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ABSTRACT

Application Programming Interfaces (APIs) are designed to help de-
velopers build software more effectively. Recommending the right
APIs for specific tasks is gaining increasing attention among re-
searchers and developers. However, most of the existing approaches
are mainly evaluated for general programming tasks using statically
typed programming languages such as Java. Little is known about
their practical effectiveness and usefulness for machine learning
(ML) programming tasks with dynamically typed programming
languages such as Python, whose paradigms are fundamentally
different from general programming tasks. This is of great value
considering the increasing popularity of ML and the large number
of new questions appearing on question answering websites.

In this work, we set out to investigate the effectiveness of existing
API recommendation approaches for Python-based ML program-
ming tasks from Stack Overflow (SO). Specifically, we conducted
an empirical study of six widely-used Python-based ML libraries
using two state-of-the-art API recommendation approaches, i.e.,
BIKER and DeepAPIL. We found that the existing approaches per-
form poorly for two main reasons: (1) Python-based ML tasks often
require significant long API sequences; and (2) there are common
APT usage patterns in Python-based ML programming tasks that
existing approaches cannot handle. Inspired by our findings, we
proposed a simple but effective frequent itemset mining-based ap-
proach, i.e., FIMAX, to boost API recommendation approaches,
i.e., enhance existing API recommendation approaches for Python-
based ML programming tasks by leveraging the common API usage
information from SO questions. Our evaluation shows that FIMAX
improves existing state-of-the-art API recommendation approaches
by up to 54.3% and 57.4% in MRR and MAP, respectively. Our user
study with 14 developers further demonstrates the practicality of
FIMAX for API recommendation.
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1 INTRODUCTION

Application Programming Interfaces (APIs) are built-in functions
in software libraries that help developers build software more effec-
tively. As machine learning recently made great progress in both
theory and application, there is increasing interest in developing
machine learning applications. While there are many publicly avail-
able open-source machine learning libraries and APIs, searching
the right APIs for specific tasks is not easy, especially for the plenty
of green hands in the field of machine learning [50].

Although many API recommendation approaches that can help
retrieve APIs with high accuracy have been proposed and exten-
sively studied [16, 17, 19, 35], most existing approaches have been
evaluated mainly on general programming tasks using program-
ming languages such as Java. Little is known about their practical
effectiveness and usefulness for ML programming tasks with dy-
namically typed programming languages such as Python. Apart
from the different nature of programming languages, machine learn-
ing application development has different paradigms compare to tra-
ditional application development (relatively more deterministic and
less statistically-orientated) [7, 50], which is statistically-orientated
and requires many algorithms, mathematical operations, and data
operations [12, 29, 43]. In this paper, we investigate the effective-
ness of existing API recommendation approaches for Python-based
ML programming tasks, which is of great value considering the
increasing popularity of machine learning practices and the over-
whelming number of public asked machine learning questions in
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question answering websites such as Stack Overflow (SO). For ex-
ample, there are more than 11K questions on Stack Overflow about
API recommendation for TensorFlow (an open-source library for
machine learning) with about 300 new questions emerging each
week!. Our study focuses on the following research questions:

RQ1: What is the performance of existing API recommenda-
tion approaches on Python-based ML programming tasks?

To answer this question, we present an empirical study to explore
the performance of existing state-of-the-art API recommendation
approaches, i.e., BIKER [19] and DeepAPI [17], on Python-based
ML programming tasks.

Specifically, first of all, we collect 80K Python-based ML program-
ming questions related to six popular machine learning libraries
from SO. Then we retrain BIKER [19] and DeepAPI [17] with our
Python-based ML question dataset for fair evaluation and we eval-
uate their performance using 1K randomly selected ML questions
(excluded from the training data). Our experiment results show that
there exists significant performance decline of these approaches on
Python-based ML questions. We then perform an in-depth analysis
to explore the reasons. Our analysis reveals that there exist two ma-
jor reasons. First, most traditional Java programming tasks require
only one API to solve, while ML questions often require many more
APIs because ML development tasks often require customization of
data processing, feature engineering, model architecture, optimiza-
tion function, and hyperparameters, etc. Specifically, the average
length of API sequence in the answers to Java programming tasks
is 1.42, while the average length is 5.50 for ML tasks. Second, most
existing approaches only focus on increasing the hit rate of the
first correct API recommended while ignoring the completeness of
the answers recommended. Moreover, the multiple APIs of Python-
based ML tasks pose greater challenges to the recommendation
tasks for Python-based ML tasks. Note that, we also observe several
other reasons for the performance decline, which are closely related
to the nature of machine learning (details are in Section 7.1).

In addition, we have also observed that there exist common
library-specific API usages that can be useful for further improving
the API recommendation for Python-based ML programming tasks.
For example, when constructing a machine learning model in Keras,
Keras.model.Sequential has to be used as a container for model
layers such as keras.layers.Conv2D, keras.layers.Dense. Current API
recommendation approaches cannot capture the above information
about API usage as they do not consider the relationship between
API calls when recommending APIs for a programming task.

RQ2: Can we improve the performance of the existing API
recommendation approaches on Python-based ML tasks?

Based on our findings from RQ1, we propose a simple but effec-
tive booster, i.e., FIMAX, which can significantly improve the per-
formance of existing API recommendation approaches for Python-
based ML programming tasks by leveraging API usage patterns of
ML libraries.

Specifically, we propose to use the frequent itemset mining tech-
nique [26] to identify API usage patterns from the API call se-
quences in the answers of ML programming tasks posted in SO.

Thttps://stackoverflow.com/questions/tagged/tensorflow
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We then extend the recommendation results of the existing ap-
proaches with the API usage patterns. Our evaluation shows that
the proposed approach improves the existing state-of-the-art API
recommendation approaches by up to 54.3% and 57.4% in MRR
and MAP, respectively. We have also conducted a user study in
which 14 developers are divided into two groups using different
tools to answer 20 ML questions randomly sampled from the test-
ing dataset. On average, the group using the FIMAX can improve
answer correctness by 36% and save answering time by 40%.
This paper makes the following contributions:

o We perform the first empirical analysis of existing API recom-
mendation approaches on Python-based ML programming
tasks, reveal their performance degradation on Python-based
ML programming tasks, and summarize the reasons for the
degradation.

e We propose a simple but effective approach, i.e., FIMAX, to
augment the API sequences retrieved by existing approaches
to boost their performance of API recommendations.

e Both our quantitative evaluation and user study show that
FIMAX can help developers find the correct APIs for Python-
based ML programming tasks more efficiently and accurately,
compared with state-of-the-art baselines.

e We release the source code of our tool and the dataset of our
experiments to help other researchers replicate and extend
our study?.

This paper is organized as follows. Section 2 describes the back-
ground of the API recommendation research field. Section 3 presents
the setup of our empirical study. Section 4 shows the details of our
experiment and the results. Section 5 presents the performance of
our proposed approach. Section 6 shows our case study. Section 7
discusses open questions about this study and threats to the validity
of our work. Section 8 presents the related work. Section 9 is the
conclusion of the paper.

2 BACKGROUND ON API
RECOMMENDATION

There are many existing approaches for API recommendation [6, 8—
11, 23, 25, 34, 38, 49]. These approaches can be divided into two
orthogonal categories, i.e., information retrieval-based approach
and deep-learning-based approach. In this paper, two modern ap-
proaches, one for each category, are studied.

2.1 Information Retrieval based API
Recommendation

Information retrieval (IR) based API recommendation approaches [10,
19, 25, 34], as the name suggests, leverage information retrieval
techniques for recommending APIs for a given programming task
described in natural language. These approaches first apply the
source code parsing algorithms and heuristics to extract API call
sequences from the answers of related SO questions and tokenize
them into bag-of-words. Next, these approaches create indexes for
features extracted from the collected SO questions. Given a query,

Zhttps://doi.org/10.5281/zenodo.6360250
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the approaches preprocess the query and then compute the similar-
ities between the query and the collected questions using the built
indices. The most similar matches are returned as output.

The state-of-the-art information retrieval-based approach for
API recommendations is BIKER [19]. It uses both Stack Overflow
questions and API documentation to recommend APIs for Java
programming tasks. BIKER considers the API recommendation
problem as a two-step task. Given an input query, BIKER first
retrieves the k most similar questions by using the text similarity
between the query and all questions in its knowledge base. Then
it creates a list of API candidates from the top k questions and
re-ranks the APIs according to the text similarity between the
query and the documentation of an AP In this paper, we select
BIKER as our baseline to represent the state-of-the-art IR-based
API recommendation technique.

2.2 Deep Learning based API Recommendation

Most deep learning-based API recommendation approaches treat
the API recommendation as a translation task and apply an end-
to-end architecture where the deep learning model takes a query
sentence as input and returns a list of recommended APIs as output.
Most deep learning based API recommendation approaches train
the models on the training data (i.e., a large corpus of question and
answer pairs) and use the trained models for inference. In contrast
to the token similarity ranking strategy of IR-based API recom-
mendation approaches, deep learning-based API recommendation
approaches focus on learning the semantic connection between
queries and the API answers. The deep learning model learns the
semantics of a query from the training data and recommends APIs
based on the deep semantic connection knowledge it learns between
queries and the API answers.

The state-of-the-art deep learning-based API recommendation
approach is DeepAPI [17]. The core model of DeepAPI is a Recurrent
Neural Network(RNN) based Encoder-Decoder model, which is
originally used for neural machine translation(NMT). DeepAPI was
trained on a large corpus of question-API pairs extracted from
GitHub repositories and treats the API recommendation problem as
a sequence generation task where the input is a programming query
and the output is an API sequence. In this paper, we use DeepAPI as
our baseline to represent the state-of-the-art deep learning-based
API recommendation.

3 EMPIRICAL STUDY SETUP

This section describes the research questions of our work, data
collection approach, and analysis methodology.

3.1 Research Questions

Our work is organized by the following two research questions:

RQ1: What is the performance of existing API recommen-
dation approaches on Python-based ML programming tasks?

In this RQ, we set out to investigate whether the state-of-the-art
existing API recommendation approaches, i.e., BIKER and DeepAP]I,
perform well on Python-based ML questions.
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RQ2: Can we improve the performance of the existing API
recommendation approaches on Python-based ML program-
ming tasks?

This question aims to explore possible solutions that can improve
existing API recommendation approaches based on our findings
from RQ1.

3.2 Subjects of Study

To investigate the performance of existing API recommendation
approaches on Python-based ML questions, we select six popular
Python ML libraries according to the number of downloads in
the Python Package Index (PyPI) [2], which is the Python library
management program.

We manually identify the machine learning-related packages
from the top PyPI package list> , which is ranked by number of
downloads. According to PyPI statistics [1] (as of Dec. 2021), the
six libraries that rank by monthly downloads are NumPy, Pandas,
Scikit-Learn, PySpark, TensorFlow, and Keras. NumPy [31] is a
fundamental library used in Python ML development mainly for
numeric array operations. Pandas [24] is a library for data analysis
of tabular data such as data tables. It provides tabular display of
parallel data and also APIs covering basic table operations such as
filtering, sorting, and indexing. Scikit-learn [32] is an important
library in statistical machine learning library that provides machine
learning and scientific algorithms such as matrix operations, alge-
braic equations, and differential equations [41]. TensorFlow [13]
and Keras [21] are two popular deep learning libraries. TensorFlow,
developed by Google, is one of the most commonly used machine
learning libraries in the industry as it supports many industry-
friendly features such as distributed training and a visual debug-
ging environment [50]. Keras offers a user-friendly stack-style API
for building and training deep learning models. It encapsulates the
detailed execution process in high-level APIs. PySpark [14] is a
Python adapter of Apache Spark. It allows developers to use Spark
application features such as Spark SQL, Distributed Data Frame,
etc. in Python.

The libraries studied cover most of the current industrial practice
of machine learning and also represent the key aspects of machine
learning developments. In addition, they cover the area of data
preprocessing and data object processing (NumPy and Pandas),
scientific computing (SciPy and Scikit-learn), distributed machine
learning (PySpark), and deep learning (TensorFlow and Keras). Al-
though NumPy and Pandas are not libraries for building neural
network structures, they are integral to machine learning devel-
opment because they are widely used as the basis for data object
computation in machine learning model development. NumPy APIs
are typically utilised in the middle of the TensorFlow modelling
API sequences. Removing the NumPy APIs would leave the API
sequences incomplete. Thus, in this work we also experiment with
Numpy and Pandas.

Table 1 shows the details of the six libraries studied. The num-
ber of APIs is calculated by counting the number of documented
function nodes in the latest version of the packages using a Python
AST parser. After removing duplicates for each package, we get
the number of unique APIs in our experiment dataset. The number

3https://hugovk.github.io/top-pypi-packages/
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Table 1: The details of studied machine learning libraries in this work

Library Description #APIs # Unique APIs | #SO questions
in documents in dataset
Numpy A library for multi-dimensional arrays and matrices operations. 1,373 1,151 29,771
Pandas A library for data manipulation and analysis. 1,367 913 16,197
Scikit-learn | A library for machine learning algorithms. 1,154 1,082 6,376
Keras An interface for artificial neural networks. 1,407 1,233 8,728
TensorFlow | A library for deep learning developed by Google. 8,028 1,591 10,263
PySpark An interface for Apache Spark in Python. 860 785 8,861

Table 2: Performance of BIKER and DeepAPI on Python-
based ML questions

Evaluation Metrics
Dataset | Approach MRR MAPD
BIKER 0.271 0.115
Python ML =5 3T 0.176 0.068
BIKER 0.554 0.505
Java JDK I AP [ 0.188 0.153

of SO posters for each package is collected from our Python ML
dataset, as shown in Section 3.3.

3.3 SO Post Collection

To create our Python-based ML question dataset, we follow existing
work [19] to extract programming questions and their accepted
answers from Stack Overflow using the data explorer provided
by Stack Exchange [3]. We select questions with the six library
names as Stack Overflow question tags to retrieve questions and
only questions with accepted answers remain.

APIs are extracted from the accepted answer using heuristics.
Specifically, we developed a heuristic parser to extract the method
names from the code snippet and the package and class names are
inferred based on the package import information. If a question
contains multiple APIs, we concatenate all APIs into a list of APIs
to answer the question. We only select answers that contain at
least one API and all APIs are in the same library to reduce noise
in the training dataset. As a result, we collected a total of 80,196
question-API pairs for these libraries.

3.4 Evaluation Metrics

We evaluate API recommendation approaches using Mean Recip-
rocal Rank (MRR) and Mean Average Rank (MAP), which are two
commonly used evaluation metrics in information retrieval and
recommendation system evaluation [19, 22, 35, 36, 44, 46-48]. Both
MRR and MAP range from 0 to 1. MRR describes the rank of the
first correctly recommended API in the recommendation list. It is
calculated by the inverse rank of the first match [19]. A high MRR
indicates that the rank of the first correct match is high. MAP checks
the ranks of all correct matches instead of focusing only on the first
correct answer. A high MAP indicates that there are multiple cor-
rect matches in the recommendation and thus the recommendation
is complete.

4 RQ1: PERFORMANCE OF EXISTING
APPROACHES ON PYTHON-BASED ML
QUESTIONS

To investigate RQ1, we train and evaluate BIKER and DeepAPI on
our Python-based ML questions collected from Stack Overflow (see
Section 3.3 for details).

In addition, an in-depth analysis was conducted to investigate
possible reasons for the difference in performance of the two ap-
proaches on traditional programming tasks and Python-based ML
programming tasks.

4.1 Experimental Setup

Training: Since BIKER and DeepAPI were designed for Java JDK
API recommendation, to make it applicable for Python-based ML
questions, we replace the Java question data with the Python-based
ML question data for retraining the models. Note that, BIKER uses
both question titles and API documents for recommendation, we
also replace the Java documentation with the Python documenta-
tion.

To collect Python documents, we use the Python AST parser
to collect the docstrings of each Python library used in this work.
For each library, we run the AST parser from the root and collect
all docstrings in the “FuctionDef” node and the “ClassDef” node.
To evaluate DeepAPI on Python-based ML questions, we train and
tune the DeepAPI model from scratch on our Python-based ML
question dataset with the same configuration as reported in its orig-
inal paper [17] on a single Nvidia V100 GPU with 32GB memory.

Testing: To evaluate the performance of the examined two API
recommendation models, we randomly select 1k samples for each
library for building the test datasets. According to previous studies
on Stack Overflow [28, 40, 42], Stack Overflow contains not only
API recommendation questions, but also other types of questions,
such as comparing different implementations, asking for an ex-
planation, and asking for program debugging, etc. Therefore, to
reduce noises in the test data, we manually examine each question
to remove the questions that are not suitable for API recommen-
dations. The questions removed in our manual analysis either do
not ask for API recommendations or provide information that is
too general to derive an API recommendation from. For example,
questions that ask for explanations, such as “Why am I not seeing
NumPy’s Deprecation Warning?”, questions that ask for debugging
help, such as “MNIST ValueError when checking target in Keras”,
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questions that are too general to recommend APIs, such as “Con-
straints not working in Optimization using SciPy”. The authors of
this work independently go through each question and identify the
API recommendation-related questions. The agreement among the
researchers measured by Cohen’s Kappa coeflicient is 0.87, which
is a relatively high-level of agreement. We remove the irrelevant
questions and select the first 100 samples for each library from the
remaining samples as the final test set.

Note that, we have removed all test data from the training data
for the fair evaluation.

4.2 Performance Difference

Table 2 shows the MRR and MAP of BIKER and DeepAPI on the
Python ML question dataset. In addition, we also showed the per-
formance of BIKER and DeepAPI on the Java JDK question dataset
used in their original papers [17, 19].

In general, the performance of both approaches significantly
(p-value <0.01) decrease when applied to the Python ML dataset
compared to their performance on the Java JDK dataset.

For BIKER, the MRR declines from 0.554 on the Java JDK dataset
to 0.271 on the Python ML dataset (declines 51.0%), and the MAP
declines from 0.505 to 0.115 (declines 77.2%). For DeepAPI, we can
observe a similar trend for both MRR and MAP, i.e., MRR declines
by 6.0% and MAP declines by 55.0%.

We also note that for the Java JDK dataset, the MRR and MAP of
both approaches are at a similar level, while MAP for the Python
ML dataset is about half the MRR for both approaches. Since MAP
measures the ranks of all correct matches instead of focusing only
on the first correct answer like MRR, the above results show that
the existing API recommendation approaches have challenges on
the API recommendation completeness, i.e., they can hardly capture
the entire set of correct answers.

4.3 Analysis of Performance Decline

Motivated by the significant performance difference showed in
Section 4.2, we further investigated the two datasets (i.e., Java JDK
question dataset and Python-based ML question dataset) and the
recommended APIs of both BIKER and DeepAPI. We found two
main reasons contributing to the performance decline of BIKER and
DeepAPI on the Python-based ML question dataset, i.e., compared
to the Java question data, answers of the Python ML questions often
require more APIs (see Section 4.3.1 for details) and the existing
API recommendation approaches mainly focus on increasing the
hit rate of the first correct API recommended while ignoring the
completeness of the answers recommended and do not consider
the common API usages (see Section 4.3.2 for details). Note that
in addition to these two major reasons, we also observed some
other minor reasons that could decline the performance of the
existing API recommendation approaches. The details can be found
in Section 7.1.

4.3.1 Python ML Questions Requires More APIs. We find that
the average length of API call sequence in the answers of the Python-
based ML questions is longer than that of the answers for Java SDK
questions, which makes the recommendation for Python-based ML
question more challenging. Specifically, the average length of the
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Table 3: An example of Python-based ML question (Bold
APIs are APIs that are matched by BIKER, underlined APIs
are APIs that are missed by BIKER).

Question: convert vgg16 shape output from 4096 features to 2048
Accepted code snippet to answer this question:

vggl6_model = keras.applications.vgg16.VGG16()
model = Sequential()
for layer in vgg16_modellayers[:-1]:
model.add(layer)
model.layers.pop()
# Freeze the layers
for layer in model.layers:
layer.trainable = False
# Add ‘softmax’ instead of earlier ‘prediction’ layer.
model.add(Dense(2048, activation="softmax’))

# Check the summary, and yes new layer has been added.
model.summary()

Ground-truth APIs:
keras.VGG16, keras.Sequential, keras.add, keras.pop,
keras.Dense, keras.summary

Recommended APIs by BIKER:

keras.reshape, keras.concatenate, keras.shape, keras.add,
keras.Input, keras.ones, keras.pad_sequences,
keras.VGG16, keras.transpose, keras.arange

API call sequence in the ground-truth answers of the Java JDK ques-
tions is 1.42, while the average length of the API call sequence in
the answers for Python-based ML questions is 5.50 In other words,
one API can solve a Java JDK question, while five APIs are required
to solve a Python-based ML question on average. The median API
call sequence length also supports this observation, i.e., one in Java
versus five in Python ML.

Due to the fact that most answers to Java JDK questions only
contain a single API, existing API recommendation approaches such
as BIKER and DeepAPI mainly focus on increasing the probability of
the first correct answer (i.e., MRR), while ignoring the completeness
of the recommended APIs (i.e., MAP). Specifically, given a question,
BIKER first obtains candidate APIs from a list of similar questions,
and then re-rank the collected APIs according to the similarity
between the question title and the documentation of each API
to ensure the correctness of the first answer without considering
other APIs that have low similarity scores to the question title if
even they are essential for answering the question. This hurts the
completeness of the recommendation. For DeepAP]I, it uses an LSTM
encoder-decoder sequential model designed for the sequential task.
This mitigates the problem BIKER faces yet still suffers from low
performance. Considering that Python-based ML questions usually
contain 5 or more APIs, the API recommendation in this scenario
should consider both MRR and MAP, i.e., the first correct answer
and all correct answers are ranked higher.

4.3.2 Existing Approaches Did not Consider Common APIs
Usages. Table 3 shows an Python-based ML question, its answer,
and the recommended APIs by using BIKER. The question is asking
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Table 4: Occurrence of API usage patterns

Base Add co-occurrence | confidence
keras.add | keras.Dense 972 0.7086
keras.add | keras.Sequential 1,188 0.6103

for the conversion of 4096 output shape to 2048 output shape. In
the table, we also show the accepted code snippet to answer this
question from which we can see that the answer of API sequence
includes six APIs. In the code snippet, we bold the APIs that are
found by BIKER and underline the APIs that are not found by
BIKER.

Specifically, it first loads the VGG16 model except for the last
layer and freezes the model layers. Then, it adds a new dense layer
to the model with the required feature size. BIKER can correctly sug-
gest “keras.add” and “keras.VGG16”, but miss the prerequisite AP,
“keras.Sequential”. In Keras, “keras.Sequential” acts as a container for
all model layers, which means that the layer operation APIs must be
called after a model container is initialized with “keras.Sequential”.
BIKER fails to recognize this API usage pattern. We also observe
similar cases in DeepAPI’s recommendation results.

The above example shows that existing API recommendation
approaches often neglect the relationships between the APIs in-
volved when recommending APIs for a given question. Motivated
by this, we further investigate the co-occurrence of the involved
APIs in our experimental dataset. The results are in Table 4, from
which we can see that the API “Keras.add” occurs 1947 times, and
“Keras.Sequential” co-occurs 1188 times together with “Keras.add”
out of the 1947 times (i.e., 61%). This reveals the frequent usage
patterns of APIs in solving a particular task, i.e., two or more APIs
co-occur frequently. We have also observed there exist numerous
pairs of APIs that are highly likely to co-occur, which can be con-
sidered as API usage patterns.

The above analysis motivates us to extend the API recommenda-
tion result by existing tools (e.g., BIKER and DeepAPI) by including
API co-occurrence relationships to improve the performance of API
recommendation. Specifically, when an API is recommended, our
approach can identify potential API usage patterns related to it and
further append the involved APIs from the API usage patterns into
the recommended API list.

We believe that such an extension could improve current API
recommendation approaches by increase the completeness of the
APIs recommended.

5 RQ2: SOLUTION TO ENHANCE EXISTING
API RECOMMENDATION APPROACHES

RQ1 has demonstrated the significant performance degradation
of existing API recommendation approaches on Python-based ML
questions. Inspired by the findings of RQ1, we propose a frequent
itemset mining based approach, named FIMAX, that aims to im-
prove the performance of existing API recommendation approaches
for Python-based ML questions by extending existing API recom-
mendation results with API usage information, i.e., co-occurrence
relationships of APIs.
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Figure 1: Overview of FIMAX

5.1 Frequent Itemset Mining for API Extension

Figure 1 shows the workflow of FIMAX . First, FIMAX generates
the co-occurrence relation-based API usage patterns of APIs with
association rule mining technique on API call sequences from the
answers of ML programming tasks. Then, FIMAX further extends
the recommendation from an API recommendation model with the
mined the API usage patterns.

5.1.1 Association Rule Mining. FIMAX first applies the Apriori
algorithm [5] to create a set of API association rules (i.e., API usage
patterns) from the Python-based ML question dataset. Specifically,
we collect the API sequence from the answer of each SO post in the
Python-based ML question dataset, which serves as input to the
Apriori algorithm for rule mining. The Apriori algorithm generates
a pattern hypothesis by randomly selecting two or more APIs as the
base itemset A and then randomly selecting one or more APIs as the
extension itemset B. The algorithm calculates the confidence and
support of the pattern hypothesis {A = B} and compares it to the
confidence and support threshold specified by the user. The Apriori
algorithm accepts a association rule if the confidence and support
of the rule are higher than the threshold values specified [5].

Specifically, Support indicates the frequency of an API associa-
tion rule with respect to the entire dataset. Confidence indicates the
percentage of one or more extended API(s) (e.g., item set B) found
to be true given a base rule (e.g., item set A).

Let A, B be the antecedent and the consequent mined from a list
of API T, the support of A = Bover T is

(A B
support(A = B) = %
and the confidence of A = Bis
_ freq.(A,B)

confidence(A = B) = —————
freq.(4)

As an example, the Apriori algorithm proposes an API usage pat-

tern { “tensorflow.sessi-on "= “tensorflow.run”}. Then the algorithm
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Table 5: An example of API extension of FIMAX

APIs recommended:
numpy.range, numpy.reshape, numpy.arange

Rule A:

{numpy.range = numpy.empty, support = 0.0103}
Rule B:

{numpy.range = numpy.append, support = 0.0168}
Rule C:

{numpy.reshape, numpy.arange =
numpy.array, support = 0.02204}

Extended API list:
numpy.range, numpy.reshape, numpy.append,
numpy.array, numpy.arange

calculates the confidence and support for this pattern. The confi-
dence can be interpreted as the percentage of occurrences of “ten-
sorflow.run” given “tensorflow.session”, and the support of {“ten-
sorflow.session”= “tensorflow.run’} is the percentage of the co-
occurrences of “tensorflow.session” and “tensorflow.run” over the
size of the entire corpus. If both confidence and support are greater
than the specified thresholds, the proposed rule{ “tensorflow.sessi-
on”= “tensorflow.run”} will be added to the table of item set pat-
terns along with the confidence and support values.

5.1.2 API Sequence Extension. Given a list of recommended
APIs R, generated by an API recommendation approach, e.g., BIKER,
FIMAX searches for the extension rules for each API in the list. If
there are rules that match a particular API, FIMAX appends the
associated APIs to R according to the association rules created in
Section 5.1.1 for that APL If there are multiple rules that are eligible
for extension, only the rule with the highest support score will be
utilized. The final API recommendation list consists of the top K
original APIs concatenated with the extended APIs. The extended
APIs are ordered by confidence score.

Table 5 shows an example of the extension. Following the ex-
tension algorithm, FIMAX uses Rule B and Rule C for extension.
In case there are duplicate APIs after extension. For a repeated
recommendation, we keep the first occurrence and remove the
duplicates.

5.2 Experiment Setup

As we discussed in Section 5.1, FIMAX applies Apriori algorithm
for association rule mining, which has two parameters, i.e., support
and confidence, that can significantly affect its output. To find the
best values for these two parameters, we tune them together and
experiment with support threshold values from 0.002 to 0.01 with a
step of 0.001, and confidence thresholds with values from 0.1 to 0.9
with a step of 0.1. Please note that both BIKER and DeepAPI can rec-
ommend many APIs for a given question, e.g., BIKER recommends
up to 50 APIs, as a result there will be a large number of candidate
rules if all the recommended APIs are considered, while only a few
API candidates are likely to be correct in practice. Extending the
wrong API would degrade the performance of a recommendation
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approach. Therefore, we limit the number of APIs to be extended
to less than a threshold, i.e., K.

For our tuning, we perform a grid search with all the above com-
binations of support threshold, confidence threshold, and top K and
calculate the MRR value of each combination for performance com-
parison. The result shows that the BIKER+FIMAX model performs
best when the confidence threshold is equal to 0.1, the support
threshold is equal to 0.02 and top_k is equal to 6, while the Deep-
API+FIMAX model performs best when the confidence threshold
is equal to 0.1, the support threshold is equal to 0.02, and top_k is
equal to 10. The reason for the different best parameter settings for
BIKER and DeepAPI can be these two approaches adopt different
mechanisms in API recommendation and generate different rec-
ommended APIs. It also shows the necessity of parameter tuning
when applying FIMAX to a new API recommendation approach.
We use a Nvidia v100 GPU to train models and recommend APIs
for DeepAPI, and we use Intel i7-4790 CPU, to recommend APIs for
BIKER and FIMAX.

5.3 Performance Analysis of FIMAX

We evaluate the effectiveness of FIMAX on boosting two typical API
recommendation approaches, i.e., BIKER and DeepAPI, on Python-
based ML questions by comparing the performance of original
BIKER/DeepAPI to the performance of these two approaches armed
with FIMAX.

Table 6 shows the evaluation results for BIKER, DeepAPI, BIKER+
FIMAX and DeepAPI+FIMAX on questions from each Python ML
library. From the table, we can see that the FIMAX significantly
increased the performance of both models. Overall, the MRR and
MAP of BIKER increased by 48.36% and 53.46%, respectively, after
applying the FIMAX. The MRR and MAP of DeepAPI increase by
54.28% and 57.36%, respectively, after applying FIMAX. Moreover,
the performance increase of MAP is larger than MRR for both mod-
els, suggesting that FIMAX has a positive effect on the completeness
of API recommendations. Our Wilcoxon signed-rank test (p<0.05)
also suggests that BIKER and DeepAPI can achieve significantly
better performance after applying FIMAX.

In addition, we can also see that BIKER+FIMAX has a noticeable
improvement over the performance of BIKER for each library. The
MAP of BIKER in the PySpark package shows the most significant
improvement, i.e., a 126.46% increase after applying FIMAX. The
main reason for this improvement might be that PySpark is an
analytics engine for Big Data and most of its API sequence follows
the Map-Reduce related patterns that can be learned by FIMAX.

For DeepAPI, we see that the MRR for the NumPy library in-
creased by 127.6% and the MAP increased by 142.7% after the FI-
MAXwas applied, which is the most significant improvement of
DeepAPI after applying FIMAX. One of the possible reasons for
this improvement is that NumPy is designed for manipulating ar-
rays and matrices exclusively. Thus, its API usage patterns can be
much more targeted than other libraries, which makes them easy
for FIMAX to learn.

Note that although FIMAX can significantly improve BIKER
and DeepAPI on most Python ML libraries regarding both MRR
and MAP, we observe a performance decline on the Scikit-learn
library of DeepAPI after applying FIMAX. Specifically, the MAP of
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Table 6: Performance of FIMAX on BIKER and DeepAPI.

Librar BIKER BIKER+FIMAX | Improvement DeepAPI DeepAPI+FIMAX | Improvement
Y |TMRR | MAP | MRR | MAP | MRR | MAP || MRR | MAP | MRR | MAP MRR | MAP
Numpy 0.4369 | 0.1639 | 05689 | 0.2114 | 30.75% | 27.39% || 0.2160 | 0.0699 | 0.4918 | 0.1697 127.6% | 142.7%
Pandas 0.1131 | 0.0514 | 0.1955 | 0.0635 | 67.50% | 21.48% || 0.2286 | 0.0791 | 0.2749 | 0.0975 20.22% | 23.24%
Scikit-learn | 0.0187 | 0.0037 | 0.0417 | 0.0417 | 100.5% | 96.95% || 0.1751 | 0.0656 | 0.1888 | 0.0604 7.786% | -7.99%
Keras 0.0447 | 0.0098 | 0.0612 | 0.0237 | 7.021% | 88.95% || 0.2124 | 0.0765 | 0.2662 | 0.0986 25.34% | 28.85%
Tensorflow | 0.2543 | 0.0666 | 0.3578 | 0.1137 | 37.40% | 61.39% || 0.2954 | 0.1020 | 0.4060 | 0.1497 37.41% | 46.73%
Pyspark | 0.2294 | 0.0422 | 0.3998 | 0.0969 | 71.31% | 126.7% || 0.2513 | 0.0838 | 0.4578 | 0.1413 82.19% | 68.49%
[ Overall [ 0.1829 | 0.0563 | 0.2714 [ 0.0864 | 4836% | 53.46% || 0.2298 | 0.0795 [ 0.3476 | 0.119% 54.28% | 57.36%
Table 7: Time cost of BIKER, DeepAPI, and FIMAX. ° *
Approach Device Training | Recommendation 061 —T 1 1
BIKER |Intel i7-4790 CPU| N/A 5.4s/query —r
DeepAPI | Nvidia V100 GPU | 14 hrs 0.57s/query 4 1 )
FIMAX |Intel i7-4790 CPU| 3 mins 0.00576s/query | | |
_ 1 —T—

DeepAPI+FIMAX declines -7.99% compared to the performance of
DeepAPI One of the possible reasons for this is that the Scikit-learn
library contains many statistical algorithms that are rarely used and
queried on SO, making it difficult for FIMAX to learn the correct
API usage patterns while returning many false positives, which
further causes a performance decline.

Table 7 shows the time cost of FIMAX and the baselines. In the
training phase, BIKER requires no training, and DeepAPI requires
14 hours to train the model. In the recommendation phase, BIKER
requires 5 seconds, while DeepAPI requires 0.5 seconds for each
query. The time cost of FIMAX is only 3 minutes in training and
0.00576 seconds per query in the recommendation phase. Compared
to the time cost of BIKER, the time cost of FIMAX is negligible in
both the training and recommendation phases.

6 USER STUDY

In this section, we conduct a user study to further investigate
whether FIMAX can help developers find correct APIs more ef-
ficiently and accurately.

6.1 Study Design

To conduct our user study, we randomly selected 20 questions
from our test dataset. For each selected question, we created an
API retrieval task using the question title as the task description.
We invited four PhD students and ten MS students familiar with
machine learning development to complete the 20 tasks. The years
of their experience in developing machine learning software based
on Python varied from two to six years, with an average of 4 years.
We then divided the participants into two groups (G1 and G2), with
experience evenly distributed in both groups. The 20 tasks were also
randomly divided into two groups (T1 and T2). The experiment was
conducted in two phases. In the first phase, participants in G1 and
G2 were asked to complete the tasks in T1 using FIMAX+BIKER and
BIKER, respectively. In the second phase, the two groups exchanged
tools to complete the tasks in T2. Each participant had to record
his/her screen during the experiment so that we could record how

I I I
BIKER FIMAX+BIKER BIKER FIMAX+BIKER

(a) Correctness (b) Completion Time (mins)

Figure 2: Results of user study.

much time he/she spent on a question. Note that, DeepAPI is not
evaluated since it performs relatively poor than BIKER.

6.2 Results Analysis

Following existing studies [19, 45], we use two metrics to measure
the performance of the participants on API retrieval task, i.e., cor-
rectness and completion time. Specifically, correctness evaluates
whether a participant can find the correct APIs for a given question,
and we measure the proportion of correct APIs submitted by a par-
ticipant among all APIs in the ground truth answer of the question.
Completion time evaluates how quickly a participant can answer a
given question. For each question, we recorded the correctness and
completion time of each participant, as well as the average value of
the two groups of participants.

Figure 2 shows the performance of the groups with BIKER and FI-
MAX+BIKER over the 20 tasks. Using FIMAX+BIKER, participants
completed the tasks more accurately and took less time than par-
ticipants using the original BIKER. On average, the correctness and
completion time (in minutes) of participants using FIMAX+BIKER
and BIKER were 0.45 and 4.5, versus 0.33 and 6.3, respectively. We
further used Wilcoxon signed-rank test for verifying the statistical
significance of the differences. The p-values for both correctness
and completion time are small than 0.05, which indicates that the
differences of FIMAX+BIKER and BIKER in correctness and com-
pletion time are statistically significant.

7 DISCUSSION
7.1

In section 4.3, we present two major reasons that contribute to the
performance decline of existing API recommendation approaches.

More Reasons for Performance Decline
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Figure 3: Performance of FIMAX under different top-k set-
ting regarding MRR

In addition, there are several other reasons for the performance
decline that we found in our investigation of the recommendation
results, which are related to the nature of machine learning. We
present these reasons as follows to motivate the future directions to
improve the API recommendation on Python-based ML questions.
Library Bias: We note that some users specify the library name
in their questions and others do not. When a user does not spec-
ify the library name, the API recommendation approach suffers
from the popularity bias, i.e., the APIs of more popular libraries
in the training dataset are more likely to be recommended. For
example, the API used for a fully connected layer in TensorFlow is
“tf.contrib.layers.fully_connected” while it is “keras.layers. Dense” in
Keras. When a user asks questions about implementing a fully con-
nected dense layer without mentioning the library name, the model

tends to recommends “keras.layers.Dense” rather than “tf.contrib.layers.

fully_connected”. This is because there are many more questions

about “keras.layers.Dense” than that of “tf.contrib.layers.fully connected”

on Stack Overflow, and rarely used APIs are less likely to be rec-
ommended. Such bias can be mitigated by specifying the library
name in the question or balancing the training examples. This also
motivates the practical need for fairness study in API recommenda-
tions [4, 15].

Multiple solutions: There are questions that have multiple solu-
tions. For example, a question asking how to iterate through a Pan-
das column can be answered with solutions such as “df.iterrows()”
or “df.iteritems()”. Although both are correct recommendations,
following the existing evaluation method [17, 19], only the rec-
ommendation that matches the answer in the collected dataset is
considered correct. Such problems can be mitigated by expand-
ing the answers to their synonyms, or collecting all the accepted
answers. Moreover, this finding also indicates how inflexible the ex-
isting evaluation method for API recommendations is and motivates
the need for new evaluation criteria.

Documentation issue: Another possible reason is that the for-
mat and organization of the documentation of Python-based ML
libraries are different from those of Java JDK, which mainly affects
the performance of BIKER. BIKER employs the documentation for
similarity-based API re-ranking under the assumption that the doc-
umentation can provide description of the corresponding API. How-
ever, the API documentation of the Python ML libraries contains
a detailed description of the input, output, caveats, and examples.
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Figure 4: Performance of FIMAX under different top-k set-
ting regarding MAR

This severely disturbs the recommendation model when calculat-
ing the similarity between the documentation and the question,
resulting in performance degradation. This motivates the need for
documentation understanding and key information extraction to
automatically reorganize various sections of Python-based ML API
documentation before applying BIKER.

7.2 What is the Performance of FIMAX Against
Different Top-k Settings?

Both BIKER [19] and DeepAPI [17] can recommend top k APIs
for a given question. Following their suggestion, in this work, we
evaluate the top 10 recommended APIs in the API sequences rec-
ommended by the baseline methods (i.e., BIKER and DeepAPI) and
also in the API sequences extended by both BIKER+FIMAX and
DeepAPI+FIMAX. However, since the number of APIs required to
solve a Python-based ML question is much larger than that of a
Java JDK question (details are in Section 4.2), we further evaluate
the performance of FIMAX under more recommended APIs, i.e.,
from 5 to 50 with 5 as the interval.

Figure 3 shows the MRR of BIKER, DeepAPI, BIKER+FIMAX and
DeepAPI+FIMAX under different top-k configurations. We can see
that the MRR values of BIKER and DeepAPI are below 0.20 and 0.25
from the top 5 to the top 50 recommendation results respectively.
Also, the performance of BIKER and DeepAPI remains almost the
same from the top 5 to the top 50 recommendations, which means
that BIKER and DeepAPI cannot hit more correct APIs even if we
include more recommendations.

After FIMAX is applied to both BIKER and DeepAP], the per-
formance of both approaches increases dramatically and remains
stable across different top K settings. From Figure 3, we can see
that the performance of BIKER+FIMAX is higher than BIKER at
each top-K setting and increases slightly until the top-15 recom-
mendation, meaning that BIKER+FIMAX is able to recommend
the correct first match within 15 recommendation results. Figure 4
shows MAP values of BIKER, DeepAPI, BIKER+FIMAX, and Deep-
API+FIMAX under top k configurations from 5 to 50. Similar to the
MRR result, the MAP values of BIKER and DeepAPI remain almost
the same from the top 5 to the top 50. While the MAP values of
BIKER+FIMAX and DeepAPI+FIMAX increase from top 5 to top 15,
which shows that the FIMAX extension approach is able to increase
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Table 8: Performance of FIMAX on different Java SO ques-
tions regarding the length of API sequence in the answers.

Java Improvement
Questions MRR | MAP | count
Single Answer (=1) 3.2% | 3.2% 100
Medium Answer ([2,5]) | 0.8% | 5.2% 100
Long Answer (>5) 04% | 6.9% 100
] Overall | 1.0% | 50% [ 300 |

the completeness of the original recommendation result of BIKER
and DeepAPI in top k settings from 5 to 50. Also, BIKER+FIMAX
and DeepAPI+FIMAX are able to recommend correct APIs not only
for the first 10 but also for the first 15 recommendation results.

7.3 Generalizability of FIMAX

In this paper, FIMAX has been shown to be effective in improving
the performance of API recommendation on Python-based ML pro-
gramming tasks whose answer contains a long API call sequence,
while its performance on traditional Java SO questions that require
few APIs is unknown (details are in section 4.3.1). In this section,
we further examine the generalizability of FIMAX by applying it to
Java JDK questions. Specifically, for this experiment, we reuse the
JAVA JDK dataset of BIKER [19]. FIMAX mines the API usage rules
on the training dataset and tunes its parameters (i.e., support and
confidence) by following the same process used in section 5.2. Since
most Java questions require few APIs, we further divide the test
dataset into three categories based on the number of APIs required,
i.e., Single (requires one API), Medium (requires two to five APIs),
and Long (requires more than five APIs). For the Single category,
we randomly select 100 questions from the original test dataset of
BIKER. Meanwhile, we find that most questions in BIKER’s test
dataset are single-answer questions, thus for Medium and Long cat-
egories, we randomly select 100 samples from the BIKER’s training
data and exclude them when training BIKER.

Table 8 shows the improvement of FIMAX+BIKER regarding
MRR and MAP for different types of JAVA questions compared to
the performance of BIKER. From the result, we can see that MAP
increases by about 5% for the three categories and MRR improves
by 3.2% for Single answer. The increase in MRR results from cases
where none of the original API recommendations are correct, but
the extended API hits the correct answer. The experiment result
on Java JDK questions is consistent with that of Python-based ML
questions, i.e., the FIMAX has a positive effect on the completeness
of API recommendations. Our Wilcoxon signed-rank test result
(p < 0.05) further confirms that FIMAX+BIKER could achieve
significantly better performance than BIKER.

7.4 Threats to Validity

Internal Threat: Since BIKER and DeepAPI are designed for Java
questions. We need to make necessary adaptation on them for
Python-based ML questions. We reused the published source code
of BIKER and DeepAPI for the baseline method with our dataset.
We have carefully reviewed the implementation of FIMAX and the
process of applying FIMAX to BIKER and DeepAPI to ensure that
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FIMAX works as intended. Therefore, the threat to internal validity

is low.

Construct Threat: We follow the existing work [19] and adopt the

same metrics (i.e., MRR and MAP) for performance evaluation. MRR

and MAP are computed by reusing the algorithm in the source code

of BIKER. However, the performance of FIMAX could be different

if other metrics are used. In the future, we plan to examine FIMAX

with other metrics, e.g., Precision and Recall, which are widely used

in information retrieval [37].

External Threat: We collect the Python-based ML questions dataset
from the official data explorer provided by Stack Exchange [3]. Al-
though we follow the same criteria as BIKER to filter the noise

data, our dataset could still contain noise. To reduce this threat, we

manually checked our test dataset as described in section 4.1, the

agreement among the authors measured with the Cohen’s Kappa

coefficient is 0.8731, indicating high agreement.

8 RELATED WORK

API Recommendation: There are many other approaches for API
recommendation other than BIKER and DeepAPI [10, 25, 34, 35, 45].
Rahman et al. [35] proposed Rack for class-level Java API recom-
mendation using a customized co-occurrence-based data-mining
algorithm on top of the Lucien engine. BIKER reported better per-
formance compared to RACK at the class level. Raghothaman et al.
[34] proposed SWIM for synthesizing code snippets using API usage
pattern mining techniques on GitHub code repositories. It trains a
query-to-API model with the API call sequences from GitHub, and
then synthesizes code snippets for a given query using the model.
The difference between FIMAX and RACK and SWIM is that FI-
MAX applies the Apriori algorithm for mining API usage patterns,
while Rack uses a customized technique and SWIM uses a mixture
of several algorithms for code synthesis. McMillan et al. [25] pro-
posed Portfolio for recommending related functions in C++ using
data mining techniques in code archives. It applies the PageRank
algorithm as well as the function call graph for association model
building, and a customized similarity metric for relevant function
ranking. Chan et al. [10] proposed a graph search approach that
improves the performance of Portfolio.

They first build an API call graph using the text phrase in API-
related questions, and then apply a customized shortest path in-
dexing scheme for result ranking. Their approach significantly
improves the performance of Portfolio.

Most existing studies on API recommendations have focused on
Java programming questions. In this work, we investigate two state-
of-the-art approaches, i.e., BIKE and DeepAP]I, for Python-based ML
programming tasks. He et al. [18] proposed PyART for real-time
Python API recommendation. PyART is able to recommend not
only APIs from third-party libraries, but also project specific APIs.
We did not compare to PyART because we believe that such a com-
parison can be unfair, i.e., PyART and our approach use different
information for API recommendation in different scenarios. Specif-
ically, PyART focuses on real-time code completion and makes API
recommendations based on the context of the programming tasks.
Our approach is applied to a programming QA system by providing
a search service that accepts a programming question and returns
a list of APIs.
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Mining API Usages: There are many studies on mining API
usage [20, 27, 30, 33, 39, 51]. Treude et al. [39] proposed SISE, an
API documentation augmentation technique that provides usage
insights to developers. It applies a pattern-based approach with
consideration of part-of-speech tags for feature extraction and a
supervised machine learning approach for extracting insights from
SO posts. In a comparative study with eight software developers,
SISE was found to contribute the most useful information to API
documentation. Moreno et al. [27] have proposed MUSE for mining
code examples. Given a particular method, it returns a list of related
code examples generated by a combination of code clone detection
and static slicing, and ranks the result based on a set of usage-based
heuristics rules. Zhong et al. [51] proposed MAPO for recommend-
ing related code snippet using frequent API usage patterns. MAPO
builds a recommendation model using a frequent sub-sequence
mining algorithm with source code extracted from Google code
archives. For a given API method, it recommends the associated API
calls based on the usage patterns captured by the model. Petrosyan
et al. [33] proposed an approach to discover tutorial sections to
explain a particular API type. They create a supervised text classifi-
cation model for classifying tutorial fragments based on linguistic
and structural features. Nguyen et al. [30] proposed API2VEC, a
model that learns the semantic relationship between APIs using
word embedding techniques. They build an embedding model using
the CBOW word2vec model with the extracted API sequence from
Java and C# code snippets. They demonstrate the usefulness of
API2VEC with 3 example applications, including an example of a
newly discovered API mapping between Java and C# code. They go
one step further and develop an automated API mapping discovery
tool called API2API based on API2VEC for API migration tasks be-
tween Java and C#. Jiang et al. [20] have proposed an unsupervised
approach called FRAPT for finding relevant tutorial fragments for a
given APL The difference between FRAPT and our approach is that
FRAPT uses PageRank and a topic model-based algorithm, while
FIMAX uses the Apriori algorithm for association rule mining.

9 CONCLUSION

In this paper, we investigate the effectiveness of state-of-the-art
API recommendation approaches, i.e., BIKER and DeepAPI, on
Python-based ML programming tasks. Specifically, we conducted
an empirical study of programming questions related to six widely
used Python-based ML libraries. We find two main reasons that
contribute to the performance decline of existing approaches: (1)
Python-based ML tasks often require significant long API sequences,
and (2) there exist common API usage patterns in Python-based
ML programming tasks that existing approaches cannot handle.
Inspired by our findings, we proposed FIMAX, which enhances
existing API recommendation approaches by using API usage in-
formation mined from SO questions. Our evaluation shows that
FIMAX can significantly boost existing state-of-the-art API recom-
mendation approaches. Our user study further demonstrates the
practical value of FIMAX for API recommendations.

In the future, we plan to investigate the effectiveness of FIMAX
on other API recommendation approaches and programming tasks
in other domains and languages.
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