guide
machine learning techniques in classifying reports. We
organize these features into a feature vector, with each
feature value being the corresponding term frequency.

B. Training SDA

To generate the high-level features for classifying crowd-
sourced reports, we need to first train the SDA using the SDA
training set. Existing researches showed that the larger size of
SDA training set, the better performance can be achieved [14]–
[16]. Moreover, the representation learning technique does not
involve the class information (i.e., whether the report is a
true fault or not). Hence, common practice would utilize all
available data instances in the training process [14]–[16]. To
train a SDA is to determine the weights w and the biases b, so
that the trained SDA can effectively encoder the input features.

As mentioned in Section II-B, to train an effective SDA for
generating the high-level features, we need to tune four param-
eters, which are: 1) the number of hidden layers, 2) the number
of nodes in each hidden layer, 3) the level of noise, and 4) the
number of training iterations. Existing work that leveraged the
SDA to generate features for natural language processing and
image recognition [13] [14] reported that the performance of
the SDA-generated features is sensitive to these parameters.
We show how we tune these parameters in Section IV-E.

The nodes in the input and output layers are equal to the
size of feature vector. For other layers, we set the number of
nodes to be the same to simplify our model. Besides, the SDA
requires the input vectors be the same length. To use the SDA
to generate high-level features, we first collect all the features
appeared in the SDA training set and organize them into a
joint feature vector. Then we transform the original feature
vectors to the the joint feature vectors. In detail, for a feature
contained in the original feature vector, we use its original
value as the value in the joint feature vector. Otherwise, we
set its value to zero. Adding zeros does not affect the results,
because it simply means that the specific term does not appear
in the report.

3LTP (http://www.ltp-cloud.com/) is considered as one of the best
cloud-based Chinese NLP platforms.

Note that, the SDA requires the values of input data ranging
from 0 to 1. As the input vector represents the term frequency
of each feature, its value can be larger than 1. To satisfy this
requirement, we normalize the values in the feature vectors of
the SDA training set using min-max normalization [17].

C. Generating High-level Features

After we have trained a SDA, both the weights w and the
biases b (details are in Section II-B) are fixed. For the feature
vectors of training set and test set, we first map them into
the joint feature vector as described in Section III-B. Then we
use min-max normalization to normalize them into the range
between 0 and 1.

The normalized joint feature vectors of the training set and
test set are fed into the SDA respectively. The representations
in last hidden layer of SDA are then treated as the high-level
features.

D. Building a Classifier

After we obtain the generated high-level features for each
crowdsourced report in both the training set and test set, we
build a machine learning classifier based on the training set.
Then we use the test set to evaluate the performance of the
built classifier. The details of how we choose the training set
and the test set are shown in Section IV-C.

To better assist the manual inspection (details are in Section
V-C), the classifier will provide the probability for the reports
being true faults. The bigger the probability value, the more
likely the report contains a true fault. To compute the F1 (de-
tails are in Section IV-D), we use 0.5 as cutoff value, denoting
that reports with a probability value larger than 0.5 are treated
as true faults, and vice versa.

IV. EXPERIMENT SETUP

A. Research Questions

We evaluate DARS through three dimensions: effectiveness,
advantage, and usefulness. Specifically, our evaluation
addresses the following research questions:
• RQ1 (Effectiveness): How effective is DARS in classi-

fying crowdsourced reports?
We investigate the performance of DARS in classifying

crowdsourced reports under different experimental settings
(details are in Section IV-C).
• RQ2 (Advantage): Can DARS outperform existing tech-

niques in classifying crowdsourced reports?
To demonstrate the advantages of DARS, we compare its

performance with three baseline methods (details are in Sec-
tion IV-C).

http://www.ltp-cloud.com/
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TABLE II: Projects under investigation

Domain # Project # Report # Failed
report

# True
fault

%True
fault

Efficiency 9 4237 2198 884 40.2%
Entertainment 8 6423 4913 2700 54.9%
Music 4 2160 1497 450 30.0%
News 6 2740 2517 1112 44.1%
Photo 4 2207 1498 564 37.6%
Read 7 2042 3136 875 27.9%
Safety 3 2216 1916 762 39.7%
Shopping 3 2280 1836 842 45.8%
Tool 10 5320 4409 1628 36.9%
Travel 4 1883 1644 529 32.1%

Summary 58 31,508 25,564 10,346 40.4%

C1 (Shopping) 1 231 177 87 49.1%
C2 (Tool) 1 690 455 182 40.0%
C3 (Efficiency) 1 1428 1004 392 39.0%

• RQ3 (Usefulness): Is DARS useful for software testers?

We conduct a case study and a survey in Baidu crowd-
sourced testing group to further evaluate the usefulness of our
approach.

B. Data Collection

Our experiment is based on crowdsourced reports from the
repositories of Baidu crowdsourced testing platform. We col-
lect all crowdsourced testing projects closed between Oct. 1st
2015 and Oct. 31st 2015. We group these projects into domains
based on the domain name recorded in the platform (details
are in Section II-A). Table II provides details of these domains
with the number of projects, the number of submitted reports,
the number of reported failed reports, and the number and the
ratio of true faults in failed reports.

Note that, our classification is conducted on failed reports,
not the complete set. We exclude the passed reports because
of the following reason. As we mentioned, failed reports can
usually involve both correct behaviors and true faults. How-
ever, through talking with testers in the company, we find that
almost none of the passed reports involve true faults. This
maybe because that the compensation favors the faults, so the
crowd workers are very unlikely to miss the faults.

Additionally, we randomly collect three other projects (be-
longed to three domains) closed in March 10th 2016 to conduct
the case study in Section V-C.

The assessment attribute (see Table I) of each report can be
treated as the groundtruth label of classification. For the re-
ports which have the assessment attribute (only 2106 reports),
we simply use the stored value as the label of classification.
For other reports, two testers in the company were asked to
assign the assessment label for each report. After their separate
labeling, we analyzed the differences amongst their labeling,
and conducted follow-up interviews until common consensus
was reached. One may argue that the testers can also produce
false positives during the labeling process, which would impact
the results of our experiments. The well-controlled labeling
process, with two testers and follow-up interviews, can help
alleviate this problem. More importantly, the testers in the
company are more experienced than crowd workers, and they
did this without financial compensation on faults. Therefore,
we believe the groundtruth labels are relatively trustworthy.

C. Experimental Setup and Baselines

As we mentioned in Section III-B, training a SDA does
not involve the class information. Following previous studies
[14], [15], we treat all the experimental crowdsouced reports
as SDA training set, denoting that we use these data to extract
the feature vectors of SDA training set and train the SDA
model (details are in Figure 3). For the 10 domains under
investigation, we use all crowdsourced reports of one domain
as the test set and extract the feature vectors of test set. We
randomly select K number of crowdsourced reports from the
other nine domains to act as the training set and extract the
feature vectors of training set. K is set as 100, 200, 500, 1,000,
1,500, 2,000, 3,000, and 5,000 respectively to investigate the
influence of training set size on the model performance. The
experiment for each K is repeated 50 times to ensure the
stability of the results.

To further explore the performance of our proposed ap-
proach, we compare DARS with three typical baseline ap-
proaches.

Domain-unaware classification (DUC): It is the most
straightforward prediction approach and does not consider
the distribution difference among different domains. It builds
the machine learning classifiers using all the crowdsourced
reports in the training set and conducts classification on the
test set.

Transfer component analysis (TCA+) [5]: It is the state-
of-the-art technique for domain adaptation. TCA aims to find
a latent feature space for both the training set and test set by
minimizing the distance between the data distributions while
preserving the original data properties. TCA+ extends TCA
with automatically normalization, and can yield better perfor-
mance than TCA.

Cluster-based classification approach (CURES) [1]: It is
the state-of-the-art technique to classify crowdsourced reports
which can also mitigate the difference of data distribution in
crowdsourced reports. It first clusters similar reports of training
set together, and builds classifiers based on the reports of each
cluster. Then it selects the most similar clusters with the test
set, and conducts classification.

Both DARS and these baselines involve utilizing different
machine learning classification algorithms to build classifiers.
In this work, we experiment with Linear Regression (LR) [18],
which is widely reported as effective in many different clas-
sification tasks in software engineering [1], [5], [19].

D. Evaluation Metric

To evaluate our proposed approach, we use two metrics: F1
and AUC.

F1 is a widely adopted metric to evaluate issue report clas-
sification techniques [6]–[8]. It is the harmonic mean of pre-
cision and recall of classifying true fault [17]. AUC is the
most popular and widely used metric for evaluating classifi-
cation performance on imbalanced data [17] . As the dataset
of crowdsourced reports is usually imbalanced (i.e., less true
faults), we specifically use this metric. It is the area under ROC
curve4, which measures the overall discrimination ability of a

4The ROC curve is created by plotting the true positive rate.
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classifier. The AUC for a perfect model would be 1, and for
a model predicting all instances as true or false would be 0.

E. Parameter Settings for Training a SDA Model

Many SDA applications [13]–[15] report that an effective
SDA needs well-tuned parameters, i.e., 1) the number of hid-
den layers, 2) the number of nodes in each hidden layer, 3) the
level of noise, and 4) the number of training iterations. In this
study, since we leverage the SDA to generate the high-level
features, we need to consider the impact of the four param-
eters. We tune these parameters by conducting experiments
with different values of the parameters on our experimental
data.

We use all the crowdsourced reports to train the SDA with
respect to the specific values of the four parameters. Then, we
use the trained SDA to generate high-level features for all the
crowdsourced reports. After that, we use the original labelled
reports (Section IV-B) to build a classifier and apply it to the
unlabeled reports. Lastly, we evaluate the specific values of
the parameters by the AUC score.

1) Setting the number of hidden layers and the number of
nodes in each layer: Since the number of hidden layers and the
number of nodes in each hidden layer interact with each other,
we tune these two parameters together. For the number of
hidden layers, we experiment with 8 discrete values including
1, 2, 3, 4, 5, 10, 20, and 50. For the number of nodes in each
hidden layer, we experiment with 8 discrete values including
20, 50, 100, 200, 300, 500, 800, and 1,000. When we evaluate
these two parameters, we set the level of noise to 0.1 and
number of training iterations to 200, and keep it constant.

Figure 4 illustrates the AUC for tuning the number of hidden
layers and the number of nodes in each hidden layer together.
When the number of nodes in each layer is fixed, with the
increase number of hidden layers, the AUC are convex curves.
Most curves peak at the point where the number of hidden
layers is 3. If the number of hidden layers remains unchanged,
the best AUC happens when the number of nodes in each layer
is 200 (the top line). As a result, we choose the number of
hidden layers as 3 and the number of nodes in each hidden
layer as 200. Thus, the number of high-level features is 200.

2) Setting the level of noise: The level of noise is also
an important parameter for the SDA. We experiment with 7
discrete values ranging from 0 to 0.5. Noise level of 0 denotes
the input features remain unchanged, while level of 0.5 denotes
that 50% of original features would be randomly set to zero.
Figure 4 shows the AUC for tuning this parameter. We can
see that training the model without noise cannot reach the
best performance. Instead, the best performance is achieved
when the level of noise is 0.1, denoting that 10% of original
features would be randomly set as zero. Therefore, we choose
the level of noise as 0.1.

3) Setting the number of iterations: The number of itera-
tions is another important parameter for building an effective
SDA. During the training process, the SDA adjusts weights to
narrow down the error rate between reconstructed input data
and original input data in each iteration. In general, the bigger
the number of iterations, the lower the error rate. However,
there is a trade-off between the number of iterations and the

time cost. To balance the number of iterations and the time
cost, we conduct experiments with 9 discrete values, ranging
from 1 to 5000. We use error rate to evaluate this parameter.
Figure 4 demonstrates that, as the number of iterations in-
crease, the error rate decreases slowly with the corresponding
time cost increases exponentially. In this study, we set the
number of iterations to 200, with the error rate is about 0.09
and the time cost is about 23 minutes. Note that, we only
need to conduct the SDA training process once, then we can
utilize the trained SDA to generate the high-level features for
different training set and test set. This is why we suppose the
time for training SDA (23 minutes) is acceptable.

V. RESULTS AND ANALYSIS

A. Answering RQ1 (Effectiveness)

Figure 5 demonstrates the F1 and AUC of DARS for the
50 experiments of all experimental domains, under different
training set size. We can see that with the increase of training
set size, both the F1 and AUC would first improve and then
remain almost unchanged.

Fig. 5: The effectiveness of DARS (RQ1)

We then conduct Mann-Whitney Test for the performance
of classification under each adjacent training set sizes. Results
reveal that when the training set size is smaller than 1,500, the
p-value of both F1 and AUC for each adjacent train sets are
less than 0.05. When the train set size is larger than 1,500, the
p-value of both F1 and AUC for each adjacent training sets
are more than 0.05. This illustrates that a training set with less
than 1,500 instances would decrease the performance, and a
training set with more than 1,500 instances cannot increase the
performance significantly. Thus, 1,500 is the relative optimal
train set size.

We focus on the performance with the training set size as
1,500. The F1 ranges from 0.72 to 0.82, with the median F1
as 0.77. The AUC ranges from 0.80 to 0.90, with the median
AUC as 0.84.

This implies that DARS merely needs 1,500 labeled data
instances for achieving relatively satisfactory performance. It
benefits from the learned high-level features, which can be
learned based on the unlabeled data. There are usually large
amounts of unlabeled data and they are relatively easy to col-
lect. Our approach provides a way to effectively utilize these
unlabeled data.
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Fig. 4: Performance with different parameters

TABLE III: Performance for each test domain (RQ1)

Domain F1 AUC
min max median min max median

Efficiency 0.741 0.761 0.752 0.825 0.835 0.831
Entertainment 0.751 0.820 0.785 0.824 0.859 0.840
Music 0.720 0.747 0.735 0.798 0.813 0.809
News 0.814 0.846 0.832 0.877 0.907 0.896
Photo 0.727 0.763 0.740 0.806 0.823 0.814
Read 0.761 0.795 0.780 0.847 0.859 0.854
Safety 0.709 0.730 0.713 0.783 0.799 0.794
Shopping 0.762 0.816 0.802 0.840 0.862 0.853
Tool 0.726 0.758 0.739 0.802 0.815 0.810
Travel 0.700 0.811 0.758 0.781 0.845 0.819

Table III demonstrates the classification performance for
each domain acting as test set, with training set size as 1,500.
We can easily observe that the performance for different do-
mains might vary to some extent. The median F1 ranges from
0.71 to 0.83 for different domains, while the AUC varies from
0.79 to 0.89.

The worst performance occurs in such domains as safety
and music. We further analyze the underlying reason. There
are large amounts of new terms appearing in the crowdsourced
reports of these two domains, e.g., terms for song name. These
terms would bring noise when establishing the intermediate
representation.

B. Answering RQ2 (Advantage)

Table IV illustrates the performance of DARS and three
baselines. Due to space limit, we only present 4 of the 8
training set sizes (shown in Figure 5) with intervals. As we
mentioned in Section IV-C, we randomly choose the crowd-
sourced reports to act as the training set and repeat 50 times
for each training set size. We present the minimum, maximum,
and median performance of the random experiments for these
methods. The value with dark background denotes the best F1
or AUC for each training set size.

At first glance, we can find that DARS can achieve the
highest median F1 and AUC with the smallest variances, for
every training set size. We also conducted Mann-Whitney Test
for both F1 and AUC between DARS and each baseline. The p-
value for all the tests are less than 0.05. This further illustrates
the effectiveness and advantages of our approach.

Among the three baselines, the performance of DUC is the
worst, denoting that classifiers without considering the data
distribution difference across domains would result in quite
bad performance.

The performance of TCA+ is worse than DARS in both
F1 and AUC for all the training set sizes. It is reasonable

TABLE IV: Comparison of performance with baselines (RQ2)
F1 AUC

100 500 1500 3000 100 500 1500 3000

Min

DARS 0.507 0.682 0.731 0.728 0.684 0.747 0.800 0.809
DUC 0.122 0.166 0.222 0.248 0.298 0.318 0.402 0.382
TCA+ 0.272 0.305 0.345 0.502 0.462 0.502 0.498 0.442
CURES 0.305 0.355 0.435 0.502 0.474 0.512 0.603 0.635

Max

DARS 0.765 0.801 0.837 0.837 0.825 0.869 0.901 0.907
DUC 0.625 0.667 0.717 0.783 0.783 0.793 0.793 0.808
TCA+ 0.770 0.724 0.754 0.781 0.797 0.811 0.802 0.805
CURES 0.661 0.711 0.803 0.801 0.688 0.721 0.799 0.831

Median

DARS 0.636 0.738 0.773 0.771 0.767 0.802 0.831 0.834
DUC 0.356 0.398 0.441 0.456 0.485 0.501 0.572 0.582
TCA+ 0.526 0.559 0.602 0.627 0.647 0.670 0.682 0.698
CURES 0.504 0.543 0.638 0.646 0.626 0.663 0.704 0.736

Var.

DARS 0.075 0.029 0.031 0.031 0.031 0.028 0.026 0.026
DUC 0.113 0.121 0.109 0.086 0.100 0.112 0.071 0.074
TCA+ 0.114 0.115 0.114 0.060 0.097 0.085 0.079 0.082
CURES 0.086 0.087 0.070 0.094 0.058 0.056 0.051 0.062

because existing domain adaption methods (i.e., TCA+) gen-
erate the new features based on linear projections of raw fea-
tures. However, deep learning techniques (e.g., SDA) could
learn the high-level features from the non-linear mapping of
the raw features, thus can encode complex data variations.
Furthermore, SDA has been proven to be more effective than
existing domain adaptation methods in other tasks [14], [15].

Our approach also outperforms CURES, which is the state-
of-the-art technique to classify the crowdsourced reports. This
is because CURES relies on the historical similar reports to
construct the classifier. When the training set is not large
enough, CURES’s performance would be degraded.

C. Answering RQ3 (Usefulness)

To further assess the usefulness of DARS, we conduct a case
study and a survey in Baidu. We randomly select three projects
for our case study (details are in Table II). Six testers from
the crowdsourced testing group are involved. We divide them
into two groups according to their experience, with details
summarized in Table V.

TABLE V: Participant of case study (RQ3)
Group A Group B
A1 2-5 years’ experience in testing B1
A2 1-2 years’ experience in testing B2
A3 0-1 years’ experience in testing B3

The goal of this case study is to evaluate the usefulness of
DARS in classifying true faults from the crowdsourced test
reports. Firstly, we utilize the trained SDA to generate the
high-level features for all the reports of the three experimental
projects. We then use the originally labeled reports (Section
IV-B) to build a classifier. Through conducting classification
for the three projects, we obtain the probability of each report
being a true fault.
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For both groups, we ask the practitioners to label each report
with “yes” or “no”, denoting whether the report involves a true
fault. For practitioners in Group B, we only present them the
crowdsourced test reports under classification. For practition-
ers in Group A, besides the crowdsourced reports, we provide
them with the predicted probability for each report being a
true fault. More than that, the reports are displayed by the
probability values in descending order.

To build the ground truth, we gather all the classification
outcomes from the practitioner. Follow-up interviews are con-
ducted to discuss the differences among them. Common con-
sensus is reached on all the difference and a final edition of
classification is used as the ground truth (details are in Table
II).

TABLE VI: Results of case study (RQ3)
Results from Group A Results from Group B

Project C1 C2 C3 C1 C2 C3
Precision 0.90,0.94 0.80,0.86 0.76,0.88 0.90,0.94 0.86,0.90 0.80,0.90
Recall 0.96,1.00 0.94,0.98 0.91,0.98 0.96,0.99 0.93,0.99 0.90,0.96
F1 0.93,0.97 0.86,0.91 0.82,0.92 0.93,0.97 0.89,0.94 0.84,0.92
Time(min) 40,52 80,112 128,164 72,86 186,232 360,394

Note: The two numbers in one cell represent the minimum and the maximum values
from the three practitioners.

We mentioned that we only require the practitioners to as-
sign the label of “yes” or “‘no”, because the probability of
being true faults is complex to measure by manual. Hence,
we do not present the AUC which requires the probability to
compute. Instead, besides F1, we present the precision, recall,
and the time taken for the classification in Table VI.

The classification assisted with the probability provided by
DARS (Group A) can find as many true faults as the classi-
fication without assistance (Group B), with far less time. In
particular, with the increase of project size, the consumed time
of manual classification without assistance can dramatically in-
crease, while its accuracy (F1) does not show the fundamental
difference.

In addition, we design a questionnaire and conduct a survey
to ask testers about the usefulness of DARS. The question-
naire first demonstrates a short description about DARS, what
DARS can provide for the classification and the summarized
evaluation results on 58 projects. Then it asks three questions
shown in Table VII. We provide five options for the first two
questions, and allow respondents freely express their opinion
for the third question.

We send invitation emails to the testers who are involved in
the report classification in Baidu crowdsourced testing group.
We totally receive 21 responses out of 47 requests.

As indicated in Table VII, of all 21 respondents, 16 of them
(76%) agree that DARS is useful for report classification and
they would like to use it. This means testers agree the useful-
ness of DARS in general. Only 2 hold conservation options
and 3 disagree. When it comes to the reason for disagreement,
they mainly worry about its flexibility on new projects, the
unsatisfactory recall, as well as the effort still needed to take.
In addition, the project manager shows great interest in DARS,
and is arranging to deploy it on their platform to assist the
classification process.

Fig. 6: A-distance for every domain pair

VI. DISCUSSION

A. Why Does it Work?

We have mentioned that the major challenge for crowd-
sourced reports classification is the different data distribution
of reports across domains. Simply utilizing the reports in other
domains to build the classifier can easily result in low accuracy.

We suppose the representation learning algorithm could
make the feature distributions across domains more similar,
thus reduce the noise introduced by the domain-specific
information. To intuitively demonstrate it, we examine the
A-distance [20] between the feature distributions of each pair
of domains. A-distance is a measure of similarity between the
probability distribution of two datasets. We hypothesize that
it should be more difficult to discriminate between different
domains after the representation learning, which implies the
effectiveness of domain adaptation. This can be illustrated
by more similar feature distributions. Common practice for
obtaining A-distance would compute the generalization error
ε of a classifier trained to discriminate between two domains
[20]. Then A-distance is measured as 2(1− 2ε).

Figure 6 reports the A-distance for raw features and high-
level features for every domain pair. As expected, A-distance
is decreased for high-level features, which implies that the
feature distributions between domains become more similar
after the representation learning. This is why the classification
based on high-level features can achieve higher performance.

B. Lessons Learned

Based on the aforementioned studies and an un-structured
interview, which is conducted with the test manager of Baidu
and involved practitioners of the case study, the following
lessons can be learned.

1) Testers care false negative more than false positive:
In terms of the classification performance, we found that the
testers care more about false negatives (i.e., reports with true
faults that are misclassified as reports without faults) than false
positives (i.e., reports without faults that are misclassified as
reports with faults). In other words, a higher recall is expected,
even at the expense of lower precision. This is rational because
missing a true fault might introduce serious quality issues in
the future, and require extra budget to debug and fix it.

Moreover, for the reports with quite high or low predicted
probability as being true faults, the practitioners tend to clas-
sify them consistent with the provided probability. Specifically,
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TABLE VII: Results of survey (RQ3)
Questions Strongly

Disagree
Disagree Neither Agree Strongly

Agree
Total

Q1. Do you think DARS is useful to help classify “true fault” from crowdsourced test report? 0 2 1 5 13 21
Q2. Would you like to use the probability provided by DARS to help with the classification task? 0 3 2 3 13 21
If Disagree for either of the question, please give the reason. Still need much effort;

Worry the accuracy on other projects;
The recall is unsatisfying;

3

by observing the manually labelling process of testers, we
found that in most cases the testers will label a test report
as a true fault without any consideration, if its probability is
large enough (e.g., larger than 0.8). That is to say, for the
reports which are actually not faults but have high probability,
the practitioners would just label them as true faults. Similarly,
for the faults which are assigned with quite low probability,
there would be hardly any chance for them to be classified
correctly. This is the root cause of low performance in Table
VI. The testers also mentioned that, it would be preferred if
an approach can help remove a portion of reports which are
definitely not faults. To address this challenge, we would like
to explore other approaches to help filter this kind of reports.

2) Providing the probability for a report is more actionable
and scalable: The testers also mentioned that the prediction
outcomes should be actionable to make DARS more practical.
They supposed that tagging each report with its probability is
a good choice, as this kind of information suggested them the
uncertainty of the prediction. If an automated approach labels
each report as binary category, i.e., whether it is a true fault,
it would be hard to decide which reports need more human
inspection.

Furthermore, they thought that the results in the form of
probability values are more scalable than results with binary
category. Users can set up the cutoff point, e.g., reports with
probability larger than 0.7 are treated as true faults, according
to their demands when utilizing these probability values for
classification. In this way, based on the same set of prediction
results, the testers can customize different kinds of manual
classification designs considering the planned time and effort.

3) Testers need some evidences to prove the effectiveness of
DARS: We have attached the summarized evaluation results of
DARS on the questionnaire. The testers mentioned that these
results played an important role in convincing them that DARS
is useful and they would like to use it. They supposed it would
be better to provide some video materials to demonstrate how
the probability can be utilized in the manual classification
process.

4) DARS might also be useful to crowd workers : The tester
manager also suggested that it would be useful to show the
prediction results to the crowd workers before they submit
reports. If their reports suffered from low predicted probability,
the crowd workers might choose to conduct the testing again
or not to submit the report. Both practices can help improve
the quality of test reports and the efficiency of crowdsourced
testing.

C. Threats to Validity

The external threats concern the generality of this
study. Firstly, our dataset consists of 58 projects covering

10 domains, collecting from one of the Chinese largest
crowdsourced testing platforms. The various domains of
projects and the size of data relatively reduce this threats.
Secondly, all crowdsourced reports investigated in this study
are written in Chinese, and we cannot assure that similar
results can be observed on crowdsourced projects in other
languages. But this is alleviated as we did not conduct
semantic comprehension, but rather simply tokenize sentence
and use words as tokens for representation learning.

Regarding internal threats, rather than experimentally in-
vestigate the influence of the SDA training set on the clas-
sification performance, we simply treat all the available data
instances as the SDA training set. This is supported by the
findings in several previous studies [14]–[16]. Moreover, the
experiment outcomes have proven its effectiveness. Anyhow,
we will conduct well-designed experiments to further examine
the influence.

Construct validity of this study mainly questions the data
processing method. Since only a small portion of reports have
the assessment attribute, we rely on human labeling to help
construct the ground truth. However, this is addressed to some
extent due to the fact that two testers were involved in the
labeling process and we have conducted follow-up interviews
to resolve the difference amongst the labeling process.

VII. RELATED WORK

a) Crowdsourced Testing: Crowdsourced testing has
been applied to generate test cases [21], measure real-
world performance of software products [22], help usability
testing [23], as well as detect and reproduce context-related
bugs [24]. All the studies above use crowdsourced testing to
solve the problems in traditional software testing activities.
However, our approach is to solve the new encountered
problem in crowdsourced testing.

Some other studies focus on solving the new encountered
problem in crowdsourced testing. Feng et al. [2], [4] proposed
test report prioritization methods for use in crowdsourced test-
ing. They designed strategies to dynamically select the most
risky and diversified test report for inspection in each iteration.
Our previous work [1], [3] proposed to mitigate the distribu-
tion difference problem in crowdsourced report classification,
through selecting similar data instances from training set to
build the classifier. However, its performance would decline
rapidly when there are only a small number of similar in-
stances, which is quite common in practice.

b) Issue Reports Classification: Previous researches have
proposed to automatically classify issue reports into different
priority levels [6], distinguish duplicate reports [7], conduct
bug triage [9], classify valid bug reports [8], etc.
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Our work focuses on classifying test reports in crowd-
sourced testing, which is different from the aforementioned
studies in two ways. Firstly, crowdsourced reports are
more noise than issue reports, as they are submitted by
non-specialized crowd workers under financial incentives. In
this sense, classifying them is more valuable, yet possesses
more challenges. Secondly, crowdsourced test reports across
domains demonstrate significant difference in data distribution.
Previous approaches cannot achieve satisfactory performance
for the cross-domain crowdsourced report classification.

c) Deep Learning in Software Engineering: Recently,
deep learning algorithms have been adopted to improve
research tasks in software engineering. Yang et al. [25]
proposed an approach that leveraged deep learning to
generate features from existing features and then used these
new features to predict whether a commit is buggy or not.
Wang et al. [26] then proposed to apply deep belief network
to learn semantic features from source code to improve
both within-project and cross-project defect prediction
performance. Their results show that the automatically
learned semantic features can improve the performance of
defect prediction. Lam et al. [27] combined deep learning
algorithms and information retrieval techniques to improve
fault localization. Raychev et al. [28] and White et al. [29],
[30] leveraged deep learning to model program languages
for code suggestion and code clone detection. Gu et al. [31]
proposed a new approach to learn API usage by using deep
learning.

Different with the above researches, in our work, we explore
the application of deep learning techniques to overcome the
distribution difference problem in crowdsourced report classi-
fication.

VIII. CONCLUSION

This paper proposes Domain Adaptation Report claSsifi-
cation (DARS) approach to overcome the data distribution
difference across domains in crowdsourced reports classifica-
tion. We evaluate DARS from the standpoints of effectiveness,
advantage, and usefulness in one of the Chinese largest crowd-
sourced testing platforms, and results are promising.

It should be pointed out that the presented material is just
the starting point of the work in progress. We are closely
collaborating with Baidu crowdsourced platform and planning
to deploy the approach online. Returned results will further
validate the effectiveness, as well as guide us in improving
our approach. Future work will also include exploring other
features and techniques to further improve the model perfor-
mance and stability.
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