
Are We Building on the Rock? On the Importance of Data
Preprocessing for Code Summarization

Lin Shi∗†

shilin@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences
Beijing, China

Fangwen Mu∗†

fangwen2020@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences
Beijing, China

Xiao Chen∗†

chenxiao2021@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences
Beijing, China

Song Wang
wangsong@eecs.yorku.ca

Lassonde School of Engineering, York
University

Toronto, Canada

Junjie Wang∗†

junjie@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences
Beijing, China

Ye Yang
yangye@gmail.com

School of Systems and Enterprises,
Stevens Institute of Technology

Hoboken, NJ, USA

Ge Li
lige@pku.edu.cn

Key Lab of High Confidence Software
Technology, Peking University

Beijing, China

Xin Xia
xin.xia@acm.org

Software Engineering Application
Technology Lab, Huawei

China

Qing Wang∗†‡ğ

wq@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences
Beijing, China

ABSTRACT

Code summarization, the task of generating useful comments given

the code, has long been of interest. Most of the existing code sum-

marization models are trained and validated on widely-used code

comment benchmark datasets. However, little is known about the

quality of the benchmark datasets built from real-world projects.

Are the benchmark datasets as good as expected? To bridge the gap,

we conduct a systematic research to assess and improve the quality

of four benchmark datasets widely used for code summarization

tasks. First, we propose an automated code-comment cleaning tool

that can accurately detect noisy data caused by inappropriate data

preprocessing operations from existing benchmark datasets. Then,

we apply the tool to further assess the data quality of the four bench-

mark datasets, based on the detected noises. Finally, we conduct

comparative experiments to investigate the impact of noisy data

on the performance of code summarization models. The results

show that these data preprocessing noises widely exist in all four

benchmark datasets, and removing these noisy data leads to a sig-

nificant improvement on the performance of code summarization.

∗Also With Laboratory for Internet Software Technologies, Institute of Software, CAS
†Also With University of Chinese Academy of Sciences
‡Also With Science & Technology on Integrated Information System Laboratory,
Institute of Software, CAS
ğCorresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549145

We believe that the findings and insights will enable a better un-

derstanding of data quality in code summarization tasks, and pave

the way for relevant research and practice.

CCS CONCEPTS

• Software and its engineering → Open source model; • Gen-

eral and reference→ Empirical studies.

KEYWORDS

Code Summarization, Data Quality, Empirical Study

ACM Reference Format:

Lin Shi, Fangwen Mu, Xiao Chen, Song Wang, Junjie Wang, Ye Yang, Ge

Li, Xin Xia, and Qing Wang. 2022. Are We Building on the Rock? On the

Importance of Data Preprocessing for Code Summarization. In Proceedings

of the 30th ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE ’22), November

14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3540250.3549145

1 INTRODUCTION

Code summarization concerns the production of a natural-language

description of source code that facilitates software development

and maintenance by enabling developers to comprehend, ideate,

and document code effectively. Learning-based models have been

widely leveraged for the advantages in semantic modeling and

understanding of languages. Similar to many other learning tasks,

code summarization models require large-scale and high-quality

training datasets. To that end, multiple benchmark datasets for

code summarization tasks have been constructed from real-world

project repositories, e.g., GitHub, and are popularly used in many

code summarization studies. For example, Funcom [41] was released

with over 2.1M code-comment pairs from over 29K Java projects in

https://doi.org/10.1145/3540250.3549145
https://doi.org/10.1145/3540250.3549145

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

Benchmark
Datasets
(Origin) Clean Data

Clean
Data

Origin Data

Controlled Data

Training Set Test SetModels

Sec. 4 The Code-Comment
Cleaning Tool

Sec. 6 Impacts on the Performance of
Code SummarizationSec. 5 Quality Assessment of

Benchmark Datasets

Benchmark
Datasets
(Clean)

Sec.3 Taxonomy of Noisy Data

Non-Literal

Over-splitting

Auto Code

Duplication

……

Comment Code

……
Heuristic

Rules

Figure 1: Overview of our research methodology.

the Sourcerer repository. Many code summarization models, such

as Re2Com [73], DeepSumm [26], and EditSum [42], are trained and

evaluated to be relatively effective on it. Similar popular datasets

include TLC [33], CSN [35], and PCSD [67].

Although the benchmark datasets are expected to be of good qual-

ity, noise is inevitable due to the differences in coding conventions

and assumptions employed in modern programming languages

and IDEs, as well as ad hoc nature of development processes and

practices [54]. For example, source code in GitHub is contributed

by developers all around the world, thus their comments are likely

to contain multiple natural languages that can lead to increases

in complexity regarding the understanding and maintenance of

source code. Existing studies also have confirmed the existence

of many different types of noise in various benchmark datasets,

such as auto-generated code [30], łTODOž comments [14], and

incomplete comments [60], despite their data cleaning efforts. Par-

ticularly, Steidl et al. [63] analyzed five open source projects, and

reported that nearly one third of the comments do not promote

system understanding.

To investigate the aforementioned concerns of data quality for

code summarization, we conduct a systematic study to assess and

improve the quality of four widely-used benchmark datasets, i.e.,

Funcom, TLC, CSN, and PCSD. The research methodology overview

consists of four main steps, as illustrated in Figure 1. First, we

propose a taxonomy of 12 different types of data noises due to

inappropriate or insufficient data preprocessing in code summa-

rization, derived from observations on the selected four benchmark

datasets. Second, we build a rule-based cleaning tool, named CAT

(Code-comment cleAning Tool), for automatically scanning and

detecting the occurrences and distribution of data noises for a given

dataset, based on the proposed taxonomy. The manual validation

results show that the tool can accurately detect noisy data. Third,

we conduct an evaluation study to assess the data quality of the

four widely-used benchmark datasets. The results show that noisy

data extensively exist in the four benchmark datasets (ranging from

31% to 66%). Finally, we investigate the impacts of noises on three

typical code summarization models (i.e. NNGen [45], NCS [8], and

Rencos [78]) by comparing their performance trained on the same

datasets before and after data cleaning. The above four steps will

be elaborated in later sections, i.e., sec. 3 to sec. 6, respectively.

The results show that, removing noisy data have a positive influ-

ence on model summarization ability. Training three models with

the filtered datasets improves the BLEU-4 by 27%, 21%, and 24%,

respectively. The major contributions of this paper are as follows.

• To the best of our knowledge, it is the first to systematically

study the patterns and impact of the noises in various code

summarization datasets.

• We develop an automated data cleaning tool, named CAT, for

code summarization datasets, which can help distill high-quality

code-comment data.

• We perform a comprehensive assessment on data quality of

benchmark datasests, which provides practical insights for fu-

ture code summarization research.

• We conduct a comparative analysis on the performance of code

summarization models trained on the origin and distilled bench-

mark datasets, our results demonstrate that removing noises

yields significant model performance improvement.

• We release CAT and the distilled benchmark datasets [7] to the

general public, in order to facilitate the replication of our study

and its extensive application in other contexts.

In the remainder of the paper, Section 2 illustrates the prelimi-

naries. Section 3 introduces the taxonomy of noisy data. Section 4

presents the code-comment cleaning tool. Section 5 demonstrates

the quality assessment of benchmark datasets. Section 6 shows the

impact of noisy data on the performance of code summarization.

Section 7 discusses results and threats to validity. Section 8 surveys

the related work to our study. Section 9 concludes this paper.

2 PRELIMINARIES

This section briefly introduces the literature of code summarization,

as well as four widely-used benchmark datasets.

2.1 Code Summarization

Code summarization [49, 62] aims at generating a comment for a

given block of source code that can help developers better under-

stand and maintain source code. The essential task is to translate

the code written in programming languages into comments writ-

ten in natural languages. Meanwhile, comments may describe not

only the functions, but also the design intents, program logic, and

functionalities of programs behind the source code. The existing

code summarization models can be categorized into three different

types based on the techniques used, i.e., Information Retrieval (IR)

based approaches [19, 27, 74], Neural Machine Translation (NMT)

based approaches [8, 10, 13, 15, 29, 36, 40, 67, 72, 73, 76], and hybrid

approaches [31, 32, 41, 77] that combine IR and NMT techniques.

Specifically, IR-based code summarization models use IR tech-

niques to extract keywords from the source code and compose them

into term-based summarization for a given code snippet [19, 27, 74].

For example, Edmund et al. [74] generated code summarization

for a given code snippet by retrieving the replicated code samples

from the corpus with clone detection techniques. Recently, with

the booming of deep learning techniques, many NMT based code

summarization approaches have been proposed, which train the

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

neural models from a large-scale code-comment corpus to automat-

ically generate summaries [8, 10, 13, 15, 29, 31, 36, 40, 67, 72, 73, 76].

For example, Iyer et al. [36] treated the code summarization task as

an end-to-end translation problem and first introduced NMT into

code comment generation. The hybrid approaches [32, 41, 77, 78]

leverage the advantages of IR and NMT techniques for improving

code summarization. For example, Zhang et al. [78] first retrieved

top similar code in the training data for a given piece of code and

then input them into an NMT model for summarization generation.

2.2 Benchmark Datasets

As introduced earlier, this study conducts various experiments on

fourwidely-used code summarization datasets, including Funcom [41],

TLC [33], CSN [35], and PCSD [67]. The data format of these datasets

is primarily represented using code-comment pairs, where the

code data is at the granularity of method-level. Each dataset ap-

plies its own operations when extracting and preprocessing the raw

data. Table 1 summarizes the information of descriptive metadata

and associated studies where each dataset has been employed in

existing literature.

More specifically, Funcom is a collection of 2.1M code-comment

pairs from 29K projects. For each method, it extracted its Javadoc

comment and treated the first sentence in the Javadoc of each

method as its summary. TLC has 87K code-comment pairs collected

from more than 9K open-source Java projects created from 2015 to

2016 with at least 20 stars. It extracted the Java methods and their

corresponding Javadoc comments. These comments are considered

as code summaries. CSN contains about 2M method and comment

pairs mined from publicly available open-source non-fork GitHub

repositories spanning six programming languages, i.e., Go, Java,

JavaScript, PHP, Python, and Ruby. In this study, we conduct the

experiments on the Java portion of the CSN dataset. PCSD contains

105K pairs of Python functions and their comments from open

source repositories in GitHub. Specifically, it uses docstrings (i.e.,

the string literals that appear right after the definition of functions)

as summaries for Python functions.

3 THE TAXONOMY OF NOISY DATA

An essential and effective starting point is a systematic and robust

categorization of data noises. This section presents details on how

the noisy data taxonomy is built, and the descriptions and examples

for every 12 categories.

3.1 Taxonomy Construction

We employ an open card sort [56] process by involving nine partici-

pants. Participants include two PhD students, four master students,

and three senior researchers. All of them have done either intensive

Table 1: Benchmark Datasets Information

Name Funcom TLC CSN PCSD

Year 2019 2018 2019 2017

Source Sourcerer Github Github Github

Download [4] [2] [3] [1]

Language Java Java Java Python

#Pairs 2,149,121 87,136 496,688 105,540

Train/Val/Test 9/0.5/0.5 by project 8/1/1 by function 8/1/1 by project 6/2/2 by function

Trained-on Models

[23, 41, 42]

[29, 40, 73]

[12, 28, 61]

[26, 39, 47]

[33, 72, 81]

[8, 61, 80]

[16, 22, 60]

[78, 79]

[17, 35, 52]

[59, 60, 69]

[21, 46, 70]

[25, 43, 48]

[22, 67, 75]

[8, 23, 72]

[22, 75, 80]

[16, 68, 78]

research work with software development or have been actively

contributing to open-source projects. The sorting process is con-

ducted in multiple rounds. For each round, we randomly sample

160 code-comment pairs without replacement from the four bench-

mark datasets (40 pairs for each). In the first round, all participants

label the same sampled data, with an intensive discussion session to

achieve conceptual coherence about noisy categories. The average

Cohen’s Kappa is 0.86, which indicates substantial agreement. Then,

a shared pool of categories is utilized and carefully maintained, and

each participant could select existing categories from and/or add

new category names into the shared pool. The sorting process ends

when there is no new category added for two consecutive rounds.

In total, we conducted 10 rounds and labeled 1,600 pairs of source

code and the corresponding comments (400 pairs for each of the

four benchmark datasets). The detailed annotation results can be

found in Section 4.2.3.

3.2 Comment-related Noisy Data

Partial Sentence. Since it is a common practice to place a method’s

summary at the first sentence of its comment [50], most researchers

use the first sentences of the code comments as the target sum-

maries. While, we have observed that some inappropriate process-

ing can lead to partial first sentences collected. For example, Funcom

only collects the first line from the following java doc as the com-

ment, i.e., łReturns the high valuež, where the next line that should

be part of the first sentence is missing. This is primarily due to

automatic splitting using new line characters such as ł\nž.

/* Returns the high-value

* for an item within a series. */

Comment (Funcom): returns the high value

Verbose Sentence.When collecting the first sentence as the target

comment, some inappropriate processing will lead to verbose first

sentences collected. For example, PCSD excessively includes the ar-

gument description łarguments course dataž into the functionality

summary.

"""

Generate a CSV file containing a summary of the xBlock usage

Arguments:course_data

"""

Comment (PCSD): generate a csv file containing a summary of

the xblock usage arguments course data

Content Tampering. Developers may use HTML tags for doc-

umentation auto-generation or URLs for external references in

comments. We observe that some inappropriate processing will

keep the tags or URL contents together with the comments, thus

contaminating the benchmark data with meaningless text. For ex-

ample, CSN reserves the HTML tag łpž at the beginning and end of

the comment.

/* <p> Builds the JASPIC application context.</p> */

Comment (CSN): p builds the jaspic application context p

Over-Splitting of Variable Identifiers. Code comments are likely

to contain variable identifiers or API terms when describing code

functionalities. Splitting code by camelCase or snake_case is a com-

mon operation for code understanding [30, 41, 59]. However, we

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

observe that some studies perform this operation on every matched

token in the comments including the predefined variable identi-

fiers or API terms. For example, Funcom splits a variable named

łjTextFieldž into łj text fieldž when collecting comments. We con-

sider such an operation can change the original meaning of code

comments.

/* This method initializes jTextField. */

Comment (Funcom): this method initializes j text field

Non-Literal. Developers from different countries may write com-

ments in their first languages, mixing with the English language

in the comments sometimes. We observe that existing benchmark

datasets occasionally discard the Non-English text but remain the

English text as code comments. For example, CSN only extracts the

English words, i.e., łjsonarray bean list arraylistž from the following

mixed comment that contains both Chinese and English words as

the summarization for the corresponding source code. Since the

remaining comment data are typically incomplete and meaningless,

we consider them as noises.

/* 将JSONArray转换为Bean的List，默认为ArrayList */

Comment (CSN): jsonarray bean list arraylist

Interrogation. Based on our observation, some of the comments

in the benchmark dataset are interrogations. For example, in CSN,

the comment for the isDue() method is łdo we need to show the

upgrade wizard promptž. Such interrogations are mainly used for

communication, rather than summarizing functionalities.

/* Do we need to show the upgrade wizard prompt? */

public boolean isDue() {

if (isUpToDate)

return false; ...

Comment (CSN): do we need to show the upgrade wizard prompt ?

Under-DevelopmentComments.Based on our observation, some

of the comments are related to ongoing and future development, in-

cluding temporary tips, notes, etc. For example, TLC has a comment

łdescription of the methodž for the openFile method, which is of

little worth for understanding code. Since the under-development

comments are typically inappropriate for the scenario of automated

code summarization, we consider them as noises.

/* Description of the Method */

protected void openFile(File f) {

if (f == null) { ...

Comment (TLC): description of the method

3.3 Code-related Noisy Data

Empty Function. Developers often take on technical debt to speed

up software development [71]. It has been widely observed that

empty function is a common type of technical debt. However, the

code-comment pairs extracted from these empty functions can

introduce non-trivial noises, this is because an unimplemented

empty function and its comment do not match either syntactically

or semantically. For example, Funcom includes an empty method

end() with a 10-word comment.

/*Specifies the behaviour of the automaton in its end state*/

protected void end(){}

Code (Funcom): protected void end

Commented-Out Method. Developers often comment out a

whole method for deprecating a specific functionality [20]. We ob-

serve that, in the studied benchmark datasets, some commented-out

methods are collected as the comments for the sequential methods.

For example, the commented-out method transformTypeID and its

comments are still included in Funcom.

/* for now try mappig full type URI */

// public String transformTypeID(URI typeuri){

// return typeuri.toString();}

Code (Funcom): public string transform type id ...

Block-Comment Code.We have observed that some code in

the benchmark datasets contains block comments inside their bod-

ies. The blocked comments could be natural-language comments

or commented-out code. For example, the block comment łTODO:

Why is he using Math.roundž is considered as a piece of code for

the getFixQuality method in Funcom. If keeping these blocked com-

ments in the source code, the original logics of the code are likely

to be distorted when tokenizing it for code summarization models.

/* Get GPS Quality Data */

public int getFixQuality(){

checkRefresh();

// TODO: Why is he using Math.round?

Return Math.round(quality);}

Code (Funcom): public int get fix quality check refresh todo

why is he using math round return math round quality

Auto Code. Developers often use modern IDEs like Eclipse or

Visual Studio to generate auxiliary functions such as getter, setter,

toString, or tester for some predefined variables. The comments

for these auto generated methods are often similar to or the same

as the method names, which makes the code-comment pairs less

informative. For example, in Funcom, the comment for the auto-

generated test method (i.e., testConstructor) is łTest the constructorž,

which is almost the same as the method name after splitting.

/* Test the constructor */

public void testConstructor() {

System TestResult str;

System TestID testID1; ...

Comment (Funcom): test the constructor

Code (Funcom): public void test constructor ...

Duplicated Code. Developers often reuse code by copying,

pasting and modifying to speed up software development [9, 57].

These code snippets often have similar or the same comments.

Sharing identical code and summarization pairs in the training and

test sets is inappropriate and would make the model learn these

cases easily.

4 THE CODE-COMMENT CLEANING TOOL

To support automatic detection of noises in the proposed taxonomy,

we develop a code-comment cleaning tool, named CAT, based on

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Raw
comment

Result
FS = null ;

For each line L in
the raw comments

Is FS empty ?

List T = splitted
setences in L

If Num(T) > 0

FS += T[0]

FS += L

Is L capitalized ?

No

Yes

Yes

No

No

Yes

Return FS

Figure 2: If-else rules of collecting the first sentence in the

raw comments for partial and verbose sentence noises.

a set of heuristic rules. This section introduces the design of the

rule-based cleaning tool, and presents the analysis results of its

effectiveness.

4.1 The Heuristic Rules

Construction criteria. The heuristic rules conform to the fol-

lowing criteria: (1) Each rule should define a unique and specific

category without overlap; (2) Rules should limit the exclusion of

valid data within an acceptable range, i.e., all the F1 scores should

be larger than 90%; and (3) Any rule is not a subrule of the others.

Construction process. For each category of noisy data, we

develop a set of if-else rules to detect them by the following steps.

(1) Based on the manually annotated noises produced in Section 3,

Table 2: Syntax features and our actions in heuristic rules

Category Syntax Feature Action

C
om

m
en
t

Partial Sentence
Shorter than the corrected

first sentence

UPDATE: Replace with

the corrected

first sentence

Verbose Sentence
Longer than the corrected

first sentence

UPDATE: Replace with

the corrected

first sentence

Content Tampering
HTML tags, Doc tags,

and URL format

UPDATE: Clean the tags

from comment data

Over-Splitting
Split comments on camel

case and underscore

UPDATE: Replace the

over-splitting variables

with the original ones

Non-Literal non-ASCII REMOVE

Interrogation ł?ž, łwhatž, łhowž, etc. REMOVE

Under-Development
łtodož, łdeprecatež,

łcopyrightž,łFIXME:ž, etc.
REMOVE

C
od
e

Empty Function The method body is empty REMOVE

Commented-Out Method
The whole method

is commented out.
REMOVE

Block-Comment Code
The method contains the

block comment.

UPDATE: Clean the

blocked comments

from the code body

Auto code setter, getter, tester, etc. REMOVE

Duplicated

Code
Exact Match REMOVE

we carefully identify syntax features for each category from 80% of

the manual data; (2) We design a set of if-else rules to detect the

noisy data from the raw data (note that, the raw data refers to the

source data that has not been processed for use, and the origin data

refers to the processed raw data in the benchmark datasets); (3) To

avoid overfitting, we test the correctness of the rules on the rest

20% of the manually annotated noises. We iteratively adjust the

rules until the performance is acceptable, i.e., over 90% F1 score.

Example Rules. Figure 2 illustrates the if-else rules of collecting

the first sentence in the raw comments for partial and verbose sen-

tence noises. The key idea is to sequentially determinewhether each

line of comment in a raw comment contains a complete sentence.

If so, return the first complete sentence; if not, save the content

of the line and continue to determine the next line. By comparing

the first sentence we extracted from raw data with the processed

sentence provided in the benchmark datasets, we can determine

the verbose or partial sentence category.

Table 2 demonstrates the syntax feature of heuristic rules and our

actions to resolve noises detected. Details of the implementation of

each category can be found on our website [7].

4.2 Effectiveness Evaluation

4.2.1 Data Preparation. As introduced in Section 3.1, we labeled

12 categories of noisy data from 1,600 code-comment pairs sampled

from the four benchmark datasets. These manually annotated data

are used to evaluate the performance of CAT. We build the heuristic

rules based on observing 80% of the annotated noisy data, and

evaluate on the rest 20%. The łDatasetž column in Table 3 shows

the detail.

4.2.2 Evaluation Metrics. We use three commonly-used metrics to

evaluate the performance of CAT, i.e., Precision, Recall, and F1. (1)

Precision refers to the ratio of correct predictions to the total number

of predictions; (2) Recall refers to the ratio of correct predictions to

the total number of samples in the golden test set; and (3) F1 is the

harmonic mean of precision and recall.

4.2.3 Results. Table 3 demonstrates the performance of CAT. We

can see that, it can accurately detect noises on the four benchmark

datasets. The F1 scores of detecting comment-related noises are

ranging from 93.0% to 100.0%, and 95.5% on average. The average

Table 3: Effectiveness of noise detection rules

Category

Dataset Performance (%)

#Anno-

tations

(100%)

Rule-

Build

(80%)

Rule-

Test

(20%)
P R F1

C
om

m
en
t

Partial Sentence 176 135 41 97.5 95.1 96.3

Verbose Sentence 129 111 18 94.7 100.0 97.3

Content Tampering 147 120 27 92.9 96.3 94.6

Over-Splitting 84 63 21 90.9 95.2 93.0

Non-Literal 38 30 8 100.0 100.0 100.0

Interrogation 16 7 9 100.0 88.9 94.1

Under-Development 57 92 57 91.5 94.7 93.1

Total 647 558 181 95.4 95.8 95.5

C
od
e

Empty Function 21 14 7 100.0 100.0 100.0

Commented-Out Method 4 2 2 100.0 100.0 100.0

Block-Comment Code 44 31 13 100.0 92.3 96.0

Auto Code 179 133 46 97.7 93.5 95.6

Duplicated Code 22 16 6 100.0 100.0 100.0

Total 270 196 74 99.6 97.2 98.3

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

F1 scores of detecting code-related noises are ranging from 95.6%

to 100.0%, and 98.3% on average. The results show that, CAT can

achieve highly satisfactory performance on filtering noisy data from

code-comment datasets. In summary, our code-comment cleaning

tool can accurately filter noisy data, with all the F1 scores of over

90.0%, which can help build a high-quality dataset for the follow-up

code summarization tasks.

5 QUALITY ASSESSMENT OF BENCHMARKS
In this step, the code-comment cleaning tool is applied to detect

and correct noises through comment removal or update actions

as listed in Table 2. Based on the noisy data output by the tool,

we further analyze the quality of the four benchmark datasets.

Table 4 illustrates the distribution of each noise category on the

four benchmark datasets. The number on each cell presents the

percentage of the noises in the corresponding benchmark dataset,

directly generated from the cleaning tool. Note that, since one code-

comment pair may involve multiple noises, the tool repeatedly

counts those that involvemultiple noise categories when calculating

frequency for each category, and counts once for the total frequency.

Thus, the sum of individual category percentages is slightly higher

than the percentage of total noises.

Overall, Funcom has the highest proportion of noisy data (65.8%),

followed by TLC (41.9%), CSN (37.2%), and PCSD (31.2%). We can

also observe that, the benchmark datasets often contain multiple

categories of noises. Funcom contains the most noise categories.

Except for the verbose sentence noises, every other category is

included. The other three benchmark datasets contain seven or

eight categories.

Noise distribution in comments. It is observed that 40.9%

comments in Funcom contain noises, followed by CSN, TLC, and

PCSD. Specifically, all the four benchmark datasets have content-

tampering, interrogation, and under-development noisy comments.

24.4% comments in CSN are contaminated by the meaningless text

such as HTML tags, Javadoc tags, or URLs. 24.1% comments in

Funcom are over-spliting by camelCase. 22.8% comments in TLC are

verbose sentences.

Noise distribution in source code. It is also observed that

40.7% source code in Funcom contain noises, followed by TLC, PCSD,

Table 4: Distribution of noisy data in benchmark datasets.

Category of Noisy Data Funcom (%) TLC (%) CSN (%) PCSD (%)

Total
65.8

41.9 37.2 31.2

C
om

m
en
t

Partial Sentence 17.1 0.0 7.8 15.9

Verbose Sentence 0.0 22.8 0.0 7.8

Content Tampering 9.7 3.2 24.4 0.5

Over-Splitting 24.1 0.0 0.0 0.0

Non-Literal 0.5 0.0 7.8 0.2

Interrogation 0.7 0.9 0.7 0.3

Under-Development 3.7 1.2 1.2 2.3

Total 40.9 25.4 36.1 26.5

C
od
e

Empty Function 1.6 1.1 0.0 0.0

Commented-Out Method 0.2 0.0 0.0 0.0

Block-Comment Code 11.1 0.0 0.0 0.0

Auto Code 29.8 4.6 1.6 4.3

Duplicated Code 0.6 18.4 0.0 1.5

Total 40.7 22.6 1.6 5.8

Removed noisy data 38.7 21.1 29.2 9.3

Updated noisy data 27.1 20.8 8.0 21.9

and CSN. Specifically, all the four benchmark datasets have auto-

code noises. In Funcom, 29.8% code is auto-generated such as setter,

getter, tester, and toString methods. Indeed, previous research [30]

used to complain about similar issues that Funcom contains much

auto-generated code. In TLC, 18.4% code is exactly duplicated while

the other three benchmark datasets are nearly none. This phenom-

enon indicates that preprocessing operations applied on existing

benchmark datasets are not coincident all the time in that, some

benchmark datasets apply the dedup preprocessing operation while

some do not.

Distribution of updates and removals. The bottom part of

Table 4 shows the frequency of different types of noise that were

removed or updated from the four benchmark datasets based on

the corrective actions introduced in Table 2. Funcom and TLC have

high proportions of both removals and updates, i.e., 38.7% and 27.1%

noisy data in Funcom are removed and updated respectively. The

major correction for CSN is removals. While the major correction

for PCSD is updating noises. This might be caused by the different

noise distributions in these two benchmark datasets.

Finding 1: Noisy data extensively exist in the four widely-

used benchmark datasets, ranging from 31.2% to 65.8%. 29.8%

of the code in Funcom is auto-generated; 22.8% comments in

TLC are verbose first sentences; 24.4% comments in CSN are

contaminated by the meaningless text; and 15.9% comments

in PCSD are the partial first sentences.

6 IMPACTS ON THE PERFORMANCE OF CODE
SUMMARIZATION

In this section, we investigate the impact of noisy data on the

performance of code summarization. Specifically, we choose three

state-of-the-art code summarization models and train these models

on three versions (i.e., original, controlled, and filtered) of each

benchmark dataset. Thus, we have 3 (the number of models) × 4

(the number of benchmark datasets) × 3 (the number of versions per

benchmark dataset) = 36 experimental models in total. We evaluate

the performance of all the models based on commonly-used metrics

for code summarization tasks.

6.1 Experimental Design

6.1.1 Data Preparation. We use three versions of each benchmark

dataset as training sets, as shown in Table 5. The łTotalž rows

illustrate the overall data before and after being distilled by our

tool. The łExperimentalž rows show the data that are used for our

experiments. The łOrigin" refers to the original training dataset

split by the benchmark dataset. The łFiltered" refers to the train/test

Table 5: Total and experimental datasets for impact analysis

. Funcom TLC CSN PCSD

Total
Origin 2,149,121 87,136 496,688 105,540

Filtered 1,316,532 68,743 351,394 95,793

Experimental
Train

Origin 1,937,136 69,708 454,451 63,324

Controlled 1,184,438 53,597 323,226 57,849

Filtered 1,184,438 53,597 323,226 57,849

Test Filtered 69,392 7,584 19,319 19,028

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 6: Performance of existing models trained over different datasets

Benchmark Model Train set Training Hours BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr

Funcom

NNGen

Origin 5h 23.87 14.28 11.4 10.05 26.88 12.59 1.26

Controlled 5h 21.93 12.19 9.34 8.09 24.84 11.39 1.05

Filtered 5h 24.58 3.0% ↑ 15.26 6.9% ↑ 12.49 9.6% ↑ 11.2 10.3% ↑ 27.08 0.7% ↑ 13.24 5.2% ↑ 1.38 9.5% ↑

NCS

Origin 20h 29.95 17.79 10.2 6.42 34.84 16.14 1.38

Controlled 20h 29.33 17.06 9.78 5.31 34.05 15.65 1.42

Filtered 20h 30.53 1.9% ↑ 18.79 5.6% ↑ 11.47 12.5% ↑ 7.64 16.0% ↑ 35.42 1.7% ↑ 16.32 1.1% ↑ 1.46 5.8% ↑

Rencos

Origin 9h 27.23 15.97 9.62 6.43 31.97 14.32 1.25

Controlled 9h 26.90 15.71 9.48 6.42 31.79 14.16 1.23

Filtered 9h 27.92 2.5% ↑ 16.8 5.2% ↑ 10.61 10.3% ↑ 7.44 13.6% ↑ 32.51 1.7% ↑ 14.50 1.3% ↑ 1.31 4.8% ↑

TLC

NNGen

Origin <1h 32.58 24.16 21.92 20.74 36.07 18.14 2.01

Controlled <1h 39.84 32.01 29.24 27.51 43.57 23.22 2.64

Filtered <1h 46.88 43.9% ↑ 39.27 62.5% ↑ 36.81 67.9% ↑ 35.19 41.1% ↑ 49.08 36.1% ↑ 25.53 40.7% ↑ 3.62 80.5% ↑

NCS

Origin 6h 42.09 32.95 29.09 27.09 46.30 24.18 2.65

Controlled 6h 39.28 29.61 25.83 23.89 43.49 22.11 2.37

Filtered 6h 46.52 10.5% ↑ 37.19 12.9% ↑ 33.41 14.9% ↑ 31.38 13.7% ↑ 49.40 6.7% ↑ 24.67 2.0% ↑ 3.30 24.5% ↑

Rencos

Origin 6h 43.66 34.82 31.29 29.19 47.87 24.95 2.81

Controlled 6h 43.71 34.89 31.21 28.93 47.85 25.37 2.84

Filtered 6h 51.54 18.0% ↑ 42.90 23.2% ↑ 39.22 25.3% ↑ 37.00 21.1% ↑ 54.25 13.3% ↑ 28.21 13.1% ↑ 3.88 38.1% ↑

CSN

NNGen

Origin <1h 14.86 6.08 4.07 3.42 18.04 8.54 0.40

Controlled <1h 13.95 5.09 3.21 2.62 17.08 7.97 0.34

Filtered <1h 19.89 33.8% ↑ 8.28 36.2% ↑ 5.72 40.5% ↑ 4.96 31.0% ↑ 23.17 28.4% ↑ 9.67 13.2% ↑ 0.65 62.5% ↑

NCS

Origin 15h 25.47 12.34 5.81 3.02 30.47 12.48 0.80

Controlled 15h 25.45 12.29 5.68 2.88 31.17 12.30 0.82

Filtered 15h 28.68 12.6% ↑ 14.01 13.5% ↑ 6.96 19.8% ↑ 3.87 22.0% ↑ 34.29 12.5% ↑ 13.84 10.9% ↑ 0.95 18.8% ↑

Rencos

Origin 11h 16.99 7.65 4.09 2.64 20.91 8.33 0.49

Controlled 11h 16.30 7.09 3.75 2.43 20.00 8.13 0.44

Filtered 11h 24.72 45.5% ↑ 11.36 48.5% ↑ 6.51 59.2% ↑ 4.56 42.1% ↑ 29.35 40.4% ↑ 11.52 38.3% ↑ 0.82 67.3% ↑

PCSD

NNGen

Origin <1h 22.52 15.48 12.63 10.45 24.90 12.97 1.24

Controlled <1h 21.81 14.77 11.99 9.91 24.16 12.49 1.18

Filtered <1h 25.96 15.3% ↑ 18.91 22.2% ↑ 16.27 28.8% ↑ 14.00 25.4% ↑ 27.68 11.2% ↑ 15.09 16.3% ↑ 1.63 31.9% ↑

NCS

Origin 6h 28.14 18.69 14.28 11.36 32.95 16.30 1.61

Controlled 6h 26.85 17.42 13.05 10.17 31.77 15.42 1.49

Filtered 6h 37.33 32.7% ↑ 24.74 32.4% ↑ 19.49 36.5% ↑ 16.48 31.1% ↑ 40.93 24.2% ↑ 18.67 14.5% ↑ 2.07 28.6% ↑

Rencos

Origin 5h 30.37 21.27 16.42 12.93 33.66 17.40 1.65

Controlled 5h 29.73 20.55 15.71 12.37 33.05 16.96 1.59

Filtered 5h 33.59 10.6% ↑ 24.14 13.5% ↑ 19.63 19.5% ↑ 16.10 19.7% ↑ 36.15 7.4% ↑ 19.18 10.2% ↑ 2.02 22.4% ↑

dataset cleaned by our tool from the łOrigin" train/test datasets. To

benchmark the performance variation brought by the size shrinking,

we further build the łControlled" set by randomly sampling from

the łOrigin" set, which has an equal amount of data instances as

the łFiltered" dataset.

6.1.2 Code Summarization Models. As introduced in Section 2.1,

existing code summarization models can be divided into three cat-

egories: Information Retrieval (IR) based approaches, Neural Ma-

chine Translation (NMT) based approaches, and hybrid approaches

that combine IR and NMT techniques. We select one state-of-the-art

method from each category to explore the impact of noisy data on

model performance.

NNGen [45] is an IR-based model for generating commit mes-

sages by utilizing the nearest neighbors algorithm. It first embeds

code changes into vectors based on the bag of words and the term

frequency. Then, NNGen retrieves the nearest neighbors of code

changes by calculating the cosine similarity of vectors and the

BLEU-4 score. Finally, it directly chooses the message of the code

change with the highest BLEU score as the final result.

NCS [8] is an NMT-based model which replaces the previous

RNN units with the more advanced Transformer [65] model. NCS

extends the vanilla Transformer in two aspects. Firstly, it incor-

porates the copying mechanism [58] in the Transformer to allow

both generating words from vocabulary and copying from the input

source code. Secondly, NCS utilizes relative positional embedding

rather than absolute positional embedding to capture the semantic

representation of the code better.

Rencos [78] is a state-of-the-art model that combines the ad-

vantages of both IR-based and NMT-based techniques. Specifically,

given an input code snippet, Rencos first retrieves its two most

similar code snippets in the training set from the aspects of syntax

and semantics, respectively. Then it encodes the input and two re-

trieved code-snippets, and generates the summary by fusing them

during decoding.

6.1.3 Experimental Settings. The experimental environment is a

desktop computer equipped with an NVIDIA GeForce RTX 3060

GPU, Intel Core i5 CPU, 12GB RAM, running on Ubuntu OS. When

training the three code summarization models with the benchmark

datasets, we follow the implementation provided in their original

papers, and adopt the recommended hyperparameter settings, ex-

cept for the training epoch of NCS and Rencos. To save training

time and computation resources, we set max_epoch=50 for NCS

and max_iteration=100k for Rencos.

6.1.4 EvaluationMetrics. We evaluate the performance of the three

models using four metrics including BLEU [51], METEOR [11],

ROUGE-L [44], and CIDEr [66]. BLEU measures the 𝑛-gram pre-

cision by computing the overlap ratios of 𝑛-grams and applying

brevity penalty on short translation hypotheses. BLEU-1/2/3/4 cor-

respond to the scores of unigram, 2-grams, 3-grams, and 4-grams,

respectively. ROUGE-L is defined as the length of the longest com-

mon subsequence between generated sentence and reference, and

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

based on recall scores.METEOR is based on the harmonic mean of

unigram precision and recall, with recall weighted higher than pre-

cision. CIDEr considers the frequency of 𝑛-grams in the reference

sentences by computing the TF-IDF weighting for each 𝑛-gram.

𝐶𝐼𝐷𝐸𝑟𝑛 score for 𝑛-gram is computed using the average cosine

similarity between the candidate sentence and the reference.

6.2 Quantitative Results

Table 6 shows the performance of the three models trained over

different experimental datasets. Overall, removing noisy data from

the training set in the four benchmark datasets produces a positive

effect on improving the performance of the three models. Training

three existingmodels with the filtered benchmark datasets improves

the BLEU-4 by 26.9%, 20.7%, and 24.1%, ROUGE by 19.1%, 11.3%, and

15.7%, METEOR by 18.9%, 7.1%, and 15.7%, CIDEr by 46.1%, 19.4%,

and 33.2%, respectively.

Among the four benchmark datasets, the effect on the CSN dataset

is the most significant, which leads to the three models (NNGen,

NCS, and Rencos) increasing by 31.0%, 22.0% and 42.1% on BLEU-

4, 28.4%, 12.5% and 40.4% on ROUGE, 13.2%, 10.9%, and 38.3% on

METEOR, and 62.5%, 18.8%, and 67.3% on CIDEr, respectively. This

is followed by TLC and PCSD. Considering the fact that even the

least effect obtained in Funcom still contributes to an increase of

10.3%, 16.0% and 13.6% on BLEU-4, 0.7%, 1.7% and 1.7% on ROUGE,

5.2%, 1.1%, and 1.3% on METEOR, and 9.5%, 5.8%, and 4.8% on

CIDEr, respectively. The main reason that the three models exert

the biggest performance difference onCSN is that, the primary noisy

data on CSN are content tampering by HTML tags, and removing

these noises will make the generated comments more accurate. We

will illustrate this in the following qualitative analysis. We argue

that the existing models used for code summarization tasks in the

literature have a significant scope of improvement given a large,

good-quality dataset.

By observing the performance of the three models trained on

different filtered datasets, we find that the relative ranking among

the three types of models is not consistent. For the filtered TLC,

Rencos achieves the best performance on all metrics compared to

the other two models. While NCS performs best when trained on

filtered Funcom, CSN, and PCSD. This result implies that, to more

comprehensively evaluate different code summarization models, it

is better to use multiple datasets, as the ranking of the model can

be inconsistent on different datasets.

Finding 2: Removing noisy data from the training set in the

four benchmark datasets has a positive influence on the per-

formance of the models. Training three existing models with

the filtered benchmark datasets improves the BLEU-4 by 26.9%,

20.7%, and 24.1%, respectively.

6.3 Qualitative Analysis

To qualitatively illustrate the impact of the noises on code summa-

rizationmodels, we present two cases generated by the threemodels

trained on different datasets, as shown in Figure 3. Overall, the

comments generated by the models trained on the distilled datasets

tend to be more accurate and more readable than the comments

generated by the models trained on the origin datasets.

Generated by models trained on original dataset (BLEU-4=53.32):

NNGen: returns the value for the cell at code column index code and

NCS: returns the value for the cell at code column index code and

Rencos: returns the value for the cell at code column index code and

public boolean isEnumberatedTagValueReferenceAttribute(

String nodeName, String attributeName){

boolean isEnumberatedTagValueReferenceAttribute = false;

if(nodeName!=null && !nodeName.equals("")

&& attributeName != null

&& !attributeName.equals("")){

isEnumberatedTagValueReferenceAttribute =

refAttributeToEnumeratedTag.containsKey(

nodeName+separator+attributeName);

}

return isEnumberatedTagValueReferenceAttribute;}

Human-written Comment: returns the value for the cell at columnindex and rowindex

Generated by models trained on distilled dataset (BLEU-4=100.00, Inc.=87.5%):

NNGen: returns the value for the cell at columnindex and rowindex

NCS: returns the value for the cell at columnindex and rowindex

Rencos: returns the value for the cell at columnindex and rowindex

Caused by unromoved html

tag <code>

Caused by over-splitting

Caused by incorrect first

sentence

(a) Case 1: An example of generated comments that contains over-splitting variable,
HTML tags, and unfinished sentence

public boolean validateBPELVariableName_Pattern(

String bpelVariableName,

DiagnosticChain diagnostics,

Map<Object, Object> context){

boolean result = ExecutablePackage.Literals.BPEL_VARIABLE_NAME,

bpelVariableName,

BPEL_VARIABLE_NAME__PATTERN__VALUES,

diagnostics, context;

return result;}

Generated by models trained on original dataset (BLEU-4=52.54):

NNGen: validates the pattern constraint of em bpel variable name em

NCS: validates the pattern constraint of em bpel variable name em

Rencos: validates the pattern constraint of em bpel variable name em

Human-written Comment: validates the pattern constraint of bpel variable name

Generated by models trained on distilled dataset (BLEU-4=100.00, Inc.=90.3%):

NNGen: validates the pattern constraint of bpel variable name

NCS: validates the pattern constraint of bpel variable name

Rencos: validates the pattern constraint of bpel variable name

Caused by

unromoved

tag

(b) Case 2: An example of generated comments that contains HTML tags

Figure 3: Inaccurate comment generation affected by noises

Case 1. Given the code, the comments generated by the three

models trained on origin benchmark datasets are łreturns the value

for the cell at code column index code andž. Compared with the

human-written comment, we consider the following three errors

are likely related to noisy data: (1) The over-splitting łcolumnindexž

as łcolumn indexž. This error is likely to be caused by the over-

splitting of variable identifiers in the comment; (2) The redundant

łcodež around łcolumnindexž. It is mainly due to the fact that the

origin datasets contain many unremoved HTML tags, thereby in-

creasing the probability of HTML tags, e.g., ł<code>ž, appearing in

the context, making it easier for the model to generate these HTML

words when encountering some specific patterns; (3) The redundant

łandž in the end. This is mainly because the widely-existing partial

or verbose sentences in training sets would hinder the ability of the

model to learn to determine when the generation process should

end. After being retrained on the distilled data, the three models

can accurately generate the comments, where the BLEU-4 has an

87.5% increase, from 53.32 to 100.00.

Case 2. Given the code, the comments generated by the three

models trained on origin benchmark datasets have two redundant

łemž, which are caused by the unremoved HTML tag łž that is

used to define emphasized text. After being retrained on the distilled

data, the threemodels can accurately generate the comments, where

the BLEU-4 has a 90.3% increase, from 52.54 to 100.00.

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

7 DISCUSSION

In this section, we discuss several interesting implications that are

derived from the results of this study, aiming to facilitate the code

summarization research and the SE community.

7.1 Impact of Noises on Code Summarization
Datasets and Models

7.1.1 Impact of Noises on Datasets. (1) Removing the noises in

Funcom leads to a slight improvement inmodel performance

(i.e., the BLEU-1 score increases 2.46% on average). It might be be-

cause that Funcom is the one with the most auto-generated code,

and auto code offers łeasy gainž in performance that is not avail-

able anymore. Therefore, the baseline performance could actually

decrease if removing them from testset, thus making the improve-

ments of other rules look smaller in comparison. (2) Removing

the noises in TLC, CSN, and PCSD leads to a considerable

improvement in performance (i.e., the BLEU-1 score increases

24.1%, 30.6%, and 19.5% on average respectively. It might be because

the major noises of these three datasets are ‘Verbose Sentence’,

‘Content Tampering’, and ‘Partial Sentence’, respectively, and re-

moving them will benefit the models.

7.1.2 Impact of Noises on Models. Based on the results shown in

Table 4 and Table 6, we can observe that the noises affect code sum-

marization models differently. (1) Removing ‘Verbose Sentence’

noises might largely benefit the IR-based model NNGen. The

major noises in TLC are ‘Verbose Sentence’, and removing them

leads to the performance of NNGen increases 53.25% on average

of all the seven metrics, followed by Rencos (21.74%) and NCS

(12.17%). It might be because the NNGen model directly outputs

the retrieved results. Taking the retrieved verbose comments as the

output leads to a substantial decline in the scores of the evaluation

metrics, since these N-gram based metrics are less beneficial for

longer comments. (2) Removing ‘Content Tampering’ noises

might largely benefit the hybrid model Rencos. The major

noises in CSN are ‘Content Tampering’, and removing them leads

to the performance of Rencos increasing 48.75% on average, fol-

lowed by NNGen (35.11%) and NCS (15.73%). It might be because

the hybrid model Rencos employs a more complex input including

the test code and the retrieved data. Such models’ effective training

typically requires the ground-truth comments to be semantically

correct. However, the ‘Content Tampering’ noises cause the ground-

truth comments to mingle with irrelevant text such as HTML tags

or URLs, which alter the semantics of the ground-truth comments.

Therefore, when removing the ‘Content Tampering’ noises, the

hybrid model Rencos increases the most. (3) Removing ‘Partial

Sentence’ noises might largely benefit the NMT-based model

NCS. The major noises in PCSD are ‘Partial Sentence’, and remov-

ing them leads to the performance of NCS increasing 28.56% on

average, followed by NNGen (21.58%) and Rencos (14.77%). The

main reason is that the comments belonging to the ‘Partial Sentence’

noise are not complete sentences, and thus lack integrity for both

syntactic and semantic, which hinders language models like NCS

from learning the syntactic and semantic information correctly. We

will further illustrate the impact of noises in qualitative cases.

7.2 Lessons Learned of Data Preprocessing for
Code Summarization

Data quality has been a growing concern, especially since deep

learning (DL) is widely applied for massive SE tasks. As DL models

typically require high-volume data, ensuring data quality at a large

scale has become a compelling need. Most existing studies focus

on advances in modeling but typically overshadow the data quality.

When investigating the current code summarization models (as

shown in Table 1), we notice that a substantial amount of data pre-

processing operations are cursory or lack consistency. In addition,

there is a lack of principles or methods to guide and reinforce the

data preprocessing associated effort while conducting code summa-

rization research, regarding how to soundly preprocess benchmark

datasets for different tasks. For instance, our results show that noisy

data extensively exist in the four widely-used benchmark datasets

for code summarization tasks. Shi et al. [60] reported that different

code preprocessing operations can affect the overall performance

of code summarization models by a noticeable margin. Therefore,

paying more attention to data quality while training code sum-

marization models is recommended, rather than directly reusing

existing datasets without quality inspection.

Specifically, the study and its results lead to the identification

of the following lessons learned from the quality assessment on

benchmark datasets, for future code summarization researchers.

• When reusing existing datasets, check the quality of pro-

cessed data by comparing with their raw data.

• Extracting the first sentences of comments is error-prone.

• Avoid including under-development or obsolete code, e.g.,

TODOs, commented-out methods.

• Avoid over-splitting of variable identifiers in comments.

• Be careful of łwhat to commentž, check whether the fol-

lowing types of code-comment data are suitable for your

scenarios: interrogative comments, auto code, duplicated

code, and block-comment code.

• Remember to deal with abnormality, e.g., HTML tags, URL,

code path, and non-literal natural languages.

7.3 Tool Support and Potential Applications

We release the implementation of the CAT code-comment cleaning

tool as a third-party Python library [6], which can be easily inte-

grated into the development pipeline of most code summarization

models. The features of CAT are: (1) Configurable and Extend-

able Rules. The ruleset in CAT is configurable, which allows users

to customize the existing rules based on the different data charac-

teristics. Besides, CAT provides interfaces enabling users to design

new rules or clean functions to extend the feature of CAT. (2) Sup-

port for Multiple Programming Language. CAT is a tool that

can support multiple programming languages such as Java, Python,

and C#. Similarly, for applying CAT to other programming language

datasets, users can replace the existing language-specific rules with

the new rules. We also release the distilled four benchmark datasets

on our website [7] to facilitate future code summarization research.

This study applies the CAT tool for exploring the data quality

issues for code summarization exclusively. Similar to code sum-

marization, there exist other tasks on the intersection of Natural

Language Processing and Software Engineering, such as commit

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

message generation [37] (generates a natural language summariza-

tion for each submitted code change), code search [24] (generates

API usage sequences for a given natural language query), and code

synthesis [72] (synthesizes code based on natural language intents).

These tasks also require datasets that contain a large number of

code and natural language description pairs to train their mod-

els, the quality of their datasets can have a critical impact on the

performance of models. Thus, we recommend future research on

these topics should also apply CAT to remove potential data prepro-

cessing noises. In addition, we believe CAT can also facilitate the

downstream tasks with building large pre-trained code models [38]

to learn code representations, which require a large corpus of code.

CAT can help remove code noises as listed in Table 2.

7.4 Implications for Research and Practice

Need for collaborative community effort on principles of

data preprocessing. Improving data quality takes collaborative,

community effort to establish and maintain principles, methods,

and tools to govern the data extraction and preprocessing pipelines.

This study takes an initial step towards addressing the challenges of

building high-quality datasets for code summarization exclusively.

Although we have proposed quality criteria to measure data quality,

methods to help collect data, and filters to remove preprocessing

noises, our solutions might be not sufficient for other research

tasks in software engineering or data science areas that require

massive data as inputs because of the diversity of data sources, the

complexity of different data structures, and the scale of data volume.

Thus, we urge for collaboration and effort from the whole research

community to help build a comprehensive and reliable principle set

for data collection, preprocessing, and quality assessment, which

we believe can benefit our research community.

Need for research on comprehensive noisy code-comment

detection. In this study, we define 12 categories of noisy data

in code summarization datasets, and apply our cleaning tool to

filter them out. For the filtered data, we observed several additional

quality issues that require a deeper understanding of the content

of the comments and the corresponding code. (1) Inconsistent

code-comment pairs. The following example shows a spotted

inconsistency between the comment and its code. The comment

explicitly states the return fact, but the code does not. Since only a

few approaches are proposed

/* Read information object and return pointer */

public void readInformationObject(...){

try {objectDecoder.checkResolved(infoObj);

} catch (final Exception e) {

LogWriter.writeLog("Exception: " + e.getMessage());

...

Comment (TLC): read information object and return pointer

Code (TLC): public void read information object...

for detecting inconsistent Java code-comment pairs [18, 53], and

there is a lack of inconsistent code-comment detection for other

programming languages, such as Python and C#, it is quite chal-

lenging to assess and clean such noises in a parallel corpus. (2)

Low-readability comments. We noted that some comments are

not fluency or have syntactic errors. E.g., a comment in the PCSD

dataset łtransforms a doc in content in one document in presen-

tationž. If trained on datasets with such comments, the end-to-

end code summarization models are also at risk of producing low-

readability comments. (3) Less-informative comments. We found

that many methods in benchmark datasets do not need comments

as methods are self-explainable with their names. For example,

two methods in Funcom dataset are named "renderImgTag" and

"createTextPane", and their corresponding comments are "render

img tag" or "create the text pane". Since such comments are highly

similar to the method names, they can hardly convey additional

information for better understanding of the source code. If trained

on datasets with such comments, the code summarization models

are also likely to produce less-informative comments. Therefore,

there is a need for research on comprehensive noisy code-comment

detection, which can further benefit the quality improvement of

code-comment datasets.

Integrating tool support to aid publication peer review.

Following the open science policies [5], most existing research

makes their raw and transformed data publicly accessible during the

peer review process. For those datasets that are in the format of code-

comment pairs, the CAT cleaning tool can be used to automatically

detect their noise data in a reasonable time. The output statistic

could objectively reflect the inside quality of the open datasets to

some extent, thus can help professional peer reviewers to infer the

quality and reliability of the under-review research.

7.5 Threats to Validity

One threat to validity relates to the random sampling process. Sam-

pling may lead to incomplete results, e.g., noise taxonomy, we plan

to enlarge the analyzed dataset and inspect whether new types of

noises are emerging. Moreover, our heuristic rules for data cleaning

are elaborated from the four popular benchmark datasets, cover-

ing Java and Python. Although we generally believe all similar

code-comment datasets may benefit from our cleaning tool, future

studies are needed to focus on datasets with other programming

languages.

The second threat might come from the process of manual an-

notation and card sorting. We understand that such a process is

subject to introducing mistakes. To reduce that threat, we establish

a labeling team, and perform multiple rounds of labeling to make

sure that all participants achieve conceptual coherence about noisy

categories.

The third threat relates to the BLEU that is used to evaluate the

performance of code summarization models. Recent researchers

have raised concern over the use of BLEU [55], warning the com-

munity that the way BLEU is used and interpreted can greatly affect

its reliability. To mitigate that threat, we also adopt other metrics,

i.e., ROUGE, METEOR, and CIDEr, when evaluating performance.

Another threat to validity is the replication of each model. To

ensure that the experimental results are consistent with their papers,

we retrain themodels using the source code provided by the authors,

and reuse the parameters provided by the authors. Our experiments

show that the performance of our retrained models is comparable

to the performance of models reported in the papers. For example,

the METEOR score of Rencos is 21.1 on PCSD in their paper, and

our retrained Rencos model is 20.2.

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

8 RELATED WORK

Recently, more and more researchers have realized that there are

some underlying threats to the validity of existing code summa-

rization research. These empirical studies mainly focused on data,

evaluation metrics, and model effectiveness.

Biases in data. Existing research of data biases in the code

summarization related tasks mainly focused on data quality, data

representativeness, code preprocessing, and data selection. Sun et

al. [64] applied syntactic and semantic query cleaning to improve

the data quality for code search tasks. Their experiment results

show that, training the popular code-search model with the fil-

tered dataset improves its performance significantly. Gro et al. [23]

examined the underlying assumption about data representative-

ness that: the task of generating comments sufficiently resembles

the task of translating between natural languages, and so similar

models and evaluation metrics could be used. By comparing four

code-comment datasets, i.e., CodeNN, DeepCom, FunCom, and Doc-

String, with a standard natural language translator dataset WMT19,

they reported that comments are far more saturated with repeating

trigrams than English translation datasets, and the repetitiveness

has a very strong effect on measured performance. Shi et al. [60]

analyzed the influence of code preprocessing operations and dataset

size on code summarization model performance. They found that

different code preprocessing operations can affect the overall per-

formance by a noticeable margin, and the code summarization

approaches perform inconsistently on different datasets. Huang et

al. [34] reported the biases in data selection that, not all code is

necessarily commented. They analyzed 136 well-known projects

in GitHub, and reported that only a small part (4.4%) of methods

have header comments in real software projects. They proposed a

machine learning technique to automatically identify commenting

necessity, based on the structural features, syntactic features, and

textual features of code. There is a lack of in-depth analysis of the

benchmark datasets. Our study bridges that gap with a large-scale

analysis of data preprocessing errors and low-quality comments in

the benchmark datasets, and investigates performance variation of

existing models on the distilled dataset.

Biases in evaluation metrics. Roy et al. [55] conducted an

empirical study with 226 human annotators to assess the degree to

which automatic metrics reflect human evaluation for code sum-

marization tasks. Their results indicated that metric improvements

of less than 2 points do not guarantee systematic improvements

in summarization quality, and are unreliable as proxies of human

evaluation. Gro et al. [23] measured 5,000 code-comment pairs, and

found that the variants of BLEU chosen can cause substantial vari-

ation in the measured performance. Shi et al. [60] also examined

the BLEU variants. They concluded that BLEU variants used in

prior work on code summarization are different from each other

and the differences can carry some risks such as the validity of

their claimed results. Mahmud et al. [47] observed that some auto-

generated comments provide a semantic meaning similar to the

ground truth, despite exhibiting fewer n-gram matches. Therefore,

they argued the feasibility of n-gram metrics such as BLEU. Most of

these work focus on validating the evaluation procedure for code

summarization, while our work targets to validate the benchmark

datasets, which would be important and valuable for building sound

code summarization models.

Analysis on Model Effectiveness. Mahmud et al. [47] com-

pared three recently proposed code summarization models, and

performed a manual open-coding of the most common errors com-

mitted by the models. They reported that missing information and

incorrect construction are the most prevalent error types. Chen et

al. [14] classified code comments into six categories (łwhatž, łwhyž,

łhow-to-usež, łhow-it-is-donež, łpropertyž, and łothersž) accord-

ing to the intention, and conducted an experiment to perform six

code summarization approaches on them to explore the impact of

comment categories on code summarization. They reported that

no models perform the best for łwhyž and łpropertyž comments

among the six categories. Most of the previous work focused on

assessing the model effectiveness in terms of error types, comment

intentions, preprocessing operations, and dataset size, while our

work aims to investigate the model effectiveness on difficult levels

of the code summarization task, complementing the existing studies.

In addition, we report data preprocessing errors and low-quality

comments in the code-comment dataset, which could provide a

sounder foundation for existing work.

9 CONCLUSION

We propose a taxonomy of data preprocessing noises in four pop-

ularly used benchmark datasets for code summarization, which

contains 12 different types of noise. We further build a rule-based

cleaning tool for detecting noisy data of each category. Experiments

show that, the tool can accurately detect noises in our manually

annotated data. We then apply the cleaning tool to the four bench-

mark datasets, and assess their data quality. The results show that

noisy data extensively exist in the four widely-used benchmark

datasets (ranging from 31% to 66%). Finally, we investigate the im-

pacts of noisy data on three types of code summarization models

(i.e., NNGen, NCS, and Rencos) by comparing their performance

trained with datasets before and after the cleaning. The results

show that the performance of three existing models trained with

the filtered benchmark datasets improves BLEU-4 by 27%, 21%, and

24%, ROUGE by 19%, 11%, and 16%, METEOR by 19%, 7%, and 16%,

CIDEr by 46%, 19%, and 33%, respectively. We release our tool as a

python library, named CAT, to facilitate relevant research in both

academia and industry.

In our future work, we plan to extend our research methodology

to other text generation tasks in software engineering such as

commit message generation and code synthesis.

ACKNOWLEDGMENTS

We sincerely appreciate anonymous reviewers for their construc-

tive and insightful suggestions for improving this manuscript. This

work is supported by the National Key Research and Development

Program of China under Grant No. 2018YFB1403400, the National

Science Foundation of China under Grant No. 61802374, 62002348,

62072442, 614220920020 and Youth Innovation Promotion Associa-

tion Chinese Academy of Sciences.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Lin Shi et al.

REFERENCES
[1] 2017. PCSD Dataset Download. https://github.com/wanyao1992/code_

summarization_public/tree/master/dataset/original.
[2] 2018. TLC Dataset Download. https://github.com/xing-hu/TL-CodeSum.
[3] 2019. CSN Dataset Download. https://github.com/github/CodeSearchNet.
[4] 2019. Funcom Dataset. http://leclair.tech/data/funcom/.
[5] 2020. SIGSOFT Open Science Policies. https://github.com/acmsigsoft/open-

science-policies.
[6] 2022. CAT Python Library. https://pypi.org/project/FSE22-CAT/0.0.1/.
[7] 2022. Project Website. https://github.com/BuiltOntheRock/FSE22_

BuiltOntheRock
[8] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

[n. d.]. A Transformer-based Approach for Source Code Summarization. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020. 4998ś5007.

[9] Miltiadis Allamanis. [n. d.]. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019. 143ś153.

[10] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. [n. d.]. code2seq: Gener-
ating Sequences from Structured Representations of Code. In 7th International
Conference on Learning Representations, ICLR 2019.

[11] Satanjeev Banerjee and Alon Lavie. [n. d.]. METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments. In Proceed-
ings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization@ACL 2005. 65ś72.

[12] Aakash Bansal, Sakib Haque, and Collin McMillan. [n. d.]. Project-Level Encod-
ing for Neural Source Code Summarization of Subroutines. In 29th IEEE/ACM
International Conference on Program Comprehension, ICPC 2021. 253ś264.

[13] Ruichu Cai, Zhihao Liang, Boyan Xu, Zijian Li, Yuexing Hao, and Yao Chen.
2020. TAG: Type auxiliary guiding for code comment generation. arXiv preprint
arXiv:2005.02835 (2020).

[14] Qiuyuan Chen, Xin Xia, Han Hu, David Lo, and Shanping Li. 2021. Why My
Code Summarization Model Does Not Work: Code Comment Improvement with
Category Prediction. ACM Trans. Softw. Eng. Methodol. 30, 2 (2021), 25:1ś25:29.

[15] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and
summarization of source code. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 826ś831.

[16] Junyan Cheng, Iordanis Fostiropoulos, and Barry W. Boehm. 2021. GN-
Transformer: Fusing Sequence and Graph Representation for Improved Code
Summarization. CoRR abs/2111.08874 (2021). arXiv:2111.08874 https://arxiv.org/
abs/2111.08874

[17] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad
Aghajani, Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota. 2021.
An Empirical Study on the Usage of Transformer Models for Code Completion.
CoRR abs/2108.01585 (2021). arXiv:2108.01585 https://arxiv.org/abs/2108.01585

[18] Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. 2018. Coherence of
comments and method implementations: a dataset and an empirical investigation.
Softw. Qual. J. 26, 2 (2018), 751ś777. https://doi.org/10.1007/s11219-016-9347-1

[19] Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In 2013 21st International Conference on Program Comprehension (ICPC). 13ś22.

[20] Davide Falessi and Philippe Kruchten. 2015. Five reasons for including technical
debt in the software engineering curriculum. In Proceedings of the 2015 European
Conference on Software Architecture Workshops. 1ś4.

[21] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. [n. d.]. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020). 1536ś1547.

[22] Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lun Yiu Nie, and Xin Xia.
2021. Code Structure Guided Transformer for Source Code Summarization. CoRR
abs/2104.09340 (2021). arXiv:2104.09340 https://arxiv.org/abs/2104.09340

[23] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. [n. d.]. Code
to Comment "Translation": Data, Metrics, Baselining & Evaluation. In 35th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia, September 21-25, 2020. 746ś757.

[24] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT international sympo-
sium on foundations of software engineering. 631ś642.

[25] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. [n. d.]. GraphCodeBERT: Pre-training Code Representations
with Data Flow. In 9th International Conference on Learning Representations, ICLR
2021.

[26] VivekGupta. 2020. DeepSumm -Deep Code Summaries usingNeural Transformer
Architecture. CoRR abs/2004.00998 (2020). arXiv:2004.00998 https://arxiv.org/

abs/2004.00998
[27] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program com-

prehension with source code summarization. In 2010 acm/ieee 32nd international
conference on software engineering, Vol. 2. IEEE, 223ś226.

[28] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. [n. d.]. Action
Word Prediction for Neural Source Code Summarization. In 28th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering, SANER 2021.
330ś341.

[29] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Im-
proved automatic summarization of subroutines via attention to file context. In
Proceedings of the 17th International Conference on Mining Software Repositories.
300ś310.

[30] Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab,
Md. Mahim Anjum Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal,
and Rifat Shahriyar. [n. d.]. CoDesc: A Large Code-Description Parallel Dataset.
In Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021
(Findings of ACL, Vol. ACL/IJCNLP 2021). 210ś218.

[31] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gener-
ation. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 200ś20010.

[32] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25, 3 (2020), 2179ś2217.

[33] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
source code with transferred api knowledge. (2018).

[34] Yuan Huang, Nan Jia, Junhuai Shu, Xinyu Hu, Xiangping Chen, and Qiang Zhou.
2020. Does your code need comment? Softw. Pract. Exp. 50, 3 (2020), 227ś245.
https://doi.org/10.1002/spe.2772

[35] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[36] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073ś2083.

[37] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 135ś146.

[38] Anjan Karmakar and Romain Robbes. 2021. What do pre-trained code models
know about code?. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1332ś1336.

[39] Alexander LeClair, Aakash Bansal, and Collin McMillan. [n. d.]. Ensemble Models
for Neural Source Code Summarization of Subroutines. In IEEE International
Conference on Software Maintenance and Evolution, ICSME 2021. 286ś297.

[40] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Im-
proved code summarization via a graph neural network. In Proceedings of the
28th international conference on program comprehension. 184ś195.

[41] Alexander LeClair, Siyuan Jiang, and Collin McMillan. [n. d.]. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 795ś806.

[42] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. [n. d.]. EditSum: A
Retrieve-and-Edit Framework for Source Code Summarization. In 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021. 155ś166.

[43] Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and Rongxin
Wu. [n. d.]. Improving Code Summarizationwith Block-wise Abstract Syntax Tree
Splitting. In 29th IEEE/ACM International Conference on Program Comprehension,
ICPC 2021. 184ś195.

[44] Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries.
In Text summarization branches out. 74ś81.

[45] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 373ś384.

[46] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021). arXiv:2102.04664 https://arxiv.org/
abs/2102.04664

[47] Junayed Mahmud, Fahim Faisal, Raihan Islam Arnob, Antonios Anastasopoulos,
and Kevin Moran. 2021. Code to Comment Translation: A Comparative Study
on Model Effectiveness & Errors. CoRR abs/2106.08415 (2021). arXiv:2106.08415
https://arxiv.org/abs/2106.08415

[48] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader-Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the

https://github.com/wanyao1992/code_summarization_public/tree/master/dataset/original
https://github.com/wanyao1992/code_summarization_public/tree/master/dataset/original
https://github.com/xing-hu/TL-CodeSum
https://github.com/github/CodeSearchNet
http://leclair.tech/data/funcom/
https://github.com/acmsigsoft/open-science-policies
https://github.com/acmsigsoft/open-science-policies
https://pypi.org/project/FSE22-CAT/0.0.1/
https://github.com/BuiltOntheRock/FSE22_BuiltOntheRock
https://github.com/BuiltOntheRock/FSE22_BuiltOntheRock
https://arxiv.org/abs/2111.08874
https://arxiv.org/abs/2111.08874
https://arxiv.org/abs/2111.08874
https://arxiv.org/abs/2108.01585
https://arxiv.org/abs/2108.01585
https://doi.org/10.1007/s11219-016-9347-1
https://arxiv.org/abs/2104.09340
https://arxiv.org/abs/2104.09340
https://arxiv.org/abs/2004.00998
https://arxiv.org/abs/2004.00998
https://arxiv.org/abs/2004.00998
https://doi.org/10.1002/spe.2772
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2106.08415
https://arxiv.org/abs/2106.08415

Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks.
In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021,
Madrid, Spain, 22-30 May 2021. IEEE, 336ś347. https://doi.org/10.1109/ICSE43902.
2021.00041

[49] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 23ś32.

[50] Oracle. [n. d.]. http://www.oracle.com/technetwork/articles/java/index-137868.
html.

[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. [n. d.]. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. 311ś318.

[52] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. 2021. A Search-Based
Testing Framework for Deep Neural Networks of Source Code Embedding. In
14th IEEE Conference on Software Testing, Verification and Validation, ICST 2021,
Porto de Galinhas, Brazil, April 12-16, 2021. IEEE, 36ś46. https://doi.org/10.1109/
ICST49551.2021.00016

[53] Fazle Rabbi and Md. Saeed Siddik. 2020. Detecting Code Comment Inconsistency
using Siamese Recurrent Network. In ICPC ’20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020. ACM, 371ś375.
https://doi.org/10.1145/3387904.3389286

[54] Pooja Rani, Suada Abukar, Nataliia Stulova, Alexandre Bergel, and Oscar Nier-
strasz. 2021. Do Comments follow Commenting Conventions? A Case Study in
Java and Python. In 21st IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2021, Luxembourg, September 27-28, 2021. IEEE,
165ś169. https://doi.org/10.1109/SCAM52516.2021.00028

[55] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassessing au-
tomatic evaluation metrics for code summarization tasks. In ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis
Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.).
ACM, 1105ś1116. https://doi.org/10.1145/3468264.3468588

[56] Gordon Rugg and Peter McGeorge. 2005. The Sorting Techniques: A Tutorial
Paper on Card Sorts, Picture Sorts and Item Sorts. Expert Syst. J. Knowl. Eng. 22,
3 (2005), 94ś107. https://doi.org/10.1111/j.1468-0394.2005.00300.x

[57] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. [n. d.]. SourcererCC: scaling code clone detection to big-code. In Proceed-
ings of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016. 1157ś1168. https://doi.org/10.1145/2884781.2884877

[58] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:
Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368
(2017).

[59] Ramin Shahbazi, Rishab Sharma, and Fatemeh H. Fard. 2021. API2Com: On the
Improvement of Automatically Generated Code Comments Using API Docu-
mentations. In 29th IEEE/ACM International Conference on Program Compre-
hension, ICPC 2021, Madrid, Spain, May 20-21, 2021. IEEE, 411ś421. https:
//doi.org/10.1109/ICPC52881.2021.00049

[60] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2021. Neural Code Summarization: How Far Are
We? CoRR abs/2107.07112 (2021). arXiv:2107.07112 https://arxiv.org/abs/2107.
07112

[61] Ensheng Shi, YanlinWang, LunDu, Hongyu Zhang, Shi Han, Dongmei Zhang, and
Hongbin Sun. [n. d.]. CAST: Enhancing Code Summarization with Hierarchical
Splitting and Reconstruction of Abstract Syntax Trees. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, EMNLP 2021.
4053ś4062.

[62] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. 43ś52.

[63] Daniela Steidl, Benjamin Hummel, and Elmar Jürgens. 2013. Quality analysis of
source code comments. In IEEE 21st International Conference on Program Com-
prehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. IEEE Computer

Society, 83ś92. https://doi.org/10.1109/ICPC.2013.6613836
[64] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance

of Building High-quality Training Datasets for Neural Code Search. CoRR
abs/2202.06649 (2022). arXiv:2202.06649 https://arxiv.org/abs/2202.06649

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[66] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. CIDEr:
Consensus-based image description evaluation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 4566ś4575. https://doi.org/10.1109/CVPR.2015.7299087

[67] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 397ś407.

[68] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip S.
Yu, and Guandong Xu. 2022. Reinforcement-Learning-Guided Source Code
Summarization Using Hierarchical Attention. IEEE Trans. Software Eng. 48, 2
(2022), 102ś119. https://doi.org/10.1109/TSE.2020.2979701

[69] Yanlin Wang, Ensheng Shi, Lun Du, Xiaodi Yang, Yuxuan Hu, Shi Han, Hongyu
Zhang, and Dongmei Zhang. 2021. CoCoSum: Contextual Code Summariza-
tion with Multi-Relational Graph Neural Network. CoRR abs/2107.01933 (2021).
arXiv:2107.01933 https://arxiv.org/abs/2107.01933

[70] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. [n. d.]. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, pages = 8696ś8708,.

[71] SultanWehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of
self-admitted technical debt on software quality. In 2016 IEEE 23Rd international
conference on software analysis, evolution, and reengineering (SANER), Vol. 1. IEEE,
179ś188.

[72] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual
task of code summarization. Advances in neural information processing systems
32 (2019).

[73] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine:
exemplar-based neural comment generation. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 349ś360.

[74] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom: Mining existing source
code for automatic comment generation. In 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 380ś389.

[75] Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code Summarization with
Structure-induced Transformer. In Findings of the Association for Computa-
tional Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021 (Findings
of ACL, Vol. ACL/IJCNLP 2021), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (Eds.). Association for Computational Linguistics, 1078ś1090. https:
//doi.org/10.18653/v1/2021.findings-acl.93

[76] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang.
2020. Leveraging code generation to improve code retrieval and summarization
via dual learning. In Proceedings of The Web Conference 2020. 2309ś2319.

[77] Huang Yuchao, Wei Moshi, Wang Song, Wang Junjie, and Wang Qing. 2021.
Yet Another Combination of IR-and Neural-based Comment Generation. arXiv
preprint arXiv:2107.12938 (2021).

[78] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1385ś1397.

[79] Xiaoqing Zhang, Yu Zhou, Tingting Han, and Taolue Chen. 2020. Training Deep
Code Comment Generation Models via Data Augmentation. In Internetware’20:
12th Asia-Pacific Symposium on Internetware, Singapore, November 1-3, 2020. ACM,
185ś188. https://doi.org/10.1145/3457913.3457937

[80] Yu Zhou, Xiaoqing Zhang, Juanjuan Shen, Tingting Han, Taolue Chen, and
Harald C. Gall. 2021. Adversarial Robustness of Deep Code Comment Generation.
CoRR abs/2108.00213 (2021). arXiv:2108.00213 https://arxiv.org/abs/2108.00213

[81] Ziyi Zhou, Huiqun Yu, andGuisheng Fan. 2021. Adversarial training and ensemble
learning for automatic code summarization. Neural Comput. Appl. 33, 19 (2021),
12571ś12589. https://doi.org/10.1007/s00521-021-05907-w

https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
https://doi.org/10.1109/ICST49551.2021.00016
https://doi.org/10.1109/ICST49551.2021.00016
https://doi.org/10.1145/3387904.3389286
https://doi.org/10.1109/SCAM52516.2021.00028
https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1111/j.1468-0394.2005.00300.x
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1109/ICPC52881.2021.00049
https://doi.org/10.1109/ICPC52881.2021.00049
https://arxiv.org/abs/2107.07112
https://arxiv.org/abs/2107.07112
https://arxiv.org/abs/2107.07112
https://doi.org/10.1109/ICPC.2013.6613836
https://arxiv.org/abs/2202.06649
https://arxiv.org/abs/2202.06649
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/TSE.2020.2979701
https://arxiv.org/abs/2107.01933
https://arxiv.org/abs/2107.01933
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.1145/3457913.3457937
https://arxiv.org/abs/2108.00213
https://arxiv.org/abs/2108.00213
https://doi.org/10.1007/s00521-021-05907-w

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Code Summarization
	2.2 Benchmark Datasets

	3 The Taxonomy of Noisy Data
	3.1 Taxonomy Construction
	3.2 Comment-related Noisy Data
	3.3 Code-related Noisy Data

	4 The Code-Comment Cleaning Tool
	4.1 The Heuristic Rules
	4.2 Effectiveness Evaluation

	5 Quality Assessment of Benchmarks
	6 Impacts on the Performance of Code Summarization
	6.1 Experimental Design
	6.2 Quantitative Results
	6.3 Qualitative Analysis

	7 Discussion
	7.1 Impact of Noises on Code Summarization Datasets and Models
	7.2 Lessons Learned of Data Preprocessing for Code Summarization
	7.3 Tool Support and Potential Applications
	7.4 Implications for Research and Practice
	7.5 Threats to Validity

	8 Related Work
	9 Conclusion
	References

