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ABSTRACT
Assurance cases (ACs) are structured arguments that allow verifying
the correct implementation of the created systems’ non-functional
requirements (e.g., safety, security). This allows for preventing sys-
tem failure. The latter may result in catastrophic outcomes (e.g.,
loss of lives). ACs support the certification of systems in compliance
with industrial standards e.g. DO-178C and ISO 26262. Identifying
defeaters —arguments that challenge these ACs — is crucial for en-
hancing ACs’ robustness and confidence. To automatically support
that task, we propose a novel approach that explores the potential
of GPT-4 Turbo, an advanced Large Language Model (LLM) devel-
oped by OpenAI, in identifying defeaters within ACs formalized
using the Eliminative Argumentation (EA) notation. Our prelim-
inary evaluation assesses the model’s ability to comprehend and
generate arguments in this context and the results show that GPT-4
turbo is very proficient in EA notation and can generate different
types of defeaters.
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• Computing methodologies → Modeling methodologies; Ar-
tificial intelligence.
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1 INTRODUCTION
An assurance case (AC) is a structured hierarchy of claims aim-
ing at demonstrating that a given mission-critical system supports
specific requirements (e.g., safety, security, and privacy) [1, 6, 16].
ACs can be presented in various formats, such as straightforward
text like structured prose or through graphical representations.
Graphical notations include GSN (Goal Structuring Notation) [14]
and EA (Eliminative Argumentation) [13]). The presence of assur-
ance weakeners in ACs reflects insufficient evidence, knowledge,
or gaps in reasoning [17]. These weakeners can undermine confi-
dence in assurance arguments, which may hamper the verification
of mission-critical system capabilities and further result in cata-
strophic outcomes [21, 31, 32].

Khakzad et al. [19] classified these assurance weakeners by con-
sidering several categories, e.g., argument, aleatory, epistemic, and
ontological uncertainty. Our focus is on argument uncertainty also
referred to as defeaters. Inaccurate, incomplete, or inherently flawed
reasoning regarding evidence can introduce defects known as ar-
gument uncertainty into safety arguments [26]. This may lead to
overconfidence in a system and to the tolerance of certain faults,
ultimately contributing to safety-related system failure [26]. Man-
ually creating and challenging arguments is recognized as being
labour-intensive, time-consuming, and prone to errors [24, 28].

A few approaches (e.g., [8, 15, 27, 35, 37]) allow identifying de-
featers in ACs. However, they often fall short of an all-encompassing
strategy that covers all types of assurance weakeners, highlight-
ing the urgent requirement for a more integrated identification
approach. To address that gap, we rely on LLMs to automatically
generate defeaters in ACs represented using EA. In our work, we
adopt GPT-4 Turbo, owing to its increased efficiency in producing
responses and its capability to yield deterministic outputs [30].

2 BACKGROUND AND RELATEDWORK
2.1 Assurance Cases
An assurance case (AC) is a “set of auditable claims, arguments, and
evidence created to support the claim that a defined system/service can
satisfy particular requirements” [33]. An AC is crucial for facilitating
clear communication among different stakeholders in a system, such
as suppliers and acquirers, and between operators and regulators
[33]. Its primary role is to effectively convey information about
the system’s non-functional requirements (e.g., safety, security,
and reliability) [1, 12, 16]. Employing an AC to demonstrate the
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Figure 1: Fragment of EA assurance case adapted from [10]

correct implementation of a system’s requirements is crucial to
prevent system failure. The latter could have severe consequences
such as loss of lives and financial losses [7, 21]. Hence, several
industry standards, including DO-178C in avionics [18] and ISO
26262 in the automotive sector, advocate for the use of ACs to
support the certification of systems [11, 22]. ACs can be presented
in various formats, such as straightforward text like structured
prose, or through graphical representations [4] (e.g, GSN [14], CAE
[2], and EA [13]).

2.2 Eliminative Argumentation
The EA notation allows constructing arguments and evaluating
confidence in these arguments by relying on the notion of defeasible
reasoning [10, 13]. The latter supports the recursive challenging
of claims to progressively eliminate the doubts (defeaters) they
may embed and, consequently, increase the confidence in these
arguments [10].

An eliminative argument is comprised of five key components,
i.e., Claims, Evidence, Inference Rules, Defeaters, and Argument
Terminators [13]. Claims (C) are assertions that require further
argumentative support to establish their credibility. Evidence (E)
pertains to observations, data, or artifacts that bolster claims. Strate-
gies (S), which outline the method for arranging a group of claims or
defeaters, adopt a "top-down" perspective, encapsulating a compre-
hensive method for substantiating a claim. Inference Rules (IR) are
guidelines for logically amalgamating multiple claims or defeaters
to back a higher-level claim. An optional "context" element can be
included to provide more details about a primary element. Defeaters
challenge the credibility of claims, evidence, and inference rules.

There are three types of defeaters, classified based on the ele-
ments they target, i.e., rebutting defeaters (R) that offer reasons
why a claim might be false, undermining defeaters (UM) that
present arguments why evidence might be unreliable, and under-
cutting defeaters (UC) that pinpoint flaws in an inference rule
such that the validity of its premises doesn’t necessarily guarantee
the truth of its conclusion.

Regarding Argument Terminators, the “Assumed OK” terminator
signifies that further argument or evidence is unnecessary for a
defeater, as its resolution is considered obvious. Conversely, the
“Is OK” terminator is used for an inference rule, indicating it’s
a tautology without undercutting defeaters, where the premise
is deductively equivalent to the conclusion. Figure 1 provides a
fragment of an AC in EA notation for a chemical reactor.

2.3 LLMs and Their Applications
Large language models (LLMs) are advanced AI models that have
become prominent in natural language processing (NLP). Typically
built as transformer models, like GPT-4, they are trained on exten-
sive datasets, enabling them to generate text and respond to queries
with notable accuracy. Key examples of LLMs include the GPT series
by OpenAI, such as GPT-3.5 and GPT-4 [29], and Google’s BERT [9]
(Bidirectional Encoder Representations from Transformers). The
focus on GPT, particularly GPT-4 Turbo, stems from its advanced
capabilities and widespread application potential. GPT-4 Turbo is an
enhanced version of the GPT-4 model, known for its larger number
of parameters and improved efficiency in generating responses. It
works by processing input text and generating responses based on
its training, employing a vast number of parameters. GPT-4 Turbo
is not inherently deterministic, meaning its responses can vary even
with identical prompts. To achieve more deterministic outcomes,
techniques like fixing the seed in the random number generator or
employing consistent prompting strategies can be used.

Recent studies have demonstrated various applications of Large
Language Models to automate Software Engineering tasks. Chen
et al. [5] focused on GPT-4’s use in requirements engineering,
specifically for generating goal-oriented models in compliance
with the Goal-oriented Requirement Language (GRL). Their work
highlighted GPT-4’s substantial understanding of goal modeling.
Chaaben et al. [3] utilized ChatGPT to generate UML models, in-
troducing a novel method that employs few-shot prompt learning,
thereby reducing the need for large datasets in domain modeling.
Viger et al. [35] proposed using GPT-4 to identify defeaters in ACs to
enhance their reliability. However, their research is still in its early
stages and has not been empirically validated yet. Mahdi Mohajer
et al. [25] introduced SkipAnalyzer which is a tool that leverages
an LLM-powered agent for static code analysis. It autonomously
detects and patches bugs filters out false positives, and is built on
ChatGPT. Lastly, Sivakumar et al. [34] adapts the work of Chen et
al. [5] to investigate the generation of safety cases using GPT-4,
focusing specifically on its understanding of GSN.

3 APPROACH
Our work adapts the one of Chen et al. [5] and Sivakumar et al. [34]
to the context of ACs formalized with EA. By using an LLM (i.e. GPT-
4 Turbo) to automatically identify and mitigate defeaters in ACs,
our objective is to emulate some argumentative and doubt-driven
aspects of EA [10] to better support requirements verification and
validation. Figure 2 shows a high-level overview of our proposed
approach that leverages GPT-4 Turbo to generate (identify) and
mitigate defeaters for ACs represented using EA. As shown in this
figure, our approach consists of three phases. In this paper, we focus
on Phase I. Future work will focus on Phase II and Phase III.

In Phase I, like Sivakumar et al. [34], we conduct a thorough
analysis of the documentation on EA (e.g., [10, 13]) to extract the
structural and semantic rules its notation embodies. We then derive
structural and semantic-based questions from these rules. We com-
bine these questions with EA generation-based questions. We use
the resulting set of questions to assess GPT-4 Turbo’s proficiency
in EA by challenging its understanding of the syntax and semantics
of EA, as well as its ability to generate EA concepts.
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Figure 2: Overview of the Approach

Phase II is centered around applying GPT-4 Turbo to identify
potential defeaters within EA assurance cases. We plan to guide
GPT-4 Turbo through Chain-Of-Thought prompting techniques to
clarify the reasoning behind defeater identification. This involves
either integrating the reasoning steps into the examples or solic-
iting a detailed explanation of the thought process from the LLM
[20, 36]. Moreover, we plan to incorporate a strategy similar to that
of Zhu, Zhaocheng, et al. [38], who proposed the Hypotheses-to-
Theories (HtT) framework to establish a rule library for structured
reasoning with LLMs. This is because prompting methods relying
on an LLM’s implicit knowledge are prone to "hallucinations" [23],
leading to incorrect answers. We plan to adopt this technique, form-
ing predicate-based rules from the structural rules EA embodies to
prompt GPT-4 Turbo such that it could generate better defeaters.
Additionally, we involve an expert to review and refine the defeaters
generated by GPT-4 Turbo to ensure their validity and applicability.

Phase III relies on GPT-4 Turbo to mitigate the defeaters identi-
fied in Phase II. Like Phase II, an expert is engaged to review/ refine
the mitigation strategies proposed by GPT-4 Turbo, enhancing the
reliability of ACs and ensuring they withstand rigorous scrutiny.

4 EXPERIMENTAL SETUP
This preliminary study focuses on Phase I and is designed to assess
the proficiency of GPT-4 Turbo in understanding and applying EA.

4.1 Research Objective
The goal of our preliminary study is to answer this research ques-
tion (RQ): Is GPT-4 Turbo sufficiently proficient in the EA
notation? Like Chen et al. [5] and Sivakumar et al. [34], to investi-
gate this RQ, we formulated 22 specific questions based on the EA
documentation. We rely on them to assess the proficiency of GPT-4
Turbo in understanding and applying the structural and semantic
rules of EA and its ability to generate EA concepts (e.g., defeaters).

4.2 Extraction Of The Structural and Semantic
Rules Of EA

The first step of our approach consists in analyzing existing docu-
mentation (e.g., [10, 13]) on EA to extract the set of structural and
semantic rules that EA embodies. Table 1 reports the structural and
semantic rules that we extracted. Extracting rules is a critical com-
ponent of our research, forming the core foundation for crafting
essential questions relevant to RQ. Semantic rules are focused on
the text within EA elements and the meaning of that text. On the
other hand, structural rules address the arrangement and design of
EA elements, conveying the appropriate structure of each element
and the nature of its relationships with other elements.

4.3 Generation Of Questions To Assess GPT-4
Turbo’s Proficiency In EA

We crafted an initial batch of 22 questions categorized in three sec-
tions, i.e., structural, semantic, and generation-based questions. The
structural questions aim to assess GPT-4 Turbo’s comprehension
of EA notation i.e. EA structural rules. In contrast, the semantic
questions examine its understanding of the semantic rules of EA.
Lastly, the generation-focused questions are designed to test GPT-4
Turbo’s capability in effectively generating EA elements, with a spe-
cific emphasis on defeaters. We developed eight structural, seven
semantic, and seven generation-based questions. The complete list
of these questions together with supplemental material is available
on GitHub1. Table 2 presents sample questions for each category.

4.4 GPT-4 Turbo Setting
In our study, we utilized the OpenAI API2 to interact with the
GPT-4 Turbo model. A key methodological decision was ensuring
deterministic responses from the model. This was achieved by
setting the seed parameter in the API. The seed parameter is vital
for generating consistent outputs from GPT-4 Turbo for the same
input. It initializes the model’s internal random number generator
to a fixed state, thereby ensuring reproducibility and consistency
of the responses generated by GPT-4 Turbo for identical prompts.

4.5 Prompting Process
In our study, we followed the best practices of prompt engineering
as outlined in OpenAI’s guide3 to interact with GPT-4 Turbo. The
process involved careful construction of both ’system’ and ’user’
prompts to guide the model effectively. The ’user’ prompts were
the direct questions posed to the model, designed to extract specific
information or analysis. Meanwhile, for ’system’ prompts, the pri-
mary objective was to orient GPT-4 Turbo appropriately, ensuring
it understood its role as an assistant in addressing our inquiries.
The system prompt that we used is provided in the box below:

1Supplemental material link: https://github.com/kimixz/GPT4-TURBO-EFFICIENCY
2https://openai.com/api/
3https://platform.openai.com/docs/guides/prompt-engineering
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Table 1: EA Structural and Semantic rules

Category Name Structural rules Semantic rules

EA Element Claim Connected to: Context, Rebutting Defeater A claim is stated as a predicate, a true or false statement.
EA Element Evidence Connected to: Rebutting defeater, Undermin-

ing defeater, Undercutting defeater, Infer-
ence rule, Evidence

Evidence is in the form “[Noun phrase] showing P” with P asserting
an interpretation of data relevant to the argument.

EA Element Context Connected to: Claim It gives additional information about the content of a fundamental
element and is optional.

EA Element Inference
Rule

Connected to Rebutting defeater, Undermin-
ing defeater, Undercutting defeater, Claim,
Evidence

They are predicates (P → Q), where either P or Q (but not both) is
an eliminated defeater.

EA Element Undercutting
Defeater

Connected to: Inference Rule Is a doubt about the validity of an inference rule (P→ Q), preceded
by “Unless”

EA Element Undermining
Defeater

Connected to Evidence Is a predicate associated with evidence, preceded by "But". It chal-
lenges the validity of the data comprising the evidence.

EA Element Rebutting
Defeater

Connected to: Claim Is a predicate associated with a claim, preceded by “Unless”

Argument
Terminator

Assumed OK Attached to Rebutting defeater, Undermin-
ing defeater, Undercutting defeater, Claim,
Evidence

It asserts that some defeater is (assumed to be) false.

Argument
Terminator

Is OK Attached to Inference Rule, Claim, Evidence It applies to inference rules, indicating no undercutting defeaters
due to the rule being a tautology.

Table 2: Sample Questions for assessing GPT-4 Turbo’s Proficiency in EA

Category of Question Sample Question

Structural Question What are the different types of defeaters in Eliminative Argumentation?

Semantic questions How should a claim be structured in Eliminative Argumentation? i.e., mention whether it can be in the form of
noun-phrase, verb-phrase or predicate.

Generation-based Question Generate me a sample Claim and a Rebutting defeater that defeats it. Show it in structured prose.

System Prompt: You are an assistant that helps me answer ques-
tions about Eliminative Argumentation. Eliminative Argumenta-
tion is a method used in ACs, particularly in the fields of software
engineering and system safety. It focuses on systematically identi-
fying and eliminating potential causes of failure to strengthen the
assurance of system safety and reliability. Answer each question
separately and try to generate the samples even if they are simple.
Your answers should be concise and to the point. It should not be
more than 2-3 lines.

4.6 Assessment Process
GPT-4 Turbo generates each EA concept in the structured prose
complying with EA. To evaluate each of the GPT-4 Turbo’s re-
sponses to the 22 questions, we had two researchers with extensive
expertise in EA to assess these responses. They independently rated
each of GPT-4 Turbo’s answers on a linear scale ranging from one
(totally correct) to five (incorrect). To assess the consistency and
reliability of these ratings, we rely on the Kendall rank correlation
coefficient as in Chen et al. [5]. The value of that correlation coeffi-
cient progresses from - 1 to 1. A value close to -1 means the level
of agreement between raters is almost close to none. A value close
to 1 means the level of agreement is strong. We rely on an online

Table 3: Average ratings of questions in RQ

Structural Semantic Generation-based Avg

1.125 1.78 1.35 1.40

tool i.e. Gigacalculator4 to automatically assess the values of the
Kendall rank coefficient with a confidence level of 95%.

5 PRELIMINARY RESULTS
Two researchers evaluated the answers of GPT-4 to the 22 questions.
The resulting correlation between their ratings is 75%. That strong
correlation level underscores a robust agreement between the two
assessors and a high level of consistency in their ratings.

Table 3 reports the average ratings of the answers GPT-4 Turbo
provided to structural, semantic, and generation-based. The average
of the ratings achieved by GPT-4 Turbo is 1.40, which is close to
1. That value reflects its strong grasp of the essential elements of
EA notation. In the context of the grading systems used by many
universities, that average of ratings equates to a grade of A.

4https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php

https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php
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GPT-4 Turbo achieved excellent proficiency when answering
structural-based questions. It also showed commendable perfor-
mance when answering generation-based questions, effectively
creating EA elements, particularly various types of defeaters. How-
ever, GPT-4 Turbo’s understanding of the semantics of EA elements
was less robust. Thus, it would be beneficial to employ specific
prompting techniques to enhance its comprehension of EA seman-
tics, which in turn could lead to the generation of better defeaters.

6 CONCLUSION
Our investigation into the capabilities of GPT-4 Turbo has revealed
its excellent proficiency in understanding and applying EA notation.
This underscores the model’s potential as a valuable tool for future
endeavors in the identification (Phase II) and mitigation of defeaters
(Phase III) within ACs represented using EA. We are optimistic
about the role of GPT-4 Turbo in enhancing the robustness of ACs,
particularly in mission-critical systems where the assurance of
non-functional requirements is paramount.
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