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ABSTRACT
Test case prioritization (TCP) is a practical activity in software test-
ing for exposing faults earlier. Researchers have proposed many
TCP techniques to reorder test cases. Among them, coverage-based
TCPs have been widely investigated. Specifically, coverage-based
TCP approaches leverage coverage information between source
code and test cases, i.e., static code coverage and dynamic code
coverage, to schedule test cases. Existing coverage-based TCP tech-
niques mainly focus on maximizing coverage while often do not
consider the likely distribution of faults in source code. However,
software faults are not often equally distributed in source code, e.g.,
around 80% faults are located in about 20% source code. Intuitively,
test cases that cover the faulty source code should have higher
priorities, since they are more likely to find faults.

In this paper, we present a quality-aware test case prioritization
technique, QTEP, to address the limitation of existing coverage-
based TCP algorithms. In QTEP, we leverage code inspection tech-
niques, i.e., a typical statistic defect prediction model and a typical
static bug finder, to detect fault-prone source code and then adapt ex-
isting coverage-based TCP algorithms by considering the weighted
source code in terms of fault-proneness. Our evaluationwith 16 vari-
ant QTEP techniques on 33 different versions of 7 open source Java
projects shows that QTEP could improve existing coverage-based
TCP techniques for both regression and new test cases. Specifically,
the improvement of the best variant of QTEP for regression test
cases could be up to 15.0% and on average 7.6%, and for all test
cases (both regression and new test cases), the improvement could
be up to 10.0% and on average 5.0%.
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1 INTRODUCTION
Modern software constantly evolves as developers make source
code changes such as fixing bugs, adding new features, refactoring
existing code, etc. To ensure that the changes do not introduce new
bugs, regression testing is commonly conducted against existing
functionalities.

However, regression testing can be expensive. Especially for
large projects, the regression testing could consume 80% of the over-
all testing budgets and require weeks to run all test suites [14, 24, 64].
Intuitively, test cases that could reveal bugs should be run earlier so
that the developers could have more time to fix the revealed bugs
and speed up the system delivery.

Along this line, test case prioritization (TCP) has been proposed
and intensively studied for regression testing [23, 44, 50, 52, 53, 64,
66, 75, 82, 85]. TCP techniques reorder test cases to maximize a cer-
tain objective function, typically exploring faults earlier [64]. TCPs
also have been widely adopted in industry. For instance, Microsoft
has deployed systems that support TCP such as Echelon [70] and
Microsoft Dynamics AX [13]. Researchers have applied TCP tech-
niques on projects from Google [24, 84] and Salesforce.com [12] and
have shown that TCPs could significantly improve the efficiency of
regression testing.

Many TCP techniques have been proposed such as coverage-
based TCPs [17, 36, 37, 44, 50, 64, 82, 88], requirement-based TCPs [7,
33], and change-based TCPs [35, 66], etc. Coverage-based TCPs
have been shown to outperform other TCPs in terms of revealing
faults [32, 47, 48]. A typical coverage-based TCP technique lever-
ages coverage information between source code and test cases, i.e.,
static code coverage (static call graph from current version) and dy-
namic code coverage (dynamic call graph from the last execution),
to schedule test cases by maximizing code coverage with different
coverage criteria. Coverage-based TCPs assign higher priorities to
test cases that have higher dynamic or static code coverages.

Existing TCP techniques often do not take the likely distribution
of faults in source code into consideration. In other words, they
assume that faults in program source code are equally distributed.
However, as reported in existing work [60, 61, 72], the fault distri-
bution in source code is often unbalanced, i.e., around 80% faults
are located in about 20% source code [60]. Intuitively, test cases
that cover the more fault-prone code are more likely to reveal bugs
so that they should be run with a higher priority.

The goal of this study is to propose a quality-aware TCP tech-
nique, QTEP, that addresses the above limitation of existing TCPs.
We evaluate the quality of source code in terms of fault-proneness
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and then we further use the quality information to prioritize test
cases.

To achieve the goal, QTEP givesmoreweight to fault-prone source
code so test cases that cover the fault-prone code have a higher
priority to be executed. We identify fault-prone source code in a
software project by using two code inspection approaches, i.e., static
bug finders and defect prediction models, which are two widely
studied approaches in code inspection research to help developers
find bugs [9, 42, 62]. In this study, we leverage these two code
inspection techniques to improve existing coverage-based TCPs.

In addition, we apply QTEP to both regression and new test cases.
Most existing TCP techniques only focus on prioritizing regression
test cases [17, 36, 37, 44, 50, 64, 82, 88]. However, in real-world
testing practice, the test suite for a modified software system often
consists of: (1) existing test cases, i.e., regression test cases, which
are designed to verify whether the existing functionalities still
perform correctly after changed, and (2) new test cases, which are
added to test the modification. During software evolution, these two
types of test cases are essential for testing the modified software
and detecting bugs [47]. Thus, we consider both the two types of
test cases in this study.

This paper makes the following contributions:
• We propose a novel quality-aware TCP technique, QTEP,

which leverages two dominant code inspection techniques,
i.e., a typical statistic defect prediction model and a typical
static bug finder, to weight source code in terms of fault-
proneness. Then, QTEP adapts existing coverage-based TCPs
by considering the fault-proneness of source code.

• We conduct an extensive study to compare the perfor-
mance of QTEPwith existing coverage-based TCPs for both
regression test cases and new test cases at the class- and
method-level granularities.

• We present a rigorous empirical evaluation using 33 ver-
sions of 7 open source Java projects and explore 16 differ-
ent variants of the proposed QTEP. Results show that QTEP
could improve existing coverage-based TCP techniques
for both regression and new test cases. Specifically, the
improvement of the best variant of QTEP for regression
test cases could be up to 15.0% and on average 7.6%, and
for all test cases (both regression and new test cases), the
improvement could be up to 10.0% and on average 5.0%.

The rest of this paper are organized as follows. Section 2 describes
the basic background. Section 3 shows the design of QTEP. Section 4
shows the setup of our experiments. Section 5 presents the results
of our research questions. Section 6 discusses our results and the
threats to the validity of this work. Section 7 surveys the related
work. Finally, we summarize this paper in Section 8.

2 BACKGROUND
2.1 Test Case Prioritization
A typical TCP technique reorders the execution sequence of test
cases based on a certain objective, e.g., fault-detection rate [64].
Specifically, TCP can be formally defined as follows: given a test
suite T and the set of its all possible permutations PT , TCP tech-
niques aim to find a permutation P

′

∈ PT that (∀P
′′

) (P
′′

∈ PT ) (P
′′

,

P
′

), f (P
′

) ≥ f (P
′′

), where f is the objective function.

Most existing TCPs leverage coverage information, e.g., dy-
namic code coverage (dynamic call graph) from the last run of test
cases [37, 65], static code coverage (static call graph) from static
code analysis [17, 36, 50, 69, 74]. The commonly used coverage
criteria include statement, method, and branch coverages. In this
work, we choose to examine statement and method coverages, since
previous work has shown that statement and method coverages
are more effective than other coverage criteria [47, 48, 66].

For coverage-based TCP techniques, there are two widely used
prioritization strategies, i.e., total strategy and additional strat-
egy [44, 64, 82]. The total coverage strategy schedules the execution
order of test cases based on the total number of statements or meth-
ods covered by these test cases. Whereas, the additional coverage
strategy reorders the execution sequence of test cases based on the
number of statements or methods that are not covered by already
ordered test cases but covered by the unordered test cases.

In this study, we validate whether performances of the coverage-
based TCP techniques could be improved by considering the results
of code inspection techniques. The reason we focus on the coverage-
based TCP techniques is that they have been widely explored and
outperformed most of the other TCP techniques [32, 47, 48]. In
addition, we evaluate the state-of-the-art coverage-based TCP tech-
niques for both regression and new test cases.
2.2 Code Inspection Techniques
Software static code analysis techniques and software defect pre-
diction models are two lines of work to help detect software bugs.
Static bug finders, e.g., FindBugs [34], PMD, and Jlint, leverage well-
defined bug patterns and report likely bug locations in source code.
Defect prediction models build machine learning classifiers based
on various metrics [18, 29, 30, 49, 78] and predict where defects are
likely to occur in the source code [42]. Both techniques are widely
used for detecting fault-prone code. Rahman et al. [62] found that
these two techniques complement each other to find different bugs.

In this work, we examine whether the two code inspection tech-
niques could help improve existing TCP techniques.

2.2.1 Static Bug Finders. Static bug finders (BF) detect specific
kinds of coding errors such as buffer overflow, race conditions, and
memory allocation errors, via programming patterns [15, 25, 26, 39,
45, 58, 62, 71, 77, 79]. Static bug finders mainly include informal
heuristic pattern-matching approaches and formal verification tech-
niques. In practice, formal verification approaches are not scalable,
so most static bug finders are pattern-based.

Typical pattern-based bug finders include FindBugs [34], PMD,
and Jlint, which have been widely used to detect real-world soft-
ware bugs. Previous work [62] has shown that FindBugs is more
effective than PMD and Jlint in terms of detection precision. Since
one focus of this study is to explore the feasibility of leveraging the
results of static bug finders to improve the efficiency of existing
TCP techniques. Thus, we only use the representative static bug
finder, i.e., FindBugs, in our experiments.

2.2.2 Software Defect Prediction. Software defect prediction
techniques (DP) leverage various software metrics to build ma-
chine learning models to predict unknown defects in the source
code [31, 38, 51, 56, 57, 72, 78, 80, 87, 91]. Based on the prediction
results, software quality assurance teams can focus on the most
defective parts of their projects in advance.
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Figure 1: Overview of the proposed QTEP. Vn and Vn+1 are two ver-
sions.C1 toCm are consecutive commits between these two versions
that introduce changes to the source code and test cases.

Typically, defect prediction models could be categorized as su-
pervised or unsupervised models. Most of existing defect prediction
models are supervised [31, 38, 51, 56, 72, 78, 80, 91]. These models
leverage past defects from software historical data to build machine
learning classifiers and then use the classifiers to predict future
bugs. However, not all projects have enough defect data to build a
defect prediction model, so unsupervised models [57, 87] are also
proposed based on the characteristics of defect prediction metrics.

To directly compare QTEP to existing TCP techniques, we reuse 33
versions from 7 open source Java projects from previous TCP stud-
ies [21, 50, 66]. Some of these projects do not have well-maintained
past defects. This means we do not have enough defect data to build
supervised models. Thus, we only examine unsupervised defect
prediction models in our experiments.

Note that our goal of this study is not to find the best defect
prediction metrics, so we only build defect prediction models with
21 widely used code metrics, e.g., lines of code [46], code complexity
metrics [31, 46, 51], and object-oriented metrics [22], etc. We use
the Understand [3] to collect these code metrics. The work from
Zhang et al. [86] contains the full list of these metrics, which are
described in their Table III.

3 APPROACH
Figure 1 illustrates that our approach consists of three steps: (1)
leveraging code inspection techniques to detect fault-prone source
code (Section 3.1), (2) weighting source code based on results from
different code inspection approaches (Section 3.2), and (3) adapting
existing TCP techniques and evaluating the results (Section 3.3).

3.1 Fault-prone Code Inspection
Code Inspection with FindBugs. Given a subject project, we di-
rectly perform FindBugs on its source code (without test code) to
detect potential bugs. Since FindBugs only outputs detection re-
sults at line level, we aggregate the results into method level and
class level to meet different TCP granularities. Moreover, we con-
sider all detection results grouped by various categories. FindBugs
groups detected fault-prone code instances into categories such as
correctness, vulnerability, malicious code, security, multi-threaded

Algorithm 1 Weighting source code units
Input: Inspection results at class level CBuддy and at method level MBuддy . The sets of all

methodsM and all statements S to be weighted. Parametersweiдht_base ,weiдht_c , and
weiдht_m.

Output: Weighted method setMWeiдhted and statement set SW eiдhted .

1: //Initialization, set default values for examined code units.
2: for each unweighted methodMWeiдhtedi inMWeiдhted do
3: MWeiдhtedi = weiдht_base ;
4: end for
5: for each unweighted statement SW eiдhtedi in SW eiдhted do
6: SW eiдhtedi = weiдht_base ;
7: end for
8: //Weight methods
9: for each unweighted methodMi inM do
10: if Mi inMBuддy then
11: MWeiдhtedi +=weiдht_m;
12: end if
13: if CBuддy containsMi then
14: MWeiдhtedi +=weiдht_c ;
15: end if
16: end for
17: //Weight statements
18: for each unweighted statement Si in S do
19: if MBuддy contains Si then
20: SW eiдhtedi +=weiдht_m;
21: end if
22: if CBuддy contains Si then
23: SW eiдhtedi +=weiдht_c ;
24: end if
25: end for

correctness, performance, bad practice, and dodgy code. The first
six types are likely to be real bugs, the last two types are refactoring
issues. Since bad practice and dodgy code could also fail test cases,
in this work, we use all these reported fault-prone code instances
as seeds to weight source code.

Code Inspection with Defect Prediction Model. Similar to
static bug finders, defect prediction models also predict potential
faults in the source code snapshot. As we described in Section 2.2.2,
we build unsupervised defect prediction models in this work. For
the unsupervised defect prediction models, we use the state-of-
the-art technique, i.e., CLAMI [57], which achieves comparable
performance to supervised models and has been open-sourced. To
consider different test case prioritization strategies and scenarios,
we build CLAMI models at both method and class levels and CLAMI
directly outputs the lists of predicted bugs at both levels.

In this study, we use all the reported warnings from FindBugs
(or CLAMI) to initialize QTEP without filtering out any of them.

3.2 Weighting Source Code Units
We leverage the detection results from the two code inspection

approaches to weight the fault-prone source code units. A code
unit could be a statement, a branch, a method, or a class, which
depends on different test case prioritization strategies. In this work,
we focus on weighting statement-level and method-level code units
since we use statement-level and method-level coverage criteria to
examine coverage-based TCPs (Section 2.1).

Algorithm 1 shows how to weight statement-level and method-
level code units by using detection results from the code inspection
approaches. Note that, we use the detected buggy classes and meth-
ods by the two code inspection approaches. Initially, the algorithm
assigns a default weight to all code units (i.e., all statements and
methods). Then, given a code unit, if the class or the method that
contains this code unit is detected as buggy, the weight of this code
unit will be calculated by accumulating the weights of the buggy
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class or the buggy method. Otherwise, if the class or the method
that contains this code unit is identified as clean, its weight will
not be updated. Code units that are not covered by any buggy class
or method will be assigned the default weight.

Parameters: In the above algorithm, there are three parameters,
i.e.,weiдht_base ,weiдht_c , andweiдht_m that could affect the ef-
fectiveness of the proposed QTEP. We describe the setup, tuning,
and impact of these three parameters in Section 4.6.

• weiдht_base is the base weight for all code units, i.e., the
default weight for initializing the weights of all code units.

• weiдht_c is the weight for detected buggy classes by code
inspection techniques.

• weiдht_m is the weight for detected buggy methods by
code inspection techniques.

For CLAMI, we use the class-level prediction results as seeds to
weight code units usingweiдht_c , and use the method-level predic-
tion results as seeds to weight code units usingweiдht_m. FindBugs
outputs detection results at line level, with the line-level detection
results, one can assign the reported buggy lines a different weight,
and further accumulate the lines to weight the involved statements
and methods. While, to make the calculation of FindBugs consis-
tent with defect prediction models, in this work, similar to CLAMI,
we use the classes and methods that contain the detected buggy
lines as seeds to weight code units usingweiдht_c andweiдht_m
respectively.
3.3 Quality-Aware Test Case Prioritization
After weighting all the source code units of a project, we then adapt
existing coverage-based TCP techniques using these weighted code
units. Comparing to existing coverage-based TCPs, QTEP leverages
the quality-aware coverage information of test cases. In this section,
we show how to calculate the quality-aware statement and method
coverages of a test case.

A project P hasmmethod-level code units, i.e., {mc1,mc2, ...,mcm },
and s statement-level code units, i.e., {sc1, sc2, ..., scs }. Its test suiteT
consists ofn test cases, i.e., {t1, t2, ..., tn }.MWeiдhted ({mw1,mw2, ...,
mwm }) and SWeiдhted ({sw1, sw2, ..., sws }) are the weight sets for
the method-level and the statement-level code units respectively.

Given a test case ti (1 ≤ i ≤ n), we use QMCoveraдe[ti ] and
QSCoveraдe[ti ] to denote its quality-aware method coverage and
statement coverage respectively.

QMCoveraдe[ti ] =
m∑
j=1

cover (ti ,mc j ) ∗mw j (1)

QSCoveraдe[ti ] =
s∑
j=1

cover (ti , sc j ) ∗ sw j (2)

where, cover (ti ,mc j ) or cover (ti , sc j ) is 1, if test case ti covers
code unit mc j or sc j , otherwise 0. mw j and sw j are the weights
for method-level code unitmc j and statement-level code unit sc j
respectively.

Note that, to calculate the quality-aware coverages for test cases,
one could leverage different coverage information (i.e., dynamic cov-
erage and static coverage information) and different code inspection
techniques (i.e., FindBugs and CLAMI). With the quality-aware cov-
erages (i.e., QMCoveraдe and QSCoveraдe) of each test case, QTEP
further prioritizes test cases with different prioritization strategies
(i.e., total and additional).

Table 1: Experimental subject programs. VPair denotes a version
pair. RTC, RTM, and RF are the number of regression test classes,
regression test methods, and regression faults respectively. NTC,
NTM, and NF are the number of new test classes, new test methods,
and mutation faults for new test cases respectively.

No. Project VPair #RTC #RTM #RF #NTC #NTM #NF
P1 Time&Money 3.0-4.0 15 143 1 7 32 1*100
P2 Time&Money 4.0-5.0 16 159 1 8 24 1*100
P3 Mime4J 0.50-0.60 24 120 3 21 139 3*100
P4 Mime4J 0.61-0.68 57 348 4 6 72 4*100
P5 Jaxen 1.0b7-1.0b9 12 24 3 0 0 -
P6 Jaxen 1.1b6-1.1b7 41 243 1 28 250 1*100
P7 Jaxen 1.1b9-1.1b11 69 645 1 7 29 1*100
P8 Xml-Security 1.0-1.1 15 91 2 3 29 2*100
P9 XStream 1.20-1.21 115 637 1 8 38 1*100
P10 XStream 1.21-1.22 124 698 2 7 58 2*100
P11 XStream 1.22-1.30 133 768 11 19 134 11*100
P12 XStream 1.30-1.31 150 885 3 9 76 3*100
P13 XStream 1.31-1.40 140 924 7 18 180 7*100
P14 XStream 1.41-1.42 157 1,200 5 3 23 5*100
P15 Commons-Lang 3.02-3.03 83 1,698 1 7 122 1*100
P16 Commons-Lang 3.03-3.04 83 1,703 2 13 119 2*100
P17 Joda-Time 0.90-0.95 10 219 2 1 43 2*100
P18 Joda-Time 0.98-0.99 71 1,932 2 9 211 2*100
P19 Joda-Time 1.10-1.20 90 2,420 1 3 415 1*100
P20 Joda-Time 1.20-1.30 93 2,516 3 11 532 3*100

4 EXPERIMENTAL SETUP
4.1 Research Questions
We answer the following research questions to evaluate the perfor-
mance of the proposed QTEP.

RQ1. Is QTEP more effective than the state-of-the-art coverage-
based TCPs for regression test cases only?

RQ2. Is QTEP more effective than the state-of-the-art coverage-
based TCPs for all test cases (both regression and new test cases)?

RQ3. How effective are the variants of QTEP combinedwith static
bug finders versus defect prediction models in terms of improving
existing TCP techniques?

RQ4. How effective are static bug finders versus defect prediction
models in identifying buggy code units defined by test cases for
TCP?

In RQ1 and RQ2, we explore the effectiveness of QTEP for regres-
sion test cases and all test cases respectively. In RQ3, we aim to
understand the performance of the two different types (BF-based
and DP-based) of QTEP variants. In RQ4, we investigate the perfor-
mance of static bug finders and defect prediction models in terms
of identifying buggy code units defined by test cases for TCP.

4.2 Supporting Tools
In this study, we focus on coverage-based TCPs, which require
both dynamic and static code coverage information of test cases. To
collect dynamic code coverage, following existing work [47, 48, 66],
we use the ASM bytecode manipulation and analysis framework
under FaultTracer tool [89] to collect the dynamic code coverage
information for test cases. To collect static code coverage, following
existing work [48, 50], we use the WALA framework [4] to collect
the static call graphs for the test cases, and traverse the call graphs
to obtain the involved methods and statements for each test method
and test class.
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Table 2: The experimental scenarios for TCPs in this work.

Test Granularities Test Case Types
Method (M) Regression test cases (R)
Class (C) Regression+ New test cases (RN)

All the test prioritization techniques have been implemented in
Java and all the experiments were carried out on a 4.0GHz i5-2400
desktop with 6GB of memory.
4.3 Subject Systems, Test Cases, and Faults
To facilitate the replication and verification of our experiments,
we choose 33 versions from 7 open source Java projects, which
are widely utilized as benchmarks to address real-world test case
prioritization problem [21, 50, 66]. Table 1 lists all the projects and
the detailed statistical information. The sizes of these systems vary
from 5.7K LOC (Time&Money) to 114.1K LOC (Joda-Time).

For regression test cases, following existing work [50, 66], for
each listed version-pair, we use the real-world regression faults for
regression test cases. Each version-pair has at least one real-world
regression fault, which will crash at least one regression test case
on the later version. For example, there are 11 regression faults
(#RF) in the project P11 in Table 1.

Since not all benchmark projects have faults for new test cases,
following existing work [5, 20, 32, 40, 47], we use mutation faults
when considering the new test cases. We generate mutation faults
using a set of carefully selected mutation operators [6], e.g., logical,
arithmetic, statement deletion, etc. Specifically, we use the Major
mutation tool [1] to generate these mutation faults for new test
cases. Note that not all generated mutation faults can be revealed by
test cases, thus we use a subset of detected faults obtained by further
running Major with all test cases. For each project, we randomly
selectmmutation faults killed by new test cases only. We setm to be
equal to the number of regression faults to simulate the real-world
testing scenario. To mitigate the randomness, we repeat this process
100 times. For instance, we randomly select 11 mutation faults and
repeat this 100 times as 11*100 (#NF of P11 in Table 1). Thus, we
have 100 fault version-pairs for each of experimental subjects when
considering new test cases.
4.4 Evaluation Measure
We use the Average Percentage Fault Detected (APFD) [65], a widely
used metric for evaluating the performance of TCP techniques.
APFD measures the average percentage of faults detected over the
life of a test suite, and is defined by the following formula:

APFD = 1 −
∑numf
i=1 TFi

numt × numf
+

1
2 × numt

(3)

where, numt denotes the total number of test cases, numf denotes
the total number of detected faults, and TFi (1 ≤ i ≤ numf ) de-
notes the smallest number of test cases in sequence that need to be
run in order to expose the fault i . APFD values range from 0 to 1.
For any given test suite, its numt and numf are fixed. The higher
APFD value signals that the average value of TFi is lower and thus
represents a higher fault-detection rate.
4.5 Experimental Scenarios
Table 2 shows the TCP scenario options in our experiments. By
combining these options, four different TCP scenarios can be

Table 3: The experimental independent variables of QTEP.

IV1:
Coverage Techniques

IV2:
Coverage Criteria

IV3:
Prioritization Strategies

IV4:
Code Inspection Techniques

Dynamic (D) Method (M) Total (T) Bug finders (BF)
Static-JUPTA (J) Statement (S) Additional (A) Defect prediction (DP)

defined.We first conduct TCP at two different granularity levels, i.e.,
method (M) and class (C). In addition, following existing work [47],
we also conduct TCP for (1) regression test cases only (R), and (2)
all test cases (regression and newly added test cases, RN). Running
regression test cases only or running all the test cases are two
practical testing activities during software evolution [55]. Based on
the combinations of these settings, the four scenarios are defined as
follows: regression test method (M-R), regression test class (C-R), all
test method (regression and newly added) (M-RN), and all test class
(regression and newly added) (C-RN). In Section 5, we report APFD
values for these four scenarios.

Table 3 shows the four independent variables (IVs) used in our
experiments that could affect TCP performance in terms of APFD:

IV1: Coverage Techniques. For examining the TCP perfor-
mance of QTEP, we use two representative coverage techniques
from the existing coverage-based TCP techniques.

• Dynamic-coverage-based TCP is based on the informa-
tion of the dynamic call graph from the latest run of a
subject project. We use test coverage information based on
the dynamic call graph to prioritize test cases.

• Static-coverage-based TCP ranks test cases based on the
information from static call graph. JUPTA is the state-of-
the-art static-coverage-based TCP technique [50]. We use
JUPTA as a representative static-coverage-based TCP tech-
nique for the experiments.

IV2: Coverage Criteria. Since all the studied techniques rely
on code coverage information, we also investigate the influence of
coverage criteria. We study two widely used coverage criteria: (1)
Method coverage, (2) Statement coverage.

IV3: Prioritization Strategies. As we described in Section 2.1,
the Total strategy and Additional strategy are widely used in most
existing studies to schedule the execution order of test cases [7,
47, 50, 65, 66]. Thus, we also investigate the influence of these two
different prioritization strategies.

IV4: Code Inspection Techniques. We consider two types of
code inspection techniques for detecting fault-prone source code
and weighting source code units. They are static bug finder (i.e.,
FindBugs) and statistical defect prediction model (i.e., CLAMI).

We can form 8 combinations from the first three IVs (IV1 to IV3)
from the existing TCP techniques as baselines. The IV1, IV2, and
IV3 in Table 3 represent technical options that we can select from
the existing coverage-based TCP techniques. Based on acronyms
for IV options in Table 3, we can list the 8 combinations as follows:
DMT (i.e., dynamic method coverage with total strategy), DMA, DST,
DSA, JMT, JMA, JST, and JSA.

We also use the random TCP as a baseline. The random TCP runs
all the test cases randomly, therefore the performance of the random
TCP might vary across different runs. To mitigate the randomness,
we run the random TCP 500 times on each subject and obtain the
average performance in APFD. Following existing work [8], we
denote the random TCP technique as RT.
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Figure 2: The distribution of the bestweiдht_c (wc ) andweiдht_m
(wm) for the variants of QTEP that are adapted from static-cover-
based TCPs (a) and dynamic-coverage-based TCPs (b).

The IV4 is a technical option in QTEP for detecting buggy code
and further weighting source code units. By combining all IVs
including IV4, we can define 16 variants of QTEP. Based on acronyms
for IV options in Table 3, the 16 variants of QTEP are DMT-BF,
DMA-BF, DST-BF, DSA-BF, JMT-BF, JMA-BF, JST-BF, JSA-BF, DMT-DP,
DMA-DP, DST-DP, DSA-DP, JMT-DP, JMA-DP, JST-DP, and JSA-DP.

To investigate the TCP performance of QTEP, we compare the 8
combinations from IV1–IV3 and RT to the 16 variants in Section 5.

4.6 Parameter Setting
As presented in Section 3.2, our algorithm for weighting source code
has three parameters, i.e.,weiдht_base (default weight for all code
units),weiдht_c (weight for detected buggy classes), andweiдht_m
(weight for detected buggy methods). Different weights of these
parameters could significantly affect the performance of QTEP. In
this section, we study the impact of the three parameters of QTEP
on the performance of prioritizing both regression and all test cases
(both regression and new test cases). Specifically, for regression test
cases, we select the first version-pair from each project listed in
Table 1 as experimental subjects. When considering both regression
and new test cases, we randomly selected 20 faulty versions from
the first version-pair of each project as experimental subjects.

We then tune the parameters for each project using each of the 16
variants in QTEP (described in 4.5) and evaluate the specific values
of the parameters by the average APFD scores at the class and the
method levels (with or without new test cases).

For simplifying the tuning process, we setweiдht_base equal to
1. Then, we set weiдht_c equal to c ×weiдht_base and weiдht_m
equal to m × weiдht_base , we experiment c and m with a range
from 1 to 100. We use all the combinations of the three weights

in the tuning process, which includes 100 × 100 × 20 (#project)
×16 (#variants of QTEP) experiments for regression test cases, and
100 × 100 × 20 (#project) × 20 (#mutation fault version) × 16
(#variants of QTEP) experiments for all test cases (regression and
new test cases).

Figure 2 (a) and Figure 2 (b) show the distribution of the best
values of parametersweiдht_c andweiдht_m for all the 16 variants
of QTEP on the 20 version-pairs. We could see that the best values of
weiдht_c andweiдht_m vary dramatically for different projects. On
average, for variants of QTEP that are adapted from static-coverage-
based TCPs,weiдht_c is 16.7 times ofweiдht_base andweiдht_m
is 13.1 times ofweiдht_base . For variants of QTEP that are adapted
from dynamic-coverage-based TCPs, weiдht_c is 18.7 times of
weiдht_base andweiдht_m is 11.6 times ofweiдht_base .

In this work, we use the best values ofweiдht_c andweiдht_m
that are obtained from the first version-pair of a project as de-
fault parameters for all the left version-pairs of this project. Note
that since project Xml-Security only has one available version-pair
from the existing benchmark dataset, thus for this project, we tune
parameters and report the performance on the same version-pair.

5 RESULTS
5.1 RQ1 & RQ2: Performance of QTEP for

Regression and All Test Cases
Figure 3 and Figure 4 show the comparison results in the four sce-
narios on each of the 20 version-pairs. Specifically, they show the
boxplots of the APFD values for the 16 variants of QTEP, the eight
variants of coverage-based TCPs, and the random baseline RT in the
four scenarios. Each sub-figure presents the detailed APFD results of
one type of QTEP (i.e., static-coverage-based or dynamic-coverage-
based variants of QTEP) and the corresponding baseline TCPs on a
specific scenario. For example, Figure 3 (a) shows the C-R (regres-
sion test class) scenario of static-coverage-based techniques, RT, and
static-coverage-based variants of QTEP, while Figure 4 (a) shows
the C-R scenario of dynamic-coverage-based techniques, RT, and
dynamic-coverage-based variants of QTEP. Each boxplot presents
the APFD distribution (median and upper/lower quartiles) of prior-
itization results of one variant of QTEP on the 20 version-pairs. We
use gray ( ), white ( ), yellow ( ), blue ( ), and red ( ) boxes to rep-
resent the random, static-coverage-based, dynamic-coverage-based,
DP-based QTEP, and BF-based QTEP techniques respectively.

The figures show that overall both DP-based ( ) and BF-based
( ) variants of QTEP could outperform corresponding traditional
coverage-based TCPs ( and ) and RT ( ) for both regression test
cases and new test cases at both method-level and class-level TCPs.
In addition, static-coverage-based variants of QTEP techniques are
overall more effective than dynamic-coverage-based variants of
QTEP. Specifically, for C-R, among all examined TCP techniques,
JMT-BF produces the best APFD with a median value of 0.79, which
is almost 10% higher than the best traditional coverage-based tech-
nique, i.e., JMT. For M-R, JMT-BF outperforms all other examined
TCPs. While considering new test cases, JMA-BF and JST-BF pro-
duce the best performance for C-RN and M-RN respectively.

We further take a closer look at each individual program. To
save space, we only show the detailed comparison between the
results of static-coverage-based variants of QTEP and the results
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Figure 3: Results of static-coverage-based variants of QTEP and static-coverage-based TCPs (i.e., random , static coverage-based TCPs ,
defect-prediction-based variants of QTEP , and bug-finder-based variants of QTEP )

RT

DM
T

DM
T-

DP

DM
T-

BF DM
A

DM
A-

DP

DM
A-

BF DS
T

DS
T-

DP

DS
T-

BF DS
A

DS
A-

DP

DS
A-

BF

0

0.2

0.4

0.6

0.8

1

A
PF

D

(a) C-R

RT

DM
T

DM
T-

DP

DM
T-

BF DM
A

DM
A-

DP

DM
A-

BF DS
T

DS
T-

DP

DS
T-

BF DS
A

DS
A-

DP

DS
A-

BF

0

0.2

0.4

0.6

0.8

1

A
PF

D

(b) M-R
RT

DM
T

DM
T-

DP

DM
T-

BF DM
A

DM
A-

DP

DM
A-

BF DS
T

DS
T-

DP

DS
T-

BF DS
A

DS
A-

DP

DS
A-

BF

0

0.2

0.4

0.6

0.8

1

A
PF

D

(c) C-RN

RT

DM
T

DM
T-

DP

DM
T-

BF DM
A

DM
A-

DP

DM
A-

BF DS
T

DS
T-

DP

DS
T-

BF DS
A

DS
A-

DP

DS
A-

BF

0

0.2

0.4

0.6

0.8

1

A
PF

D

(d) M-RN
Figure 4: Results of dynamic-coverage-based variants of QTEP and dynamic-coverage-based TCPs. (i.e., random , dynamic-coverage-based
TCPs , defect-prediction-based variants of QTEP , and bug-finder-based variants of QTEP )

of the corresponding coverage-based TCPs, since they are over-
all more effective than dynamic-coverage-based variants of QTEP.
The comparison between the dynamic-coverage-based variants of
QTEP and the corresponding coverage-based TCPs is also available
online [2].

Table 4 shows the average APFD values of all static-coverage-
based variants of QTEP and the corresponding coverage-based TCPs
on each project. Numbers in brackets are the improvements of
DP-based ( ) and BF-based ( ) variants of QTEP compared to cor-
responding coverage-based TCPs. We can see that BF-based ( )
variants of QTEP improve the APFD values for all the projects. How-
ever, the improvement varies on different projects. For example, on
project Time&Money, JSA-BF achieves the best APFD for C-R (i.e.,
0.91), which is 14 percentage points higher than the correspond-
ing JSA (i.e., 0.77). While on XStream, the improvement is only 1
percentage point. In the worst case, e.g., JSA-DP, QTEP does not
improve traditional coverage-based TCPs. The same phenomenon
is also observed in dynamic-coverage-based variants of QTEP.

The variations of improvements depending on different projects
might be because the performance of fault detection varies on
different projects. To explore this, we further compute the Spearman
correlation between the false positive rates and the improvements
of DP-based and BF-based QTEP on all projects. Results show that
the Spearman correlation values for the false positive rates and the
improvements of DP-based and BF-based QTEP are -0.50 and -0.52
respectively. This indicates that the performance of QTEP on each
project is negatively correlated with the false positive rate of the
investigated code inspection technique on this project.

In addition, figures (i.e., Figure 3 and Figure 4) show that all
static-coverage-based variants of QTEP generate better results than
RT and the improvement ranges from 9 to 30 percentage points.

However, we also note that the performance of dynamic-coverage-
based variants of QTEP has a dramatically decline when considering
M-RN and C-RN compared to static-coverage-based variants of
QTEP, and cannot even outperform RT. For example, the APFD of
DSA-DP in M-RN is only 0.28, which is 26 percentage points lower
than RT. This is because the dynamic coverage information comes
from the last execution of the test suite, which does not contain
the new test cases. Thus, the faults that can be revealed only by
the new test cases are ignored since the coverage information of
new test cases is always unavailable in the dynamic-coverage-based
TCPs [47, 48]. While, static coverage information of both regression
and new test cases could be obtained by static code analysis. Thus,
the performances of static-coverage-based variants of QTEP are
similar between with and without the new test cases.

For statistical tests, we also conduct the Wilcoxon signed-rank
test (p < 0.05) to compare the performance of QTEP and existing
TCPs. Specifically, we compare each variant of QTEP with its corre-
sponding coverage-based TCP technique on all projects for both
regression and new test cases. Results show that eight of the 16
variants of QTEP could achieve significantly better performance
than the corresponding coverage-based TCPs (i.e., JMT-DP, JMT-BF,
JST-BF, JSA-BF, DMT-BF, DST-BF, DSA-DP, and DSA-BF). For the
other eight variants, their performances are slightly better or equal
to the corresponding coverage-based TCPs.

In summary, QTEP is overall more effective than the corre-
sponding coverage-based TCP techniques. While dynamic-
coverage-based QTEP variants exhibit significantly better per-
formance on regression test cases than on all test cases, static-
coverage-based QTEP variants produce similarly good perfor-
mance on both regression test cases and all test cases (both
regression and new test cases).
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Table 4: Comparison between the static-coverage-based variants of QTEP and the corresponding coverage-based TCPs for each project
Subject Scenario JMT JMT-DP JMT-BF JMA JMA-DP JMA-BF JST JST-DP JST-BF JSA JSA-DP JSA-BF

Time&Money

C-R 0.65 0.71(+0.06) 0.73(+0.08) 0.59 0.82(+0.23) 0.85(+0.26) 0.82 0.82 0.87(+0.05) 0.77 0.77 0.91(+0.14)
M-R 0.24 0.27(+0.03) 0.38(+0.14) 0.49 0.50(+0.01) 0.57(+0.08) 0.12 0.29(+0.17) 0.30(+0.18) 0.47 0.49(+0.02) 0.56(+0.09)
C-RN 0.61 0.62(+0.01) 0.64(+0.03) 0.63 0.64(+0.01) 0.70(+0.07) 0.64 0.64 0.69(+0.05) 0.69 0.69 0.73(+0.04)
M-RN 0.36 0.39(+0.03) 0.46(+0.10) 0.60 0.59 0.66(+0.06) 0.34 0.43(+0.09) 0.40(+0.06) 0.57 0.57 0.62(+0.05)

Mime4J

C-R 0.65 0.71(+0.06) 0.76(+0.11) 0.61 0.62(+0.01) 0.61 0.73 0.86(+0.13) 0.78(+0.05) 0.59 0.59 0.59
M-R 0.71 0.75(+0.04) 0.80(+0.09) 0.55 0.55 0.55 0.69 0.69 0.76(+0.07) 0.55 0.55 0.55
C-RN 0.75 0.76(+0.01) 0.75 0.65 0.71(+0.06) 0.73(+0.08) 0.70 0.71(+0.01) 0.75(+0.05) 0.62 0.62 0.62
M-RN 0.68 0.70(+0.02) 0.73(+0.05) 0.48 0.48 0.48 0.63 0.63 0.65(+0.02) 0.48 0.48 0.48

Jaxen

C-R 0.94 0.95(+0.01) 0.95(+0.01) 0.90 0.90 0.90 0.90 0.90 0.90 0.85 0.85 0.85
M-R 0.67 0.69(+0.02) 0.71(+0.04) 0.77 0.77 0.78(+0.01) 0.73 0.73 0.76(+0.03) 0.78 0.78 0.78
C-RN 0.80 0.80 0.81(+0.01) 0.74 0.75(+0.01) 0.75(+0.01) 0.80 0.81(+0.01) 0.83(+0.03) 0.65 0.65 0.7(+0.05)
M-RN 0.65 0.68(+0.03) 0.74(+0.09) 0.66 0.66 0.66 0.68 0.71(+0.03) 0.68 0.68 0.68 0.68

Xml-Security

C-R 0.71 0.73(+0.02) 0.74(+0.03) 0.38 0.38 0.38 0.71 0.73(+0.02) 0.74(+0.03) 0.38 0.38 0.38
M-R 0.97 0.97 0.97 0.84 0.84 0.84 0.97 0.97 0.97 0.84 0.84 0.84
C-RN 0.50 0.50 0.50 0.42 0.42 0.42 0.54 0.54 0.54 0.50 0.50 0.50
M-RN 0.91 0.91 0.91 0.83 0.83 0.83 0.94 0.94 0.94 0.85 0.85 0.85

Xstream

C-R 0.72 0.76(+0.04) 0.75(+0.03) 0.64 0.65(+0.01) 0.65(+0.01) 0.73 0.73 0.76(+0.03) 0.66 0.67(+0.01) 0.66
M-R 0.66 0.67(+0.01) 0.70(+0.04) 0.72 0.73(+0.01) 0.72 0.66 0.68(+0.02) 0.73(+0.07) 0.73 0.73 0.73
C-RN 0.88 0.89(+0.01) 0.89(+0.01) 0.82 0.82 0.82 0.86 0.87(+0.01) 0.86 0.82 0.82 0.83(+0.01)
M-RN 0.76 0.76 0.77(+0.01) 0.81 0.82(+0.01) 0.81 0.76 0.77(+0.01) 0.80(+0.04) 0.81 0.81 0.81

Commons-Lang

C-R 0.67 0.71(+0.04) 0.73(+0.06) 0.75 0.76(+0.01) 0.76(+0.01) 0.52 0.55(+0.03) 0.60(+0.08) 0.70 0.70 0.71(+0.01)
M-R 0.36 0.36 0.51(+0.15) 0.37 0.38(+0.01) 0.38(+0.01) 0.20 0.24(+0.04) 0.29(+0.09) 0.35 0.35 0.37(+0.02)
C-RN 0.67 0.67 0.69(+0.02) 0.69 0.69 0.69 0.70 0.70 0.71(+0.01) 0.72 0.72 0.73(+0.01)
M-RN 0.67 0.67 0.74(+0.07) 0.61 0.62(+0.01) 0.64(+0.03) 0.54 0.57(+0.03) 0.60(+0.06) 0.62 0.62 0.63(+0.01)

Joda-Time

C-R 0.65 0.67(+0.02) 0.74(+0.09) 0.61 0.62(+0.01) 0.62(+0.01) 0.62 0.62 0.62 0.47 0.50(+0.03) 0.49(+0.02)
M-R 0.70 0.70 0.77(+0.07) 0.76 0.78(+0.02) 0.78(+0.02) 0.70 0.70 0.78(+0.08) 0.66 0.73(+0.07) 0.67(+0.01)
C-RN 0.71 0.71 0.72(+0.01) 0.66 0.67(+0.01) 0.68(+0.02) 0.72 0.72 0.74(+0.02) 0.70 0.70 0.73(+0.03)
M-RN 0.83 0.83 0.86(+0.03) 0.80 0.80 0.82(+0.02) 0.85 0.85 0.88(+0.03) 0.78 0.78 0.79(+0.01)

5.2 RQ3: Comparison between the Two
Categories of QTEP’s Variants

In order to answer RQ3, we first weight all source code units with
the detection results from both defect prediction models and Find-
Bugs using Algorithm 1. Note that, in Algorithm 1, we use the tuned
best values of weiдht_c and weiдht_m (details are in Section 4.6)
for each project under different code inspection techniques. We
then run all variants of QTEP on all version-pairs (P1-P20). As we
stated in Section 1, different from most of the existing TCP related
studies [44, 50, 64, 66, 82] (mainly focused on regression test cases),
in this work, we extensively explore the performance of QTEP on
both regression test cases and all test cases. Thus, for each version-
pair, we perform experiments on four different scenarios: M-R, C-R,
M-RN, and C-RN (details are in Section 4.5).

Table 5 and Table 6 present the average APFDs of all the 16
variants of QTEP on the four different scenarios of the 20 version-
pairs. We conduct the Wilcoxon signed-rank test (p < 0.05) to
compare the performance of BF-based and DP-based variants of
QTEP. Between these two variants, better APFD values with sta-
tistical significance are shown with an asterisk (*) in Table 5 and
Table 6. Results show that overall BF-based variants of QTEP are
significantly better than DP-based variants. The improvement could
be up to 6 percentage points (JMT-BF: 0.69 vs JMT-DP: 0.63 in M-R
of Table 5). Specifically, JMT-BF outperforms all the other variants
of QTEP in terms of the average APFD at M-R (i.e., 0.69), C-R (i.e.,
0.79), M-RN (i.e., 0.77), and C-RN (i.e., 0.78). One possible reason is
BF has a lower false positive rate than DP (details are in Section 5.3).

We further investigate whether the APFDs of different variants
of QTEP vary with the false positive rates of the two code inspec-
tion techniques. Specifically, we compute the Spearman correlation
between the false positive rates and the APFD values of these two

Table 5: The average APFDs of the variants of QTEP that are adapted
from static-coverage-based TCPs.

Scenario JMT-DP JMT-BF JMA-DP JMA-BF JST-DP JST-BF JSA-DP JSA-BF
C-R 0.75 0.79* 0.69 0.69 0.74 0.75* 0.65 0.67*
M-R 0.63 0.69* 0.67 0.68* 0.62 0.67* 0.66 0.66
C-RN 0.78 0.78 0.74 0.76* 0.77 0.78* 0.72 0.74*
M-RN 0.73 0.77* 0.73 0.73 0.72 0.74* 0.72 0.72

Table 6: The average APFDs of the variants of QTEP that are adapted
from dynamic-coverage-based TCPs.

Scenario DMT-DP DMT-BF DMA-DP DMA-BF DST-DP DST-BF DSA-DP DSA-BF
C-R 0.63 0.65* 0.61 0.60 0.75 0.76* 0.78 0.77
M-R 0.64 0.67* 0.65 0.63 0.61 0.63* 0.56 0.56
C-RN 0.47 0.47 0.45 0.46* 0.54 0.55* 0.54 0.55*
M-RN 0.30 0.31* 0.29 0.29 0.30 0.31* 0.28 0.29*

categories of QTEP, i.e., DP and BF-based variants. The high correla-
tion value (-0.52) indicates that the accuracy of different variants
of QTEP has a negative correlation with the false positive rates of
the investigated code inspection techniques. This explains why
BF-based variants of QTEP perform slightly better than DP-based
variants.

Overall, BF-based variants of QTEP are more effective than
DP-based variants for both regression test cases and all test
cases (both regression and new test cases).

5.3 RQ4: Effectiveness of FindBugs and Defect
Prediction Models

To answer RQ4, we first collect the failure trace of each failed test
case on each version-pair and then we parse the failure traces to
label all involved source classes and methods as buggy. Source
classes and methods that are not involved are labeled as clean.

We then use defect prediction models and FindBugs to identify
buggy code units on the later version of each of the 20 version-pairs.
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Table 7: The performance of CLAMI and FindBugs on revealing
buggy code units. P is precision and R is recall.

Granularity CLAMI FindBugs
P R P R

Class 0.250 0.496 0.276 0.178
Method 0.115 0.193 0.138 0.027

Class Level Method Level
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Figure 5: False positive rates of the two code inspection techniques

Note that, we label buggy source classes and methods using the
failure traces of failed test cases instead of posted bug reports [57].
This might make the ratio of buggy classes and methods quite small.
For instance, when labeling version-pair 3.02-3.03 of Commons-
Lang, only 1 out of 196 classes and 2 out of 1,552 methods are labeled
as buggy. That is because there is only one failed test case among all
regression test cases. Such a limited number of labeled buggy classes
and methods could make the different performances between our
study and the previous studies on defect prediction [57] and bug
finders [62, 77].

To measure the performance of the two code inspection tech-
niques, we use Precision and Recall , which are widely used to
evaluate defect prediction models [31, 51, 56, 80, 91] and bug find-
ers [77]. Precision is the percentage of correctly identified buggy
code units in all the code units which are identified buggy, and
recall is the percentage of correctly identified buggy code units in
all the real buggy code units. To show the overall performance, we
use the weighted average precision and recall following existing
work [72].

Table 7 summarizes theweighted average performance of CLAMI
and FindBugs on the 20 version-pairs listed in Table 1. Specifically,
we could see that CLAMI has better recall values than FindBugs at
both class and method levels. However, CLAMI has smaller preci-
sion values than FindBugs. This implies CLAMI may generate more
false positives. We further show the false positive rates in Figure 5,
from which we could see that at both class level and method level,
CLAMI has a 3.0% higher false positive rate.

In summary, defect predictionmodels identifymore buggy
code units, while FindBugs has a lower false positive rate.

5.4 Time and Memory Overhead
Comparing with traditional coverage-based TCPs, the extra run-
ning overhead of QTEP depends on the applied code inspection
techniques, i.e., defect prediction models and bug finders, and our
source-code-weight algorithm. To understand the overhead of QTEP,
we collect the time and space costs for all experiments, and details
are presented in Table 8. We can see that the total execution time
for weighting source code, running defect prediction models and
FindBugs varies from 7.0 to 75.2 seconds. The largest project (in

Table 8: The average time cost of QTEP on each subject.

Subject Time (s)
Defect prediction FindBugs Weighting code

Time&Money 0.4 6.5 < 0.1
Mime4J 0.4 27.2 < 0.1
Jaxen 0.6 15.3 < 0.1
Xml-Security 0.2 22.3 < 0.1
Xstream 0.9 35.4 < 0.1
Commons-Lang 1.2 69.0 < 0.1
Joda-Time 1.6 73.5 < 0.1

39.8%

80.0%

(a) Overlap at class level.

47.3%

94.0%

(b) Overlap at method level.

Figure 6: The overlaps between FindBugs ( ) and CLAMI ( ).

terms of the number of test cases), Joda-Time, uses 96.5MB of mem-
ory. As shown in the table, code inspection techniques spent more
time than weighting source code units. The total time cost on each
project is less than 2 minutes. Overall, the results demonstrate
QTEP’s practical aspect.

6 DISCUSSION
6.1 Does the Combination of BF and DP Achieve

Better Performance for TCP?
In this work, we have explored the feasibility of leveraging the
results of both static bug finders and statistical defect prediction
models to improve testing efficiency. As shown in Section 5.2, both
BF-based and DP-based variants of QTEP could improve coverage-
based TCPs. In this section, we further examine whether combining
the detection results of BF and DP could achieve better results.
Specifically, following the described process of QTEP in Section 3, we
use the combination of detection results of the two code inspection
techniques to tune and weight source code units. And then we run
the new eight (adapted from both dynamic- and static-coverage-
based TCPs) variants of QTEP on the 20 version-pairs. Note that, we
experiment with two combinations, i.e., union and intersection.

Overall, the intersection combination produces better perfor-
mance than the union combination. When comparing with BF-
based and DP-based variants of QTEP, results show that the union-
combination-based QTEP has a similar performance to DP-based
QTEP, we further perform one-way ANOVA analysis [81] at the
significance level of 0.05 to investigate whether there is a signifi-
cant difference between the performance of these two approaches.
The high p (0.978) indicates that there is no significant difference
between the union-combination-based and DP-based QTEP. In addi-
tion, the intersection-combination-based and BF-based QTEP per-
form similar, also our ANOVA test shows there is no significant
difference between them.

The above results suggest that both the union-combination-
based and the intersection-combination-based QTEP cannot
outperform BF-based QTEP.

To explore this issue, we further show the overlaps between de-
tection results of BF and DP in Figure 6.We could see that at the class
level, over 60% detected buggy classes by FindBugs are overlapped
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with the buggy classes detected by CLAMI, while the overlaps ac-
count for only 20% of the detected buggy classes in CLAMI. At the
method level, about 52% predicted buggy methods are overlapped
with FindBugs, however the overlaps only account for up to 6% of
the detected buggy methods in CLAMI. Consequently, the detection
result of the union set from FindBugs and CLAMI is quite similar to
the result of CLAMI. While, the detection result of the intersection
set is similar to the result of FindBugs. This could help explain
why the union-combination-based QTEP and DP-based QTEP pro-
duce similar results and the intersection-combination-based QTEP
has similar performance to BF-based QTEP.

6.2 Practical Guidelines for TCP
Our study reveals several interesting findings that can serve as the
practical guidelines for improving test efficiency.

For different scenarios. Overall, both dynamic- and static-
coverage-based variants of QTEP are applicable for improving pri-
oritization of regression test cases. While for prioritizing all test
cases (both regression and new test cases), we only recommend
static-coverage-based QTEP, since dynamic-coverage-based QTEP
cannot handle new test cases well.

For different projects. As we described in Section 5.1, the per-
formance of QTEP on a project is negatively correlated with the
false positive rate of the used code inspection technique on this
project. Thus, users could choose either DP-based or BF-based QTEP
by considering their false positive rates on the history data of this
project. While for new projects (no history data are available), we
recommend BF-based QTEP, since our experiment results show that
DP tends to have a higher false positive rate than BF.

6.3 Threats to Validity
Internal Validity. The proposed QTEP leverages two code inspec-

tion techniques to help regression testing. An assumption behind
this combination is that the bugs detected by each of them are
(largely) different. Our manual inspection confirms this assump-
tion, e.g., all the bugs in the dataset cannot be detected by FindBugs.
Some bugs are project-specific bugs, that could be revealed by re-
gression testing only. Note that, our work also suggests that using
each technique alone could complement each other to detect more
bugs. The success of the proposed approach may also depend on the
effectiveness of the static bug finder, i.e., FindBugs and the defect
prediction model, i.e., CLAMI. With different static bug finders or
different defect prediction models, the performance of QTEP may
vary. To evaluate the quality of prioritization, we choose APFD,
which has been extensively used in the field of TCP. However, APFD
can not reflect time and space costs or the severity of faults. We
plan to use more metrics, e.g., APFDc [23], to reduce this threat.

External Validity. In this work, all the experiment subjects are
open source projects and written in Java with JUnit test cases.
Although they are popular projects andwidely used in TCP research,
our findings may not be generalizable to commercial projects or
projects in other languages. To mitigate this threat, we plan to
explore the effectiveness of QTEP on C/C++ projects in the future.

7 RELATEDWORK
Many regression testing techniques have been proposed for im-
proving test efficiency by test case prioritization [16, 17, 28, 36, 37,
41, 44, 50, 64–66, 73, 74, 82, 83, 88], test case selection [10, 63, 68],

and test case reduction [11, 67, 90]. In terms of TCP techniques,
Rothermel et al. [64] first presented a family of prioritization tech-
niques including both the total and additional test prioritization
strategies using various coverage information.

A majority of existing TCPs leverage code coverage information
to rank test cases. Dynamic code coverage from the last execution
is widely used in existing TCP techniques [37, 44, 65, 82]. Another
widely used code coverage is static code coverage, which is esti-
mated from static analysis. Mei et al. [50] are the first to prioritize
test cases with static coverage information.

Some other TCP techniques [19, 35, 59, 66] leveraged similarity
between test cases and source code to prioritize test cases. Specifi-
cally, Saha et al. [66] proposed an information retrieval approach
for regression testing prioritization based on program changes.
Noor et al. [59] proposed a similarity-based approach for test case
prioritization using historical failure data.

Instead of using the coverage or similarity information between
source code and test cases, some approaches use other software
process information as the proxy to rank test cases [7, 27, 43, 52–
54, 75, 76, 85, 88]. Arafeen et al. [7] used software requirements to
group and rank test cases. Engstrom et al. [27] selected a small set
of test cases for regression testing selection based on previously
fixed faults. Their work required previously revealed bugs within a
given period. For projects that do not have well-maintained bugs
or new projects (no past bugs are available), their approach cannot
work. While QTEP does not have such limitation, since it focuses
on potentially unrevealed faults. Laali et al. [43] proposed to utilize
the locations of revealed faults of the executed test cases to rank
the remaining test cases. Different from QTEP, they used injected
faults, and the performance of their approach on real-world faults
is unknown. Yu et al. [85] proposed the fault-based prioritization
of test cases that is designed by using the fault-based test case
generation models. Different from QTEP, their approach assumed
the fault-detecting ability of each test case is available. Miranda et
al. [53] proposed scope-aided TCP for testing the reused code by
using possible constraints delimiting the new input domain scope.
On the contrary, QTEP is not limited to testing the reused code.

8 CONCLUSION
In this paper, to address the limitations of existing TCP algorithms,
we present a quality-aware TCP technique named QTEP. Specifically,
we leverage code inspection techniques, i.e., statistical defect pre-
diction models and static bug detection techniques, to detect fault-
prone source code and then adapt existing coverage-based TCP al-
gorithms by considering the weighted defectiveness of source code.
Our evaluation shows that QTEP could improve existing coverage-
based TCP techniques for both regression test cases and all test
cases. As future work, we plan to explore the impact of fault-
revealing capability of test suites and the severities of different
bugs on the performance of QTEP. We also plan to investigate the
different aggregations of code inspection results in QTEP.
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