
DASE: Document-Assisted Symbolic Execution
for Improving Automated Software Testing

Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan
Electrical and Computer Engineering, University of Waterloo, Canada
{e32wong, lei.zhang, song.wang, t67liu, lintan}@uwaterloo.ca

Abstract—We propose and implement a new approach,
Document-Assisted Symbolic Execution (DASE), to improve auto-
mated test generation and bug detection. DASE leverages natural
language processing techniques and heuristics to analyze pro-
gram documentation to extract input constraints automatically.
DASE then uses the input constraints to guide symbolic execution
to focus on inputs that are semantically more important.

We evaluated DASE on 88 programs from 5 mature real-world
software suites: COREUTILS, FINDUTILS, GREP, BINUTILS, and
ELFTOOLCHAIN. DASE detected 12 previously unknown bugs
that symbolic execution without input constraints failed to detect,
6 of which have already been confirmed by the developers. In
addition, DASE increases line coverage, branch coverage, and
call coverage by 14.2–120.3%, 2.3–167.7%, and 16.9–135.2%
respectively, which are 6.0–21.1 percentage points (pp), 1.6–18.9
pp, and 2.8–20.1 pp increases. The accuracies of input constraint
extraction are 97.8–100%.

I. INTRODUCTION

Software testing is an essential part of software develop-
ment. Many automated test generation techniques are proposed
and used to improve testing effectiveness and efficiency [1]–
[6].

Symbolic execution [7], [8] has been leveraged to auto-
matically generate high code coverage test suites to detect
bugs [9]–[15]. Symbolic execution represents inputs as sym-
bolic values instead of concrete values. Upon exploring a
branch whose condition involves symbolic values, two paths
are created, and the corresponding constraints are added to
each path. Once the execution of a path terminates, the
collection of constraints along that execution path is used
to generate concrete inputs to exercise the path. Symbolic
execution suffers from the fundamental problem of path ex-
plosion. In practice, one needs to use search heuristics and
other techniques to guide symbolic execution [1], [5], [14],
[16], [17].

Although symbolic execution has been successful in im-
proving testing effectiveness, existing techniques do not take
full advantage of programs’ input constraints expressed in
documents. Valid program inputs typically need to follow
certain constraints. For example, rm (version 6.10) only
accepts 11 options including -r and -f, and readelf
requires its input files to follow Executable and Linkable
Format (ELF). Focusing on the valid and close-to-valid inputs
can help test the core functionalities of the program, which
should improve testing coverage and effectiveness as shown
by previous techniques [18], [19]. It allows symbolic execution
to devote more resources on testing code that implements

program’s core functionalities, as opposed to code for input
sanity check and error handling. Fortunately, information about
input constraints commonly exists in software documents, such
as programs’ manual pages (e.g., the output of man rm) and
the comments of header files (e.g., elf.h).

Thus, we propose a general approach, Document-Assisted
Symbolic Execution (DASE), to enhance the effectiveness of
symbolic execution for automatic test generation and bug
detection. DASE automatically extracts input constraints from
documents, and uses these constraints as a “filter” to favor
execution paths that execute the core functionalities of the
program. DASE, as a path pruning strategy, can be used on
top of existing search strategies to further improve symbolic
execution (§VI shows that DASE can find more bugs and
improve testing coverage on top of different search strategies).

Testing with invalid inputs can also be important, e.g., to
check error-handling code or find defects due to malformed
inputs [20], [21]. However, this paper focuses on testing with
valid inputs as it allows symbolic execution to exercise deeper
into program logic rather than focus on input parsing. If
developers believe it is more important to test some programs
with invalid inputs, they can use the DASE approach to focus
on invalid inputs by negating the input constraints, which
we would like to evaluate in the future. Regardless of what
inputs (valid or invalid) to focus on, one cannot do so without
knowing what inputs are valid and what are not. DASE enables
this choice automatically by extracting input constraints from
program documents automatically.

This automation is novel because existing symbolic execu-
tion techniques [18], [19] do not analyze documents automat-
ically and require input constraints to be given. Previous work
has shown that constraint extraction from documentation [22],
[23] is important yet challenging. Since this automation can
reduce manual effort, DASE could make it easier for practi-
tioners to adopt these symbolic execution techniques [18], [19]
and other techniques that require input constraints [3], [24],
[25] such as constraint verification.

DASE considers two categories of input constraints: the
format of an input file (e.g., ELF and tar), and valid values of
a command-line option (e.g., -r for rm). These two types are
sufficient for a wide spectrum of programs. This paper makes
the following contributions:
• We propose a novel approach, DASE, to improve automated

test generation. By leveraging input constraints automati-
cally extracted from documents, DASE enables symbolic

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/ republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

execution to automatically distinguish the semantic impor-
tance of different execution paths to focus on programs’ core
functionalities to find more bugs and test more code.

• We propose a new technique that combines natural language
processing (NLP) techniques, i.e., grammar relationships
and heuristics, to automatically extract input constraints
from documents. The technique is general and should be
able to extract input constraints for purposes other than
symbolic execution such as program comprehension and
constraint verification. We study two types of documents,
i.e., manual pages and code comments, and extract input
constraints from both.

• Our evaluation shows that DASE finds more bugs and has
higher code coverage than KLEE [4] (a symbolic execu-
tion tool without input constraints from documents). We
evaluated DASE on 88 programs from 5 widely-used soft-
ware suites—GNU COREUTILS, GNU FINDUTILS, GNU
GREP, GNU BINUTILS, and ELFTOOLCHAIN, most of which
have been thoroughly tested by many symbolic execution
tools [4], [9], [14], [26]. DASE detected 12 previously
unknown bugs1 that KLEE failed to detect, 6 of which have
already been confirmed by the developers, while the rest
await confirmation. Compared to KLEE, DASE increases
line coverage, branch coverage, and call coverage by 14.2–
120.3%, 2.3–167.7%, and 16.9–135.2% respectively, which
are 6.0–21.1 percentage points (pp), 1.6–18.9 pp, and 2.8–
20.1 pp increases. The input constraint extraction of three
files formats—ELF, tar, and the Common Object File Format
(COFF)—has accuracies of 97.8–100%.

II. OVERVIEW

A real-world program typically contains numerous or even
infinite number of execution paths. Given limited time, it
is crucial for testing to prioritize the paths effectively. Re-
searchers have proposed approaches to guide the path explo-
ration of symbolic execution [1], [5], [14], [16], [17] to find
more bugs and improve code coverage.

Path pruning, which applies a “filter” to prune “uninter-
esting” paths before employing a search strategy, can further
address the path explosion problem. Path pruning significantly
reduces the size of the search space for a search strategy.

We propose using input constraints as a “filter” to aid search
strategies to focus on both valid and close-to-valid inputs
(e.g., boundary cases) to explore deeper in a program’s core
functionality. The core functionality of a program is typically
related to processing valid inputs. For example, a C compiler’s
core functionality is parsing and compiling valid C programs.
Valid C programs are only a small portion of all strings (the
input space of a C compiler).

Randomly generated inputs can cover many invalid inputs,
but miss valid and close-to-valid ones. While symbolic execu-
tion addresses this issue by exploring paths systematically, it
is unaware of which branch (the “then” branch or the “else”

1We do not count bugs that are already reported in the KLEE paper. Those
bugs, which can also be found by DASE, are not counted as newly detected
ones by DASE either.

1 i n t c o u n t e r = 0 ;
2 f o r (i n t i = 0 ; i < 3 0 ; i ++) {
3 i f (i n p u t [i] == ’A’) {
4 c o u n t e r ++;
5 foo () ;
6 }
7 }
8 i f (c o u n t e r == 30) {
9 p r o c e s s b o u n d a r y c a s e s () ; / / bug !

10 i f (i n p u t [3 0] == ’B ’)
11 p r o c e s s v a l i d i n p u t () ; / / bug !
12 }

Fig. 1: Motivating Example

branch) leads to valid inputs upon a conditional statement.
Input constraints that define valid inputs can guide symbolic
execution to focus on paths corresponding to valid inputs. The
constraints can be slightly relaxed (e.g., relaxing a constraint
“x must be between 0 to 10 (inclusive)” to “x must be between
-1 and 10 (inclusive)”) to exercise paths corresponding to
close-to-valid inputs to test boundary cases.

These paths (for valid and close-to-valid inputs) can pass
the trivial part of input sanity check to go deeper and are
more likely to uncover bugs [18], [19] for two main reasons.
First, keeping invalid inputs in the search space hurts the
effectiveness of symbolic execution based test generation. The
reason is that exploring invalid inputs takes up time and
memory, which can be used for testing valid and close-to-
valid inputs instead. Second, some constraints are solved or
simplified (e.g., the ones related to the concrete valid option),
which reduces the computation time of the constraint solver.

Next we (1) illustrate why input constraints can help sym-
bolic execution find more bugs and improve testing coverage
and (2) summarize how DASE extracts these types of con-
straints automatically from two sources of documents.

Why can input constraints help symbolic execution find
more bugs and test more code? We will use the code snippet
in Figure 1 to answer this question, while real code from
BINUTILS is shown later in Figure 5 to explain how the
automatically extracted input constraints help DASE detect
previously unknown bugs and improve coverage. The code
snippet in Figure 1 has 32 branches (30 from line 2 and 3,
one from lines 8 and one from line 10), indicating 232 possible
paths to explore. Without knowing which paths execute the
core logic, it is hard to expose the bug deep in line 11
because only 1 out of the 232 paths leads to that line. DASE
automatically extracts constraints from documents and find
that the first 30 characters of a valid input must be ‘A’, and
the next character must be ‘B’. These constraints will guide
the execution to line 11. If the document is incomplete, e.g.,
only mentioning that the first 30 characters of a valid input
must be ‘A’, we can still hit the bug in line 9 that is triggered
by close-to-valid inputs. In addition, it increases the chance
to detect the bug in line 11 (1

232 to 1
2). In either case, DASE

can cover more code (lines 9–10 and possibly 11), which is
hard for standard symbolic execution to cover, in addition to
detecting more bugs.

0 4 8 12 16 20 24 28
0

50

100

Number of Supplied Input Constraints

R
un

tim
e

(m
in

ut
es

)

Fig. 2: The runtime to find the bug in line 11 decreases exponentially
as we supply more input constraints. The runtime when no constraint
is supplied is not depicted because the bug was not detected after 10
hours when we stopped the execution.

We run KLEE on this example for 10 hours, and KLEE
detects neither of the bugs. In contrast, DASE detects both
bugs in 0.1 seconds. In practice, one may not have all
constraints to define the entire input. In order to understand
the effect of the number of constraints, we plot how the time
to discover the bug in line 11 changes as the number of given
constraints changes in Figure 2. The runtime to find the bug
decreases exponentially as we supply more input constraints,
suggesting that input constraints can dramatically improve the
efficiency of finding bugs, i.e., finding more bugs given the
same amount of time.

How to flatten symbolic execution to find more bugs and
test more code? Command-line options are a special type
of input. Therefore, we propose a new way to leverage their
constraints to improve testing effectiveness. Command-line
options are used to invoke certain functionalities of programs
or tune parameters. For example, the option -r tells rm to
perform a recursive deletion. A program typically uses nested
if-else statements or a switch-case statement to check the input
argument against all valid options until it finds a match, and
then invokes the corresponding functionality.

DASE extracts valid options by analyzing programs’ doc-
umentation and use them as input constraints. For example,
DASE finds that among the 256m possibilities2 for rm (m is
the maximum number of characters allowed in an option), only
11 values are valid options. With n valid options (n = 11 in
the example above), DASE “forks” the execution state n times,
with each child execution state taking a valid option3. In this
way, DASE creates n execution branches for a program with
n valid options (one for each valid option).

The concretization moves all valid options at the same
depth of the execution tree, indicating that all valid options
are treated equally (Figure 3b). Figure 3a illustrates the
dynamic execution tree of symbolic execution without DASE.
Clouds are subtrees related to valid command-line options.
If a program has 15 valid options a–o, and o is the deepest
valid option as shown in Figure 3a, the time spent on testing
code related to option -o could be 1

215 of the total testing

2There are 256 possibilities for a single 8-bit character option.
3We have additional child execution states for an invalid option and a null

option for completeness. But the execution time for these two options should
be less than the circles in Figure 3a combined.

bash$ program -a -b ... -o

...

... -o

-b

-a

...

(a) Without DASE

-a -b ... -o ...

(b) With DASE

Fig. 3: Abstract view of execution trees for command-line options.
Clouds are execution subtrees related to valid command-line options.
Ovals are other execution subtrees. Deep options such as -o are more
likely to be tested with DASE.

time without DASE4. The reason is there are 15 branches
from the nested if–else or switch-case statements, one for each
valid option. Such a small fraction often means option -o

would not be tested at all in practice. With DASE, the time
of testing option -o would be much longer—about 1

15 as in
Figure 3b. This way, a bug in the code that processes option
-o will be more likely to be exposed with DASE. On the
other hand, the probability of hitting a bug in a shallower
option (e.g., b) would be reduced from 1

22 to 1
15 , but the

difference is much smaller, and it is still highly likely that
the option b will be tested given that the probability is 1

15 . In
addition to finding more bugs, since each option has about 1

15
chance to be explored, more options are likely to be tested,
improving testing coverage (§ VI-B shows that DASE covers
more options than KLEE).

Although this approach may appear to be similar to breadth-
first search (BFS), it is very different from BFS. Without
DASE, BFS would explore paths in Figure 3a, which would
still waste time on shallow paths and are less likely to
explore deeper paths. In fact, our evaluation shows that DASE
outperforms KLEE even if BFS is used as the underlying
search strategy (§VI-B).

What documents to analyze and how to extract input con-
straints from them automatically? Many types of software
documents are available: manual pages, code comments, API
documentation, requirement documents, etc. This paper studies
and analyzes two popular types for constraint extraction, i.e.,
manual pages and code comments, since they describe whole
program constraints (as opposed to API documentation that
describes method level constrains), and they contain more
code-level constraints (compared to requirement documents).
We conduct an informal qualitative study of 82 manual pages
from COREUTILS and code comments of 3 header files (ELF,
tar and COFF). Manual pages (man pages for short) typically
have higher English quality (e.g., grammatically correct full
English sentences) since they are meant to be read by more
than just the developers. On the other hand, it is easier to
link constraints from code comments to code artifacts since

4The actual time depends on the search strategy, but the time spent on
testing -o would be much smaller than that of testing -a.

comments are embedded in the code (e.g., a comment typically
describes the code segment right below it).

Valid options are typically described in a well-structured
manner in man pages. Therefore, we use simple regular
expression matching to extract them (§IV-C). Input file formats
are described in both man pages and code comments. We use
regular expression matching to analyze the man pages. Since
code comments are less structured, we use NLP techniques,
i.e., grammar relationships, for extraction (§IV-A). Grammar
relationships can help identify relevant sentence structures for
constraint extraction. It can tolerate different word orders and
paraphrases, thus more general than hard-coded heuristics.

III. KLEE BACKGROUND

KLEE is a symbolic execution engine based on LLVM.
Programs are compiled into LLVM bytecode, and then in-
terpreted by KLEE. KLEE models the programs’ running
states. It checks for dangerous operations (e.g., pointer deref-
erences and assertions) that can cause the program to fail.
In addition, KLEE maintains path constraints that drive the
execution to the current state. KLEE provides a function
klee_make_symbolic() to make the memory symbolic,
whose usages are tracked and constraints are collected. KLEE
can also intercept the startup of programs and insert logic to
make them support options for symbolic execution by using
function klee_init_env(). Supported options include (1)
--sym-args MIN MAX N, which expands to at least MIN
and at most MAX symbolic arguments, each with a maximum
length of N; and (2) --sym-files NUM N, which makes
stdin and up to NUM files symbolic, each with a maximum
size of N.

KLEE’s default search strategy consists of two atom search
strategies that are interleaved in round-robin fashion to prevent
one atom strategy from getting stuck. The first atom strategy,
coverage-optimized search, uses heuristics to choose a state
that is most likely to cover new code in the immediate future.
The second atom strategy, random path selection, randomly
selects a branch to follow at a branch point, which helps
alleviate starvation.

IV. DESIGN AND IMPLEMENTATION

This section describes how DASE extracts and utilizes input
constraints for file formats (§IV-A and §IV-B) and options
(§IV-C and §IV-D).

A. Extracting File Format Constraints

DASE automatically extracts input constraints regarding
file formats from both code comments and man pages. As
discussed in §II, code comments and man pages have different
characteristics, so different techniques are used to extract
constraints from them: NLP techniques for code comments,
and regular expressions for man pages. The same techniques
are used for all three file formats—ELF, tar, and COFF.

We apply NLP techniques to analyze the comments and
code in header files to extract constraints automatically. The
header file contains a large number of comments that describe

the constraints for the struct data fields (i.e., each comment
is followed by a list of macros representing the valid values).
One example is:
/* Fields in the e_ident array. The EI_* macros are

indices into the array. The macros under each
EI_* macro are the values the byte may have. */

#define EI_MAG0 0
#define ELFMAG0 0x7f
#define EI_MAG1 1
#define ELFMAG1 ’E’

DASE automatically generates two constraints regarding
array index-value pairs from the comments and code:
assume(Elf32_Ehdr->e_ident[EI_MAG0] == ELFMAG0);
assume(Elf32_Ehdr->e_ident[EI_MAG1] == ELFMAG1);

where assume() is a KLEE function for putting constraints
onto the current path. The rest of this section explains the NLP
techniques to generate the constraints.

Our technique extracts two types of value constraints:
array index-value pairs and struct field values (e.g., assume(
Elf32_Shdr->e_type == 0|...);). Since comments are
written in natural language, developers can use different forms
to express the same meaning. For example, they may use
“Fields in the e ident array”, “Fields of the e ident array”,
“The e ident array’s fields”, or “The array e ident’s fields” to
start the listing of fields. These sentences use different sentence
structures and words to express the same meaning, which are
difficult to analyze automatically. Simple regular expression
matching will fail to accommodate all these and other variants.

We propose to use Stanford typed dependency [27] to
analyze the dependencies and grammatical relations among
words and phrases in a sentence to handle these variants. Our
technique is different from prior work [28], [29].

DASE uses four grammar rules (GR) to identify relevant
comments and extract constraints from them. All four rules
are used as main rules to identify relevant comments—if a
sentence contains the typed dependency defined by a GR, it
is considered relevant and remains for further analysis. GR1
and GR2 can also act as a supporting rule for any main rule.
For example, GR1 can help identify the parameters in a rule,
e.g., array and field names. The four GRs are listed below:
• GR1: Noun or Adjectival Modifier (main/support rule)

Noun or Adjectival modifier is a noun or adjectival phrase
that modifies a noun phrase [30]. For example, in the
comment “Fields in the e ident array”, the noun phrase
“e ident” modifies the noun “array”. DASE applies this
grammar relationship to retrieve data structure names and
index names.

• GR2: Prepositional Modifier (main/support rule) Prepo-
sitional Modifier is a prepositional phrase that modifies the
meaning of a verb, adjective, noun or preposition [30]. For
example, in the comment “Legal values for sh type field of
Elf32 Shdr”, the prepositional phrase “for ... Elf32 Shdr”
modifies the noun “values”. DASE applies this grammar
on modifiers (i.e., “for”, “of”, “in” and “under”) to locate
specific nouns (i.e., “value” and “field”) or specific word in
the prepositional phrase (i.e., “field”).
After locating the prepositional modifier the dependency tree
links “values” to the content word “field”. If the content

word is being modified by an adjectival modifier, DASE
applies GR1 to resolve the properties. In this example, GR1
will return “sh type” as the property of “field”, and GR2
will flag the macros as the legal values for that data field.

• GR3: Nominal subject (main rule) Nominal subject is a
noun phrase that is the syntactic subject of a clause [30].
For example, in the comment “The EI * macros are indices
into the array”. The noun, “macros”, is the subject of the
clause, “indices into the array”. DASE applies this grammar
to locate specific clauses (i.e., “indices ...” and “values ...”).
After locating the nominal subject, DASE applies GR1 to
resolve the properties. In this example, GR1 will return
the regular expression “EI *” as the property of “macros”,
and GR3 will flag the macros named under this regular
expression as the indices of an array.

• GR4: Possession modifier (main rule) Possession modifier
holds the relation between the head of a noun phrase and
its possessive determiner [30]. For example, in the comment
“sh type field’s legal values”. The head noun is “field”
and the possessive determiner is “values”. DASE applies
this grammar to locate specific possessive determiners (i.e.,
“value”).
After locating the possession modifier, DASE applies GR1
to resolve the properties of the head noun. In this example,
GR1 will return the field name “sh type” as the property of
“field”.

If a comment only specifies a partial field name, DASE
will resolve the name into a fully qualified name. For ex-
ample, the comment “Legal values for e type” specifies a
field name “e type” without the struct name. DASE maps
this field name to structs that contain this field name and
generates the fully qualified names, “Elf32 Ehdr→e type”
and “Elf64 Ehdr→e type”.

We use the example that is shown at the beginning of this
section to illustrate how to extract one type of constraints
(index-value pairs) using the grammar rules on the three
sentences (S1, S2 and S3).

• S1: GR2 identifies a prepositional link, “in”, between
“fields” and “array”, and invokes GR1 to resolve “ar-
ray”. GR1 queries the noun modifier for “array” and re-
turns “e ident”. Therefore, it captures the array name as
“e ident”.

• S2: GR2 identifies a prepositional link, “into”, between
“indices” and “array”, but it does not invoke GR1 because
there is no noun modifier. GR3 identifies “indices” as the
subject of “macros”, and invokes GR1 to resolve “macros”.
GR1 queries the noun modifier for “macros” and returns
“EI *”. Therefore, macros with the name, “EI *”, are
treated as the indices of an array.

• S3: GR3 is invoked before GR2 because of the structure of
the dependency tree. GR3 identifies “values” as the subject
of “macros”, but it does not invoke GR1 because there is no
noun modifier. GR2 identifies a prepositional link, “under”,
between “macros” and “macro”, and invokes GR1 to resolve
“macro”. GR1 queries the noun modifier for “macro” and

SH [0] SH [1] SH [2] SH [3] SH [4]ELF Header PH

......
[0]

Null

Section

[1]

Section Header
String Table

[2]

Symbol

Table

[3]

Dynamic

Section

[4]

Random

Section

Section Header Table Program Header Table

Section

Fig. 4: DASE’s ELF layout. SH is Section Header, and PH is
Program Header. Numbers in brackets are array indices.

returns “EI *”. Therefore, the macro below the macro name,
“EI *”, is treated as the value of an array.

DASE aggregates the information from the three sentences.
It then attempts to resolve the array name “e ident” into a
fully qualified name. Since there is enough information, it
deducts “Elf32 Ehdr→e ident” as the fully qualified name
and generates two constraints.

In addition, DASE extracts constraints from man pages
using regular expressions. Man pages often show a struct

declaration, followed by the constraints (if available) for each
field in the struct. The valid values for each struct field can
be identified based on the indentation of the man page. Based
on this layout, DASE first locates the name of the struct,
and maps it to each of the constraints that are listed below it.
The output of this analysis is also a list of constraints that can
be directly used by the symbolic execution part of DASE.

B. Adding File Layout Constraints

ELF files follow a certain layout, which also defines valid
ELF files. Therefore, in addition to extracting the file format
constraints as described in § IV-A, we add file layout con-
straints for ELF by reading the ELF specification [31]. Our
results show that both the file format and file layout constraints
contribute to the improvement of DASE.

An ELF file always starts with an ELF header followed
by the two header tables, section header table (SHT) and
the program header table (PHT). SHT contains an array of
section headers, PHT contains an array of program headers,
and object files’ real data are in the sections. In order to reduce
the workload of the constraint solver and focus on important
parts of ELF, we adopt a rigid layout as shown in Figure 4.
SHT is set to have five section headers. The first section (at
index 0) is a null section, followed by a string table, symbol
table, dynamic section, and random section. The second and
fifth section are set with a size of 8 bytes, and the third and
fourth section are set with a size that is enough to hold two
symbols. PHT is set to contain one random program header.

Note that our ELF layout is incomplete. We retain this
incompleteness to give DASE the ability to explore close-
to-valid inputs to explore boundary cases. In addition, input
constraints can be slightly relaxed to include more close-to-
valid inputs, which remains as our future work.

C. Extracting Valid Options
We automatically extract valid options only from man pages

because we find that code comments do not describe valid
options. Since man pages list the valid options in a standard-
ized format, our parsers perform simple regular expression
matching, which is effective and accurate. DASE takes a man
page as input and outputs a list of valid command line options.
It uses two regular expressions, one for short options (a single
dash followed by a single letter), and one for long options (two
dashes followed by multiple letters). If a short option has a
long option equivalent, DASE keeps only the short option.

D. Using Options to Flatten Symbolic Execution
DASE takes the options extracted in §IV-C to trim and

reorganize the dynamic symbolic execution tree as shown in
Figure 3. Specifically, instead of having s symbolic arguments,
DASE runs the program with s−1 symbolic arguments and a
concrete valid option, which forms one execution branch. In
this way, DASE creates n execution branches for a program
with n valid options (one for each valid option). The aim
is to balance the testing effort on each option (and the
corresponding functionality), which should be of the similar
semantic importance (at least not as skewed as 1

2 versus 1
2n

as shown in Section II). The generated branches are then
prioritized by search strategies. We can consider this technique
as a “partition” of the execution tree. The s − 1 arguments
remain symbolic, which can expand to any concrete options.
Therefore, it is possible to cover combinations of command-
line options such as “-r -f” (of rm) in our approach. To
ensure the completeness of this “partition”, we add a branch
for an invalid option and a branch for a null option.

V. METHOD

We use three coverage criteria reported by gcov, i.e., line,
branch, and call coverage (% of executed function calls), as
our main coverage metrics. The coverage criteria and gcov

are widely used in literature [4], [9], [26], [32].

A. Evaluated Programs
We evaluate DASE on the following 88 programs from 5

popular and mature fundamental software suites for Unix-like
systems. The sizes of these programs are at the same scale as
the ones evaluated by previous work [9], [14], [26], [32].

COREUTILS 6.10. COREUTILS, also evaluated by KLEE,
is a package of GNU programs that consists of basic file,
shell, and text manipulation utilities. For a fair comparison
with KLEE, our settings for DASE and KLEE for COREUTILS
are identical; we set the same environment for COREUTILS as
KLEE’s authors; and we choose the same version, 6.10, and
follow their parameters for both KLEE and DASE. The total
source lines of code (LOC)5 of the 82 stand-alone programs6

5Following previous work [26], [33], [34], all LOC counts in this paper are
reported by cloc 1.62.

6yes is excluded because KLEE failed to terminate its execution. dd is
excluded because it uses a different option style. chmod, kill, mv, rm, and
rmdir are excluded because they continually cause dangerous test cases to
be generated that destroy our experiment data. In the future, we can apply
DASE to these programs in a sandbox to address this issue.

that we tested in COREUTILS are 38,962 with a linked library
size of 49,204 LOC. The program sizes range from 20–3,247
LOC. Here we show the program sizes and library sizes to
give a better image of the scale of the programs. Following
previous work [4], [32], coverage is measured against the
programs excluding libraries as reported by gcov since a
program typically use only part of libraries.
diff 3.3. diff compares files line by line and outputs the

differences. The program has 1114 LOC with a library size of
43,324 LOC.
grep 2.18. grep searches files for given patterns. The

program has 6,144 LOC with a library size of 38,663 LOC.
objdump & readelf(b) 2.24. These two programs

are from BINUTILS, which is a set of GNU programs for
processing binaries, libraries, object files, etc. objdump
and readelf are used for displaying the contents of
ELF files. They have 2,856 and 12,076 LOC respectively
with a library size of 864,069 LOC. Since both BINUTILS
and ELFTOOLCHAIN contain a readelf program, we use
readelf(b) to denote the readelf program in BINUTILS
and readelf(e) to denote the one in ELFTOOLCHAIN.
elfdump & readelf(e) r2983. In order to test our

ELF model more thoroughly, we select ELFTOOLCHAIN’s
counterparts for the above two programs. ELFTOOLCHAIN
provides similar tools as BINUTILS, but favors well-separated
and well-documented libraries. They have 2,472 and 6,167
LOC respectively with a library size of 22,534 LOC.

B. Experimental Setup

All automatically extracted file format constraints and valid
options (without manual examination for zero manual effort)
are used as input constraints for all programs when applicable.
DASE extracts file format constraints for ELF and uses them
for the 4 ELF processing programs (objdump, readelf(b),
elfdump, and readelf(e)) for path pruning. ELF is a
boardly used main standard for binaries in Unix-like systems.
One can use the ELF model that we build to potentially
improve test generation for all programs that read or write
ELF binaries on a Unix-like platform. In addition, DASE
extracts valid options for the rest of the programs automatically
and uses them to guide the symbolic execution on them.

To show the generality of our techniques of automatically
extracting file format constraints, DASE extracts file format
constraints for two additional standard file formats—Tar from
tar.h, and the Common Object File Format (COFF) from
coff/internal.h.

We run KLEE and DASE on each program until no new
instructions are covered in a certain amount of time: 15
minutes for COREUTILS programs and 30 minutes for the rest
due to their larger sizes. This stop criterion allows both DASE
and KLEE to run until they cannot make progress in coverage
in a fixed time period, which is similar to that of the previous
paper [32], but different from that of KLEE [4], in which
each program is only allowed to run for one hour. In our
experiments, the actual run time of each program varies from
6 seconds to 11.5 hours. We have also conducted experiments

using the stop criterion from the KLEE paper, and DASE still
achieves a similar amount of improvement over KLEE.

The other parameters are set by following the instructions
from KLEE’s authors [35]. The key parameters are:
klee PROG -sym-args 0 1 10 -sym-args 0 2 2

-sym-files 1 8 -sym-stdout

where PROG is a program in COREUTILS. While for DASE,
we keep all the parameters the same as for KLEE, except for
replacing a symbolic argument with a list of valid options. For
diff and grep, we set the symbolic file size to 100 bytes
because they are meant to process textual files.

For the ELF processing programs, we use the following
parameters respectively for KLEE and DASE:

klee -sym-args 0 2 2 -sym-files 1 640
klee -sym-args 0 2 2 -sym-elfs 1 640

where -sym-elfs holds our ELF model described in §IV-B.
We conduct our experiments on an Intel Core i5-2400

3.10GHz CPU machine running Ubuntu 13.10. KLEE is built
from git revision a45df61 with LLVM 2.9.

VI. RESULTS

This section shows that DASE finds more previously un-
known bugs, improves code coverage on top of different search
strategies, complements developer tests, and extracts input
constraints automatically. We also show that our results are
statistically significant.

A. Detected Bugs

Using the constraints automatically inferred from docu-
ments (without any manual verification), DASE finds more
bugs than KLEE. KLEE detects 3 previously unknown bugs
from the 88 programs while DASE can uncover 13 previously
unknown bugs (KLEE failed to detect 12 of them). Table I
lists all of the detected previously unknown bugs.

DASE found 2 previously unknown bugs in COREUTILS
and 3 in BINUTILS (objdump & readelf(b)), both of which
have already been thoroughly tested by many symbolic ex-
ecution tools. For example, COREUTILS has been tested by
Veritesting [9], ZESTI [14] and KLEE [4], and BINUTILS has
been tested by Veritesting [9], ZESTI [14], and KATCH [26].
Finding 5 new bugs in those extensively-tested suites demon-
strates DASE’s ability in finding new bugs and improving
symbolic execution.

We explain a few example bugs to demonstrate DASE’s bug
finding capability. All these example bugs together with others
(a total of 6) have already been confirmed and fixed by the
developers after we reported the bugs to them.
readelf(b) fails with segmentation fault when the in-

put file contains malformed attribute sections (of type
SHT_ARM_ATTRIBUTES) [36]. The bug exists in the func-
tion process_attributes(), which is shown in Figure 5.
Pointer p walks through the whole section. At line 19, 4
bytes are read and interpreted as the length (section_len) of
the subsequent data structure. Directly after that, the program
expects to read a string and assign its length to namelen. How-
ever, section_len can be a number smaller than namelen +

TABLE I: NEW BUGS DETECTED BY KLEE AND DASE. “X”
DENOTES A BUG IS FOUND BY A TOOL. “IU” MEANS “INTEGER UN-
DERFLOW.” “DBZ” IS “DIVIDE BY ZERO.” “IL” IS “INFINITE LOOP.”
“NPD” MEANS “NULL POINTER DEREFERENCE.” “POB” STANDS
FOR “POINTER OUT OF BOUNDS.” “ME” IS “MEMORY EXHAUSTED.”

No Program Location Problem KLEE DASE
1 readelf(b) readelf.c:12202 IU X
2 objdump elf-attrs.c:463 IU X
3 objdump elf.c:1351 POB X
4 readelf(e) readelf.c:4015 DBZ X
5 readelf(e) readlef.c:2862 DBZ X
6 readelf(e) readelf.c:3680 DBZ X
7 readelf(e) readelf.c:3930 IU X
8 readelf(e) readelf.c:3961 IL X
9 readelf(e) readelf.c:4102 IL X

10 readelf(e) readelf.c:2662 NPD X
11 readelf(e) readelf.c:2426 POB X
12 elfdump elfdump.c:1509 POB X X
13 elfdump elf_scn.c:87 POB X
14 head head.c:207 ME X
15 split split.c:333 ME X

1 s t a t i c i n t p r o c e s s f i l e h e a d e r (void) {
2 i f (e l f header . e i d e n t [EI MAG0] != ELFMAG0
3 | | e l f h e a d e r . e i d e n t [EI MAG1] != ELFMAG1
4 | | e l f h e a d e r . e i d e n t [EI MAG2] != ELFMAG2
5 | | e l f h e a d e r . e i d e n t [EI MAG3] != ELFMAG3) {
6 e r r o r ((” Not an ELF f i l e − . . . ”)) ;
7 re turn 0 ;
8 } . . .
9 }

10 . . .
11 s t a t i c i n t p r o c e s s o b j e c t (. . .) { . . .
12 i f (! p r o c e s s f i l e h e a d e r ())
13 re turn 1 ; . . .
14 p r o c e s s a r c h s p e c i f i c (f i l e) ; / * c a l l s
15 p r o c e s s a t t r i b u t e s () i n d i r e c t l y * / . . .
16 }
17 . . .
18 s t a t i c i n t p r o c e s s a t t r i b u t e s (. . .) { . . .
19 s e c t i o n l e n = b y t e g e t (p , 4) ;
20 p += 4 ;
21 . . .
22 namelen = s t r l e n ((char *) p) + 1 ;
23 p += namelen ;
24 s e c t i o n l e n −= namelen + 4 ;
25
26 whi le (s e c t i o n l e n > 0)
27 . . .
28 }

Fig. 5: Buggy code in readelf.c from BINUTILS.

4, which causes an integer underflow at line 24. The variable
section_len, which becomes an extremely big number after
underflow, is later used as the stop condition of a continuing
reading of the following memory, which eventually causes a
segmentation fault.

Five other functions are ahead of process_attributes()
in the call stack, namely, main(), process_file(),
process_object(), process_arch_specific(), and
process_arm_specific(). Each function reads and
processes specific parts of the input ELF file. For example,
to correctly invoke process_attributes(), the condition
for the if statement at lines 2–5 must evaluate to false.
The automatically extracted ELF constraints guide DASE
to generate an ELF file that satisfies all these constraints
to reach process_attributes() and expose the bug.
This close-to-valid ELF file helps DASE detect this bug.
readelf(e) contains a similar bug.

TABLE II: COVERAGE RESULTS WITH KLEE’S DEFAULT SEARCH
STRATEGY. “LINE”, “BR”, AND “CALL” SHOW THE TOTAL NUMBER
OF EXECUTABLE LINES OF CODE (ELOC), BRANCHES, AND CALLS
FOR EACH PROGRAM, REPORTED BY GCOV. “K” STANDS FOR KLEE
AND “D” IS DASE. “∆” IS THE IMPROVEMENT IN PERCENTAGE
POINTS OF DASE OVER KLEE.

Program Line K D ∆ BR K D ∆ Call K D ∆
% % pp % % pp % % pp

COREUTILS 18329 66.2 75.6 +9.4 12674 69.9 77.3 +7.4 7008 56.6 67.5 +10.9
diff 526 59.1 67.9 +8.8 489 68.1 69.7 +1.6 150 46.6 59.3 +12.7
grep 932 37.3 58.4 +21.1 786 40.3 59.2 +18.9 266 33.5 53.6 +20.1
objdump 1687 19.4 25.6 +6.2 1270 16.9 22.8 +5.9 463 16.6 19.4 +2.8
readelf(b) 6998 6.9 15.2 +8.3 5410 6.2 16.6 +10.4 1959 6.9 13.5 +6.6
elfdump 1539 16.1 22.1 +6.0 1157 20.4 30.7 +10.3 533 16.5 23.6 +7.1
readelf(e) 3571 13.0 28.0 +15.0 2550 18.5 34.5 +16.0 1126 10.8 25.4 +14.6

The head program fails with memory exhaustion when
invoked with options -c -1P, which tells head to print all
but the last 1P bytes of the input file. Since P is a large unit of
10245, head tries to allocate a large amount of memory, which
exceeds the total amount of available memory. According to
the comment, head is not expected to “fail (out of memory)
when asked to elide a ridiculous amount”. For bigger units
(e.g., Z and Y), head exits with the correct error message—
“number of bytes is so large that it is not representable”.
Neither developers’ hand-written tests nor KLEE generated
tests detect this bug.

Two bugs can be found by KLEE but not by DASE due to
the following reason. The ELF file to trigger the bugs has a
very large e_shoff value (SHT’s offset from the beginning
of the EFL file), which is incompatible with our ELF model.
As shown in §IV-B, we manually fixed the offset to layout the
SHT. Missing these two bugs shows the tradeoff involved in
designing the ELF model. DASE focused on those more valid
inputs to test the core logic.

Our results clearly demonstrate the benefits of our design
choice: DASE finds 10 more bugs than KLEE. One can relax
the constraints to explore fewer valid inputs and potentially
cover these two bugs. Running KLEE and DASE together to
gain benefits from both is also a good solution.

B. Code Coverage

Table II shows the overall code coverage achieved by KLEE
and DASE. DASE outperforms KLEE on the 88 programs: it
increases the line coverage, branch coverage, and call coverage
by 14.2–120.3%, 2.3–167.7%, and 16.9–135.2% respectively,
which are 6.0–21.1 pp, 1.6–18.9 pp, and 2.8–20.1 pp increases.
For example, the line coverage boost on grep is 21.1 pp. Pro-
grams readelf(b), objdump, readelf(e), and elfdump
are difficult to test because their inputs involve the complex
ELF format. Despite the lower coverage, DASE detected new
bugs in them that existing techniques did not detect as shown
earlier. Figure 6 shows the coverage improvement of DASE
over KLEE on readelf(b) over time. It shows that the
improvement increases as time proceeds.

The coverage percentages for COREUTILS are different from
those of the KLEE paper [4]. The difference is inevitable
because the KLEE tool has evolved significantly since then,
including major code changes of KLEE (e.g., removals of
special tweaks), and an architecture change from 32-bit to

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

15

Time (seconds)

B
r.

C
ov
er
a
ge

(%
)

DASE
KLEE

Fig. 6: Branch coverage on readelf(b) over time.

TABLE III: NUMBER OF INSTRUCTIONS OF GENERATED TEST
CASES, SHOWING THAT DASE EXPLORED DEEPER THAN KLEE.
“K-” STANDS FOR KLEE AND “D-” STANDS FOR DASE. “AVG-I”
AND “MAX-I” IS THE AVERAGE AND MAXIMUM NUMBER OF
INSTRUCTIONS FOR THE GENERATED TEST CASES RESPECTIVELY.
SINCE COREUTILS INCLUDES MULTIPLE PROGRAMS, A RANGE
(THE MINIMUM AND THE MAXIMUM) IS SHOWN.

Program K-AVG-I D-AVG-I K-MAX-I D-MAX-I
COREUTILS 7132 8170 11682 13200
(82 programs) 49688 55672 320138 1189470
diff 18483 22427 35432 35976
grep 25942 26231 43424 53081
objdump 45915 62236 104479 206874
readelf(b) 11570 17800 24884 36196
elfdump 13827 28560 24433 319744
readelf(e) 18009 30069 29140 61233

64-bit. We choose the latest version of KLEE at the time
of the experiment because the original version used in the
KLEE paper is not publicly available. For a fair comparison,
the configurations for KLEE and DASE are identical.
DASE explored deeper than KLEE. Since DASE filters
out “uninteresting” paths, we expect it to explore deeper. We
count the number of executed instructions for each test case
generated by KLEE and DASE to approximate the depth of
the corresponding paths. The average and maximum numbers
are shown in Table III, which shows that DASE generates
test cases with much more instructions executed, indicating
that DASE goes much deeper into the execution tree than
KLEE. For the ELF processing programs, both the averages
and maximums almost double their counterparts of KLEE. The
difference is expected because while KLEE is still exploring
at the early stage of the ELF sanity check, DASE has already
penetrated through that part with the help of our ELF model.
DASE covered more functionalities and options than
KLEE. To investigate DASE’s coverage gain in detail, we
manually check the coverage difference of KLEE and DASE
on diff. KLEE explores only 27 out of the 55 distinct
options7, which are the shallower options, while DASE covers
46 options. The result agrees with our analysis in Figure 3.
We have similar observations for the ELF processing pro-
grams. We manually examine the coverage difference on
readelf.c (BINUTILS). For the three functions related
to dynamic section, *_dynamic_section(), in which *
means get_32bit, get_64bit, or process, KLEE fails
to cover any of them, while DASE naturally tests them all
because our ELF model has a dynamic section. In addition,

7We count options that invoke the same code segment as one option.

TABLE IV: COVERAGE RESULTS WITH BFS

Program Line K D ∆ BR K D ∆ Call K D ∆
% % pp % % pp % % pp

COREUTILS 1840 69.1 76.5 + 7.4 1285 74.1 75.2 + 1.1 728 53.8 69.5 + 15.7
diff 526 40.9 71.1 + 30.2 489 60.7 74.6 + 13.9 150 33.3 64.0 + 30.7
grep 932 33.4 59.6 + 26.2 786 41.4 65.1 + 23.7 266 25.2 54.9 + 29.7
objdump 1687 2.9 3.6 + 0.7 1270 5.3 5.6 + 0.3 463 5.2 5.6 + 0.4
readelf(b) 6998 0.7 0.8 + 0.1 5410 1.6 1.6 + 0.0 1959 1.1 1.2 + 0.1
elfdump 1539 17.9 20.1 + 2.2 1157 21.4 30.7 + 9.3 533 19.3 21.4 + 2.1
readelf(e) 3571 13.6 16.9 + 3.3 2550 18.4 27.1 + 8.7 1126 10.3 16.1 + 5.8

TABLE V: COVERAGE OF COMBINING DASE WITH DEVELOPER
TEST CASES, SHOWING THAT DASE COMPLEMENTS DEVELOPER
TESTS. “V” IS DEVELOPER TESTS. “D” IS DASE COMBINED WITH
DEVELOPER TESTS. DO NOTE THAT READELF(E) HAS NO DEVEL-
OPER TEST CASES HENCE IS MISSING.

Program Line V D ∆ BR V D ∆ Call V D ∆
% % pp % % pp % % pp

COREUTILS 18332 66.1 84.4 +18.3 12670 73.2 87.2 +14.0 7008 53.2 73.5 +20.3
diff 526 57.0 81.0 +24.0 489 72.2 87.3 +15.1 150 50.7 71.3 +20.6
grep 932 82.0 86.5 +4.5 786 87.0 89.8 +2.8 266 73.7 81.2 +7.5
objdump 1687 58.6 64.3 +5.7 1270 66.9 68.9 +2.0 463 51.2 57.2 +6.0
readelf(b) 7038 28.8 33.5 +4.7 5424 43.5 46.5 +3.0 1964 28.6 33.2 +4.6
elfdump 1084 71.6 75.0 +3.4 813 86.5 86.5 +0.0 264 46.2 52.9 +6.7

many other functions, such as print_symbol(), are missed
by KLEE but covered by DASE.
The improvement of DASE generalizes to BFS. To show
that the coverage improvement of DASE over KLEE is not tied
to KLEE’s default search strategy, we change the underlying
search strategies for both KLEE and DASE to BFS and
rerun our experiments in Table II. Because it is too time-
consuming (approximately 8 days) to run all the 88 programs,
we randomly sample 5 programs from COREUTILS.

Table IV shows that when the search strategy is BFS, DASE
still outperforms KLEE. Comparing Table IV with Table II,
we can see that BFS achieves higher coverage than KLEE’s
default search strategy for COREUTILS, while BFS is less
effective for BINUTILS. The result shows that although input
constraints can help, it is still important to select an effective
search strategy for the program under test. Nonetheless, DASE
is consistently better than KLEE for the two search strategies
and the programs evaluated.

C. DASE Complements Developer Tests

Since automated test generation aims to complement devel-
oper generated tests, we evaluate whether DASE finds bugs
that developer tests cannot detect, and improves code coverage
on top of developer tests. DASE detected a total of 13 bugs
on the evaluated programs that developer generated tests fail
to detect (§VI-A). Table V shows the coverage comparison.
We can see that by adding DASE generated tests, the line
coverage is improved by 3.4–24.0 pp. Together with Table II,
we can see that for COREUTILS and diff, DASE alone
can generate tests to achieve comparable code coverage as
developer generated ones. Although the coverage improvement
on objdump, readelf(b), and elfdump is relatively small,
the DASE generated tests detected previously unknown bugs
for all of them. The results demonstrate that DASE can be used
by developers to find more bugs and further improve testing
coverage even if manual tests exist.

D. Constraint Extraction Results

DASE automatically extracted input constraints from man
pages and comments for command line options and three file
formats with accuracies of 97.8–100%.

Specifically, for command-line options, DASE automati-
cally extracted 776 valid options from man pages: 683 from
the 82 COREUTILS programs, 46 from grep, and 47 from
diff. The accuracy is 100%.

For ELF processing programs, we manually enforced 63
constraints to form the layout of our ELF model shown
in Figure 4. By analyzing the ELF header file and ELF
man page, DASE automatically extracts 60 values for 16
constraints regarding array index-value pairs, and 312 values
for 20 constraints regarding valid field values. For example,
the constraint “assume(Elf32_Shdr→e_type == 0
| Elf32_Shdr→e_type == 1);” is one constraint with
two values (0 and 1). In the case where a constraint exists
from both the header file and man page, DASE combines
all the values within both documents and creates a single
new constraint with all the merged values. The ELF header
file constraints is a superset of the man page constraints
except for two constraints, which specify valid values for the
EI_VERSION indices of the e_ident arrays. The accuracy
of the extracted constraints is 97.8%.

The breakdown of the constraints extracted from the header
file and the man page is as follows. From the man page, DASE
automatically extracts 46 values for 16 constraints regarding
array index-value pairs, and 72 values for 8 constraints regard-
ing valid field values. The accuracy is 100%.

From the header file, DASE extracted 56 values for 14
constraints regarding array index-value pairs, and 312 values
for 20 constraints regarding valid field values. Among the
312 values for 20 constraints regarding valid field values, 8
values are invalid, which affect 8 constraints. The accuracy is
97.8%. The inaccuracy results from a special kind of macro,
*_NUM, in elf.h. This macro represents the total number
of valid values, which is not a valid value. Among all the
constraints, 10 constraints (consisting of 56 values) on special
section types are not used because they are not applicable to
our model. We can incorporate them when we improve our
ELF model in the future.

DASE also extracted constraints from Tar and COFF’s
header files. It extracted 23 values for 2 constraints for the
Tar file format, and 18 values for 2 constraints for the COFF
file format. All of the extracted constraints are correct.
Impact of Incorrect Constraints. To understand the impact
of incorrect constraints, we ran DASE with only the correct
constraints (our main evaluation applies all constraints to
minimize manual effort). The coverage and bug finding results
are almost identical, suggesting that DASE is robust when a
few incorrect constraints are provided.
Potential Effort Savings. Automated constraint extraction is
important yet challenging [22], [23], and much work has been
proposed to infer constraints from source code and execution
traces automatically [37]–[39]. The proposed automated con-

straint extraction technique (takes 10–60 seconds to run) can
save the effort of manually writing constraints. It is beneficial
to automate the constraint extraction process to keep the
constraints up to date since ELF, Tar and COFF file formats
all have many revisions since their standardization.

DASE extracted almost all constraints in the header files
and man pages. This can be expanded by analyzing more
comprehensive file specifications such as the ELF specifica-
tion [31]. In the future, we would like to extend the proposed
NLP techniques to analyze other formats, e.g., TCP/IP packets
and XML format.

E. Statistical Significance Test
Since there is randomness in KLEE’s symbolic execution

due to search strategies and the constraint solver, we conduct
significance tests to check whether it is statistically significant
that DASE outperforms KLEE. Since it takes a long time
to run all 88 programs, we randomly sample 7 programs
to perform the statistical significance tests: 5 COREUTILS
programs, GREP, and ELFTOOLCHAIN elfdump. We run
each program 3 time for KLEE and 3 time for DASE and
perform Mann-Whitney U test (Wilcoxon rank-sum test) on
each of the programs. The p-values are all smaller than 0.05,
indicating statistical significance. Earlier results in Table II
shows that DASE has a better coverage than KLEE; therefore it
is statistically significant that DASE achieves higher coverage
than KLEE on these programs.

VII. THREATS TO VALIDITY

While the natural language processing techniques are effec-
tive on the three evaluated file formats, the techniques may
not generalize to other types of documentation. New grammar
rules may be needed to support new types of sentence struc-
tures. In addition, the accuracy and quality of the extracted
constraints depend on the quality of the documentation.

VIII. RELATED WORK

Symbolic Execution. Symbolic execution [7], [8] (alone or
with concrete execution) has been widely used for automated
testing [4], [26], [40]–[47]. To alleviate the path explosion
problem, many strategies have been proposed [1], [4], [9],
[16], [32], [44], [48]–[51]. Veritesting [9] leverages static
symbolic execution to guide and improve dynamic symbolic
execution. CUTE [44] and CREST [16] both use a bounded
depth-first search (DFS) strategy. ZESTI [14] uses developer
generated tests as “seeds” and explore paths similar to the
seeds’ paths. ZESTI’s performance is affected by existing
tests, while DASE does not suffer from this problem. DASE
complements ZESTI: DASE detected two previously unknown
bugs in COREUTILS that were not detected by ZESTI (the same
version of COREUTILS was used by DASE and ZESTI). Input
space partitioning [52] has been used to improve symbolic
execution [17], [53], [54]. For example, FlowTest [17]
partitions the inputs into “non-interfering” blocks by analyzing
the dependency among inputs.

The previous techniques rely on information from the code
logic to guide the path exploration process. Different from

them, DASE automatically extracts input constraints from
documents and uses the constraints to prune execution paths.
In addition, DASE focuses on valid and close-to-valid inputs
while the above techniques have no knowledge about whether
an execution path corresponds to valid or invalid input.
Input Constraints Guided Testing. Input constraints and
specifications have been used for automated test genera-
tion [3], [18], [19], [24], [25]. These techniques require
input constraints to be given manually, whereas DASE can
automatically extract input constraints from documentation.

Lei Zhang developed the basis of this work as a Master’s
thesis [55]. This paper extends the thesis in several ways,
including analyzing two additional file formats, tar and COFF,
analyzing both manual pages and code comments for the file
formats when applicable, and providing a clearer explanation
of why DASE works.
Documentation Analysis. Many techniques analyze docu-
ments such as man pages to check for undocumented error
codes [56], and code comments [28], [57], [58] and API
documentation [59] for bug detection. These techniques do not
improve symbolic execution based testing. In addition, DASE
uses a new approach (typed dependencies) for document
analysis and extracts different types of constraints.
Testing Effectiveness versus Code Coverage. A recent
study [60] shows little correlation between code coverage and
test suite effectiveness (measured by the number of mutants
killed). However, only simple mutants generated by PIT [61]
are used, which may not represent real bugs. Our results
demonstrate that DASE improves testing effectiveness (i.e.,
detecting more new bugs) and code coverage over KLEE.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents Document-Assisted Symbolic Execution
(DASE)—a novel and general approach to extract input con-
straints from documents automatically to improve symbolic
execution for automated bug detection and test generation.
DASE prunes and flattens paths based on their semantic
importance to help search strategies prioritize execution paths
more effectively. DASE detected 12 previously unknown bugs
that KLEE fails to detect, 6 of which have been confirmed by
the developers on 88 mature programs. Compared to KLEE,
DASE increases line coverage, branch coverage, call coverage
by 6.0–21.1 pp, 1.6–18.9 pp, 2.8–20.1 pp, respectively. In the
future, it would be promising to negate the input constraints
to focus on testing error handling code.

ACKNOWLEDGMENT

The authors thank the statistical counseling service provided
by the University of Waterloo and William Marshall for help
with the statistical analysis of the results. The authors are
grateful to Darko Marinov and Shan Lu for their feedback
on the paper. This research is supported by the Natural Sci-
ences and Engineering Research Council of Canada, a Google
Faculty Research Award, and Ontario Ministry of Research
and Innovation.

REFERENCES

[1] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2011, pp.
12–22.

[2] L. C. Briand and A. Wolf, “Software testing research: Achievements,
challenges, dreams,” in Future of Software Engineering, 2007, pp. 85–
103.

[3] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated test-
ing based on java predicates,” SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 123–133, 2002.

[4] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, 2008, pp. 209–224.

[5] P. Godefroid, M. Y. Levin, and D. Molnar, “Whitebox fuzzing for
security testing,” in Proceedings of the Network and Distributed System
Security Symposium, 2008, pp. 20:20–20:27.

[6] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided test generation for web applications,” in Proceedings of the
International Conference on Software Engineering, 2013, pp. 162–171.

[7] L. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Transactions on Software Engineering, vol. SE-2,
no. 3, pp. 215–222, 1976.

[8] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[9] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th In-
ternational Conference on Software Engineering, 2014, pp. 1083–1094.

[10] A. Avancini and M. Ceccato, “Comparison and integration of genetic
algorithms and dynamic symbolic execution for security testing of cross-
site scripting vulnerabilities,” Information and Software Technology,
vol. 55, no. 12, pp. 2209–2222, 2013.

[11] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: Preliminary assessment,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 1066–1071.

[12] M. K. Ganai, N. Arora, C. Wang, A. Gupta, and G. Balakrishnan,
“BEST: A symbolic testing tool for predicting multi-threaded program
failures,” in Proceedings of the 26th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2011, pp. 596–599.

[13] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and C. Csallner,
“SEDGE: Symbolic example data generation for dataflow programs,”
in Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering, 2013, pp. 235–245.

[14] P. D. Marinescu and C. Cadar, “Make test-zesti: A symbolic execution
solution for improving regression testing,” in Proceedings of the 2012
International Conference on Software Engineering, 2012, pp. 716–726.

[15] P. Zhang, S. Elbaum, and M. B. Dwyer, “Automatic generation of load
tests,” in Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, 2011, pp. 43–52.

[16] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 23rd IEEE/ACM International Conference on
Automated Software Engineering, 2008, pp. 443–446.

[17] R. Majumdar and R. Xu, “Reducing test inputs using information
partitions,” in Proceedings of the 21st International Conference on
Computer Aided Verification, 2009, pp. 555–569.

[18] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the ACM SIGPLAN conference on Program-
ming language design and implementation, 2008, pp. 206–215.

[19] R. Majumda and R. Xu, “Directed test generation using symbolic gram-
mars,” in Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, 2007, pp. 134–143.

[20] C. Rubio-González and B. Liblit, “Defective error/pointer interactions
in the linux kernel,” in Proceedings of the International Symposium on
Software Testing and Analysis, 2011, pp. 111–121.

[21] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, and
A. C. Arpaci-Dusseau, “Error propagation analysis for file systems,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009, pp. 270–280.

[22] D. McClosky and C. D. Manning, “Learning constraints for consistent
timeline extraction,” in Proceedings of the Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational
Natural Language Learning, 2012, pp. 873–882.

[23] K. Yoshikawa, S. Riedel, M. Asahara, and Y. Matsumoto, “Jointly
identifying temporal relations with markov logic,” in Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of
the AFNLP: Volume 1 - Volume 1, 2009, pp. 405–413.

[24] A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff, “A specification-
based test case generation method for uml/ocl,” in Models in Software
Engineering. Springer, 2011, pp. 334–348.

[25] J. Offutt and A. Abdurazik, “Generating tests from uml specifications,”
in Proceedings of the 2nd International Conference on The Unified
Modeling Language: Beyond the Standard, 1999, pp. 416–429.

[26] P. D. Marinescu and C. Cadar, “KATCH: High-coverage testing of
software patches,” in Proceedings of the European Software Engineering
Conference / ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2013, pp. 235–245.

[27] S. Bugzilla, “The Stanford natural language processing dependencies,”
http://nlp.stanford.edu/software/stanford-dependencies.shtml, 2015.

[28] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or
bad comments? */,” in Proceedings of the 21st ACM Symposium on
Operating Systems Principles, 2007, pp. 145–158.

[29] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifi-
cations from natural language api documentation,” in Proceedings of
the 24th IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 307–318.

[30] M.-C. de Marneffe and C. D. Manning, “Stanford typed dependen-
cies manual,” http://nlp.stanford.edu/software/dependencies manual.pdf,
2013.

[31] T. I. Standards, “Executable and linkable format,” http://www.skyfree.
org/linux/references/ELF Format.pdf, 2015.

[32] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to
less traveled paths,” in Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages and
Applications, 2013, pp. 19–32.

[33] T. Kuchta, C. Cadar, M. Castro, and M. Costa, “Docovery: Toward
generic automatic document recovery,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2014.

[34] P. D. Marinescu and C. Cadar, “High-coverage symbolic patch testing,”
in Proceedings of the 19th International Conference on Model Checking
Software, 2012, pp. 7–21.

[35] T. K. Team, “OSDI’08 Coreutils Experiments,” http://klee.github.io/
docs/coreutils-experiments/, 2015.

[36] S. Bugzilla, “Readelf bug 16664 - Segmentation fault in pro-
cess attributes() of readelf.c,” https://sourceware.org/bugzilla/show bug.
cgi?id=16664, 2014.

[37] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1-3,
pp. 35–45, Dec. 2007.

[38] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proceedings of the 24th International
Conference on Software Engineering, 2002, pp. 291–301.

[39] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” in Proceedings of the 18th ACM Symposium on Operating
Systems Principles, 2001, pp. 57–72.

[40] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011, pp. 265–278.

[41] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation, 2005, pp. 213–223.

[42] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta, “Symbolic pathfinder: Integrating symbolic execution
with model checking for java bytecode analysis,” Automated Software
Engineering, vol. 20, no. 3, pp. 391–425, 2013.

[43] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript,” in Proceedings of the
IEEE Symposium on Security and Privacy, 2010, pp. 513–528.

[44] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, 2005, pp. 263–272.

[45] N. Tillmann and J. De Halleux, “Pex–white box test generation for. net,”
in Tests and Proofs. Springer, 2008, pp. 134–153.

[46] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed
test suite augmentation: Techniques and tradeoffs,” in Proceedings of
the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2010, pp. 257–266.

[47] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Proceedings of the 18th International Conference on Static
Analysis, 2011, pp. 95–111.

[48] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song,
“MACE: Model-inference-assisted concolic exploration for protocol and
vulnerability discovery,” in Proceedings of the 20th USENIX conference
on Security, 2011, pp. 10–10.

[49] K. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Strategies for scal-
able symbolic execution-driven test generation for programs,” Science
China Information Sciences, vol. 54, no. 9, pp. 1797–1812, 2011.

[50] R. Santelices and M. J. Harrold, “Exploiting program dependencies for
scalable multiple-path symbolic execution,” in Proceedings of the 19th
international symposium on Software testing and analysis, 2010, pp.
195–206.

[51] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner, M. Grechanik,
K. Taneja, C. Fu, and Q. Xie, “Carfast: Achieving higher statement
coverage faster,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, 2012,
pp. 35:1–35:11.

[52] E. J. Weyuker and T. J. Ostrand, “Theories of program testing and
the application of revealing subdomains,” Software Engineering, IEEE
Transactions on, vol. SE-6, no. 3, pp. 236–246, 1980.

[53] M. Staats and C. Păsăreanu, “Parallel symbolic execution for structural
test generation,” in Proceedings of the 19th international symposium on
Software testing and analysis, 2010, pp. 183–194.

[54] D. Qi, H. D. Nguyen, and A. Roychoudhury, “Path exploration based
on symbolic output,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering, 2011, pp. 278–288.

[55] L. Zhang, “DASE: Document-assisted symbolic execution for improving
automated test generation,” Master’s thesis, University of Waterloo,
2014.

[56] C. Rubio-González and B. Liblit, “Expect the unexpected: Error code
mismatches between documentation and the real world,” in Proceedings
of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, 2010, pp. 73–80.

[57] L. Tan, Y. Zhou, and Y. Padioleau, “aComment: Mining annotations
from comments and code to detect interrupt-related concurrency bugs,”
in Proceedings of the 33rd International Conference on Software Engi-
neering, 2011, pp. 11–20.

[58] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment:
Testing javadoc comments to detect comment-code inconsistencies,” in
Proceedings of the 5th International Conference on Software Testing,
Verification and Validation, 2012, pp. 260–269.

[59] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring specifications
for resources from natural language api documentation,” Automated
Software Engineering Journal, vol. 18, no. 3-4, pp. 227–261, 2011.

[60] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with
test suite effectiveness,” in Proceedings of the International Conference
on Software Engineering, 2014, pp. 435–445.

[61] H. Coles, “PIT mutation operators,” http://pitest.org/quickstart/mutators/.

