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ABSTRACT
Background. Where to start contributing to a project is a critical
challenge for newcomers of open source projects. To support new-
comers, GitHub utilizes the Good First Issue (GFI) label, with which
project members can manually tag issues in an open source project
that are suitable for the newcomers. However, manually labeling
GFIs is time- and effort-consuming given the large number of can-
didate issues. In addition, project members need to have a close
understanding of the project to label GFIs accurately.

Aims. This paper aims at providing a thorough understanding
of the characteristics of GFIs and an automatic approach in GFIs
prediction, to reduce the burden of project members and help new-
comers easily onboard.

Method. We first define 79 features to characterize the GFIs
and further analyze the correlation between each feature and GFIs.
We then build machine learning models to predict GFIs with the
proposed features.

Results. Experiments are conducted with 74,780 issues from
10 open source projects from GitHub. Results show that features
related to the semantics, readability, and text richness of issues
can be used to effectively characterize GFIs. Our prediction model
achieves a median AUC of 0.88. Results from our user study further
prove its potential practical value.

Conclusions. This paper provides new insights and practical
guidelines to facilitate the understanding of GFIs and the automa-
tion of GFIs labeling.
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• Software and its engineering→ Open source model.
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1 INTRODUCTION
Open source software (OSS) is becoming increasingly popular. Peo-
ple from all over the world can contribute to open source software
anytime and anywhere. This enables many open source software
to be developed and maintained continuously, coming up with
high quality software. There are 60M+ new repositories created
in GitHub, one of the world’s largest open source platforms, from
October 2019 - September 2020 [19].

The continuous improvement of an open source software project
depends on the developers who contribute to it, but many devel-
opers may not be able to participate in an open source software
project for a long term [31]. In order to keep the vitality of open
source software, newcomers are highly needed [21]. On the one
hand, newcomers also eagerly participate in OSS projects, driven
by the factors such as extrinsic benefits (e.g., better jobs) and in-
trinsic motivations (e.g., enjoyment) [4, 30, 50, 57]. On the other
hand, there are many barriers which might hind the newcomers
from successful onboarding [14, 31, 36, 41, 43, 44]. For example, the
newcomers often face the problem of not knowing where to start
contributing to an OSS project, which prevents them from joining
the open source community.

To better guide newcomers to contribute to open source projects,
project members often label issues that are suitable for newcomers
to solve with special labels, e.g., the Good First Issue (short for GFI
in this paper) label provided by GitHub, with which newcomers
can quickly begin to contribute to the projects.

However, for most projects on GitHub, the percentage of GFIs
is quite low, and some projects do not even have GFIs [47]. This
may be due to the fact that labeling GFIs often requires developers
to have a close understanding of the projects, which is quite time-
and effort- consuming. Besides, considering the large number of
candidate issues and the rapid increase of issues created in the open
source projects, it is unrealistic for the project members to inspect
each issue.

There have been many studies on newcomers in OSS projects,
e.g., the barriers that newcomers face [36, 43], newcomers’ motiva-
tions in contributing to an OSS project [4, 16, 40, 50, 57]. This paper
aims at providing an automatic labeling approach for GFIs to reduce
the burden of developers and in the meanwhile help newcomers
easily onboard.

To achieve this goal, we first define 79 features from three di-
mensions, i.e., clearness of issue description, complexity of changes
involved, and skills required, to characterize the GFIs. Specifically,
the clearness of an issue description is measured by its reporter’s
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experience, its text richness, and the readability of its textual de-
scription. The complexity of a change is measured from the points
of influenced scope of the issue and the code complexity of the
involved code. And we utilize the information related to the issue’s
type and the semantics of the issue’s description tomeasurewhether
it only requires limited skills for solving an issue, i.e., doable for
newcomers.

We then experiment with 74,780 issues from 10 OSS GitHub
projects. We extract the above 79 features for GFIs and non-GFIs
(i.e., issues that are not GFIs) respectively. Our statistical test shows
that most of the features demonstrate significant differences be-
tween GFIs and non-GFIs, i.e., can be used to characterize the GFIs.
Among these 79 features, features related to the semantics, the
readability, and text richness of the issue play a larger contribution
in GFIs characterization. The results indicate that the GFIs tend to
be described with certain words, in better readability, with shorter
and clear descriptions, and with more code snippets.

We further build machine learning models with the proposed
features to predict GFIs. The results showed that the median AUC
of the prediction is 0.88. We also include the effort-aware evalua-
tion and find that one can retrieve a median of 42% total GFIs by
inspecting a mere of 5% issues predicted by our model. Besides, we
examine the relative contribution of each category of features in
predicting GFIs with feature selection algorithms, aiming at pro-
viding actionable decision support for developers about choosing
features in building GFIs prediction models.

Furthermore, we have conducted a user study on the newly-
reported issues in GitHub to evaluate its potential practicability in
real-world practice. Specifically, we run our prediction model on
48 newly-reported issues, and we then send the predicted GFIs to
developers for confirmation. Among the 16 responses, 10 issues are
confirmed as GFIs. Developers also show interest in our automatic
GFIs prediction approach. This further proves the potential practical
value of this work.

The main contributions of this paper are as follows:

• We define 79 features to characterize GFIs from three di-
mensions. To the best of our knowledge this is the first
study in GFIs characterization.

• We experimentally characterize GFIs using the 79 features
and demonstrate the feasibility of distinguishing GFIs from
non-GFIs by using these features, which help understand
GFIs.

• We build machine learning-based models to predict GFIs
with the proposed features, and results are promising. In
addition, we have further examined feature selection algo-
rithms on the prediction performance to provide actionable
decision support in model building.

• We evaluate the practical value of our GFIs prediction ap-
proach in real-world practice with affirmative feedback.

2 DATASET
Our experimental data are collected fromGitHub, one of the world’s
largest open source software sites. We crawl the projects with more
than 10k stars, and randomly select 10 projects with the number
of issues more than 3k. We collect all the issues in each project

Table 1: Dataset used in this paper

Repo Domain Language Stars GFIs non-GFIs
babel Compiler JavaScript 37,926 103 5,333
bitcoin Client C++ 46,395 249 8,113
jest Framework TypeScript 33,331 148 8,269
lighthouse Plugin JavaScript 21,257 118 9,749
skaffold Tool Go 10,635 119 4,157
packer Tool Go 11,501 248 8,406
graphql-engine Sever Haskell 19,575 127 5,100
minikube Tool Go 19,777 202 5,539
react-admin Framework TypeScript 15,277 104 3,714
server Server PHP 12,423 239 14,743

from 2010/12/19 to 2020/07/19, all the comments of each issue, the
commit history and the source code of each project.

We then identify the GFIs from the issues of each project based
on their labels. Although GitHub officially provides the ‘good first
issue’ label to denote the newcomer-friendly issue, each project
usually has its customized labels which also indicate the issue is
suitable for newcomers, e.g., ‘easy’, ‘beginner’, and ‘minor bug’.
Therefore, we use the labels suggested in [47] to retrieve the GFIs.

For the issues which are not marked as GFIs, we consider them
as the candidate non-GFIs. However, we notice that a project might
start to adopt the GFIs mechanism at the middle of its evolution
period, or stop to mark the GFIs from a certain time. To alleviate
the influence of this phenomenon, we discard the issues that were
closed before the earliest GFI, as well as the issues that were created
after the latest GFI. The remaining non-GFIs are left for further
experiments. Table 1 demonstrates the details of the experimental
dataset used in this work.

3 CHARACTERIZING GFIS
3.1 Studied Features
To characterize what makes a GFI, we first collect the features
which might exert the difference between GFIs and non-GFIs. Mo-
tivated by existing studies [15, 47, 56], we collect the features from
three dimensions: 1). clearness of issue description, we assume
GFIs should have clear issue description telling where errors oc-
cur or what changes need to be done. 2). complexity of changes
involved, we assume the scope of changes is an important factor
to determine whether issues are suitable for newcomers, and GFIs
should involve self-contained change, i.e., only touch a small part
of the codebase. 3). skills required, ideal GFIs should only require
limited skills for be solved, because newcomers generally do not
have rich experience. Based on these three dimensions, we design
79 features to characterize GFIs spanning across 7 categories, listed
in Table 2.

3.1.1 Clearness of Issue Description. Ideally, GFIs should have
a clear issue description telling what the problem was and where to
make the changes. First, we assume the issue reporter’s experience
would influence whether the issue has a clear description. Second,
the issue with rich textual descriptions is more likely to specify the
errors to tackle and changes to make. Third, the readability of the
issue also reflects whether a newcomer can easily get the described
problem and required changes. Taken in this sense, we design these
three categories of features to measure whether the issue has a
clear issue description.
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Table 2: Studied features

Dimension Category Feature Description P-Value & Effect Size

Cl
ea
rn
es
so

fI
ss
ue

D
es
cr
ip
tio

n
(4
5)

Reporter
Experience
(4)

Reporter Role
(3)

is_member
Whether the reporter of this issue is a
project member / contributor /
collaborator

# N
is_contributor # N
is_collaborator # N

has_gfi Whether the reporter has previously
proposed GFIs in this project

*** N

Text
Richness
(5)

Text Length
(4)

length_title

Number of words in issue title / body /
all comments / comment average

*** N
length_body *** N
length_all_comments *** M
length_avg_comments *** M

comments_num Number of comments in issue *** M

Readability

(36)

ari_title/body/all_comments/avg_comments

The readability of title / body / all
comments / comments average

# N # N *** M *** M
cli_title/body/all_comments/avg_comments * N # N *** M *** M
dcrs_title/body/all_comments/avg_comments # N *** N *** M *** M
dw_title/body/all_comments/avg_comments *** N *** N *** M *** S
fkg_title/body/all_comments/avg_comments # N # N *** M *** M
fre_title/body/all_comments/avg_comments # N # N *** M *** M
gf_title/body/all_comments/avg_comments * N *** N *** S *** S
lwf_title/body/all_comments/avg_comments *** N *** N *** M *** S
smog_title/body/all_comments/avg_comments # N *** N *** S *** S

Co
m
pl
ex
ity

of
Ch

an
ge
sI
nv

ol
ve
d
(1
1) Influenced

Scope (3)

url_num The number of URL ** N
code_num_body Number of code snippets in issue body *** N
code_num_comments Number of code snippets in issue com-

ments
*** S

Code
Complexity
(8)

modified_files The number of modified files *** S
file_lines The number of lines of code for the most

modified file
# N

file_complexity The complexity of code for the most
modified file

*** S

file_gfi The number of GFIs related to the most
modified file

# N

change_num The modification times of the most mod-
ified

file *** N

inserted_lines
The number of lines inserted / deleted /
modified of the most modified file

# N
deleted_lines * N
modified_lines ** N

Sk
ill
sR

eq
ui
re
d
(2
3)

Issue Types

(8)

is_bug

Whether the issue has a special label

# N
is_documentation # N
is_duplicate ** N
is_enhancement *** N
is_help_wanted # N
is_invalid # N
is_question # N
is_wontfix # N

Semantics

(15)

Topic Number
(3)

topic_num_title
The number of topics in the issue title /
body / comments

*** N
topic_num_body *** N
topic_num_comments *** S

GFI Likelihood
(12)

GaussianNB_title/body/comments

Bayes score of issue title / body /
comments

*** N # N *** S
MultinomialNB__title/body/comments *** S *** M *** M
BernoulliNB__title/body/comments *** S *** M *** L
ComplementNB__title/body/comments *** S *** M *** M

***p<0.001, **p<0.01, *p<0.05, #p≥0.05
N:Negligible, S:Small, M:Medium, L:Large
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Reporter Experience: There are four features in this category
to measure the issue reporter’s experience. The first three features
measure the role of the issue reporter, i.e., whether he/she is the
member, the contributor, or the collaborator of the project. The
developers with these roles are deeper involved in the development
and maintenance of the project, and have a better understanding
of the project. Therefore, they have a higher possibility to tell what
the problem was and pinpoint the exact code that needed to be
changed. Furthermore, the aforementioned different roles have
different levels of understanding of the project, e.g., the contributor
may be familiar with only certain module while the member would
have a certain degree of understanding about the whole project.
Therefore, we design them as separate features. The fourth feature
measures whether the historical reported issues by the reporter are
marked as GFIs in the project. If someone has reported GFIs in the
past, he/she would be more likely to write a clear issue description.

Text Richness: There are five features in this category, i.e., four
of them measuring the textual length and the other measuring the
number of comments. We first measure the length of the title and
description. We assume these two fields should be with detailed
descriptions to contain enough knowledge which can help the new-
comers to fully understand the issue. On the other hand, these two
fields should also be without redundant information thereby the
newcomers can quickly locate the key point. Similarly, we also mea-
sure the length of the comments, which are important complements
to the description, from two aspects, i.e., the total length and the
average length of all comments. In addition, we include the number
of comments, supposing there should be a reasonable number of
comments to provide supplemental information for the newcomers.
For the features involving comments, we retrieve the time when the
issue is labeled as a GFI, and only consider the comments posted
before that time. This is because the subsequent comments would
not help to characterize the GFIs. If an issue is not labeled as a GFI,
we use all of its comments.

Readability: The features in this category are designed to mea-
sure the textual readability of the issues. Readability is mainly
calculated based on the number of words, syllables, difficult words
and so on in a sentence, which is used to measure the difficulty of
understanding the sentence. We assume the textual readability of
the issues can affect whether the newcomer can obtain a clear and
quick understanding of the issue. Following [24, 60], we employ
nine metrics to measure the readability, i.e., Automated readability
index (ari) [39], Coleman–Liau index (cli) [12], Dale–Chall readabil-
ity score (dcrs) [10], number of difficult words (dw), Flesch-Kincaid
Grade Level (fkg) [27], Flesch reading ease (fre) [18], Gunning fog
index (gf) [20], Linsear Write (lwf) [28] and SMOG Index (smog) [33],
and each of them are retrieved respectively for title, description,
all comments, and in terms of the average comments. For example,
ari_title in Table 2 means the ari score calculated for the title of the
issue. We used Python package textstat1 to calculate these features.

3.1.2 Complexity of Changes Involved. The scope of the in-
volved changes of the issue should also be considered, and an ideal
GFI should only touch a small part of codebase. In this sense, we
design two categories of features to measure the self-contained

1https://github.com/shivam5992/textstat

change. First, the potential influenced scope should be as small as
possible; and second, the involved code should be as less as possible.

Influenced Scope:We first use the involved urls and code snip-
pets in the description and comments to measure the potential
influenced scope of the issue. We assume the number of urls and
code snippets reflect the potential influenced scope and complexity
of the issue, and they also indicate whether the issue contains nec-
essary information (e.g., ways to reproduce or locate the bug) to
be a GFI. Three features (e.g., code_num_body) are included in this
category.

Code Complexity: To measure the code complexity, we extract
the features from the source code for resolving the issue. We first
build the link between the issue and the related code, following
the method proposed in [5], i.e., if the commit message contains
the related issue id, the issue and commit are linked. We then use
the linked data to extract these related features. There are eight
features to measure the code complexity. The number of modified
files reflects the scope of the required changes for resolving the
issue and the possibilities of the issue being GFIs. We also measure
the complexity of the most relevant file (among the modified files)
with the size of the file (i.e., file_lines), the complexity of the file (i.e.,
file_complexity), the change history of the file (e.g., change_num,
inserted_lines), and the number of GFIs of the file (i.e., file_gfi).

3.1.3 Skills Required. Ideally, the GFIs should only require lim-
ited skills so that the newcomers can manage to resolve them. From
one point of view, we assume the type of the issue can potentially
reflect how much experience is needed. From another point of view,
we employ the semantics involved in the textual descriptions of the
issue to indicate the required skills.

Issue Types: We assume the issues of certain types would be
more likely to be GFIs, e.g., newcomers might be more suitable
for improving the documentation than fixing a bug. We use the
labels of the issue to denote the issue type, and we only consider
the labels marked before GFI while ignoring the subsequent labels.
We employ 8 features related to issue types, corresponding to the
labels provided by GitHub2.

Semantics: The features in this category fall into two parts. The
first part involves the number of topics of the textual descriptions,
and the second part captures the likelihood of being a GFI learned
from the textual descriptions. Intuitively, a GFI should involve a
limited number of topics and require limited skills to be understood
and resolved. For the likelihood, we assume the GFIs might involve
similar technical aspects and we calculate four types of Bayes scores
on the textual descriptions of the issue learned from other GFIs, i.e.,
Gaussian Naive Bayes [58], Multinomial Naive Bayes [34], Bernoulli
Naive Bayes [34] and Complement Naive Bayes [38]. All these
features are calculated in terms of the title, body, and the comments
of the issues.

For the topic number, We use the python package Gensim3 to
build the Latent Dirichlet Allocation (LDA) [8] topic model. It trains
the topic model with the textual descriptions of all issues, calculates
the topic probability distribution of each issue, and determines the
topic through a threshold (default 0.01 in Gensim). For the Bayes

2https://docs.github.com/en/free-pro-team@latest/github/managing-your-work-on-
github/managing-labels#about-default-labels
3https://radimrehurek.com/gensim/
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score, we use the python package Sklearn4 to build the Bayesmodels
and use them to predict each issue being a GFI, and employ the
probability as the Bayes score.

These semantic features need to be calculated based on historical
data of GFIs and non-GFIs. To retrieve these features, following
[15], we randomly separate the training set into two subsets, train
the model in one subset, and calculate the features in the other
subset and the entire training set is used to calculate these features
of the test set.

3.2 Quantitative Analysis
We characterize the GFIs with the hypothesis testing results about
whether each of the aforementioned features exerts a difference
between GFIs and non-GFIs. If a significant difference is observed,
we consider the corresponding feature can be utilized to charac-
terize the GFIs, and vice visa. In detail, we extract all the features
from the dataset and perform the Wilcoxon rank-sum test between
GFIs and non-GFIs. We include the Bonferroni correction [53] to
counteract the impact of multiple hypothesis tests. Besides the p-
value for signifying the significance of the test, we also present
the Cliff’s delta to demonstrate the effect size of the test. And we
use the commonly-used criteria to interpret the effectiveness levels,
i.e., Large (above 0.474), Median (0.33-0.474), Small (0.147-0.33), and
Negligible (less than 0.147) (see details in [22]). We highlight the
cell which has a significant difference between GFIs and non-GFIs,
and the larger the effect size, the deeper color of the cell.

The null hypothesis and alternative hypothesis are as follows:
• H0: there is NO difference between the feature values of GFIs
and non-GFIs.

• H1: there is a difference between the feature values of GFIs
and non-GFIs.

The last column in Table 2 demonstrates the quantitative results,
and the next paragraphs present the analysis of these results in
terms of each category of features.

Reporter Experience. From Table 2, we can see that reporter’s
role demonstrates no significant difference between GFIs and non-
GFIs, while has_gfi (i.e., whether the reporter’s submitted issues
being marked as GFIs) exerts significant difference (i.e., p-value
is smaller than 0.001). This indicates the features related to the
reporter’s experience have minor contributions in characterizing
the GFIs.

Text Richness. All the features in this category exert a signif-
icant difference (i.e., p-value is smaller than 0.001) between the
GFIs and non-GFIs, and especially for these features obtained in
terms of the comments of the issue (i.e., the effect size is median). In
detail, the dataset shows that the number of comments and length
of the comments are significantly smaller for GFIs than non-GFIs.
This might because for the issues with more or lengthy comments
(potential more discussion and clarification about the problems and
solution), it may indicate they are more difficult and is not suitable
for newcomers.

Readability. A large portion of the features related to the tex-
tual readability exert a significant difference between GFIs and
non-GFIs, and for the readability of the comments, all related fea-
tures demonstrate substantial difference (i.e., effect size is small
4https://github.com/scikit-learn/scikit-learn/

Figure 1: Wordcloud for GFI and non-GFI of project server

to median). Furthermore, the dataset also reveals that if the com-
ments are easy to read (e.g., contain less difficult words, use words
with fewer syllables), the corresponding issue is more likely to be a
GFI. In addition, some of the readability features obtained in terms
of issue title or body also exert significant difference, which fur-
ther demonstrates the importance of description’s readability in
distinguishing GFIs from non-GFIs.

Influenced Scope.The features about an issue’s influenced scope
exert a significant difference between GFIs and non-GFIs. Both the
number of code snippets in the issue body and in the comments
can indicate whether an issue is a GFI. We further find that GFIs
tend to have more code snippets in the issue body to help describe
and clarify the issue.

Code Complexity. Few features about code complexity exert a
significant difference between GFIs and non-GFIs. Specifically, the
number of modified files and the complexity of the modified file
demonstrate a substantial difference (i.e., the effect size is small)
between GFIs and other issues. Unsurprisingly, we find that, for
GFIs, there are fewer modified files and the modified files are less
complex, which indicates the less difficulty in resolving the GFIs.

Issue Types. For features about issue types, certain label (i.e.,
is_enhancement) can help distinguish GFIs and non-GFIs. Our ob-
servation from the dataset reveals that GFIs are more likely to be
enhancement issues. One of the possible reasons for this can be that
enhancement labels often indicate feature requests, which involve
less modification of existing code. Other issue types, e.g., whether
it is a bug, do not exert a significant difference between GFIs and
non-GFIs, indicating the GFIs can possess a wide range of types.

Semantics. Most features related to the issue’s semantics exert
a significant (i.e., p-value is smaller than 0.001) and substantial (i.e.,
effect size is small to large) difference between GFIs and non-GFIs.
The title, the body, and the comments of the issues can contribute
to distinguishing the GFIs. Surprisingly, we find that the number
of topics of issues’ title or body of GFIs is larger than non-GFIs.
This might because GFIs tend to be described in detail with more
words to provide a clear description, while some non-GFIs might
be described roughly with fewer words and fewer number of topics.
In addition, the significant difference between GFIs and non-GFIs
for the features related to Bayes scores implies that there exist
indicative words in GFIs.

Figure 1 demonstrates an example of these indicative words of
GFIs and non-GFIs for project server, which confirms GFIs and
non-GFIs have a different distribution of words in their discussions,



ESEM ’21, October 11–15, 2021, Bari, Italy Yuekai Huang, et al.

and the semantics of issues’ textual descriptions is a good source
of information for distinguishing these two types of issues.

To summarize, most of the investigated features exert a sig-
nificant and substantial difference between GFIs and non-GFIs,
indicating they can be utilized for characterizing GFIs. Specifically,
features related to the semantics, readability, and text richness of
the issues play a larger contribution in GFIs characterization. In
addition, GFIs tend to be described with certain words, in better
readability, with shorter and clearer descriptions, and associated
with more code snippets in the issue description, to help describe
and clarify the issue.

4 EXPERIMENT DESIGN
4.1 Research Questions
This section aims at exploring to what extent these features pro-
posed in Section 3 can be employed to predict the GFIs, so as to assist
the developers in automatically labeling the issues for newcomers.
The following questions will be answered.

• RQ1: Are the proposed features good at predicting GFIs?
• RQ2: What is the contribution of each category of features
in predicting GFIs?

• RQ3: Can a reduced feature set achieve comparable perfor-
mance compared to the full feature set?

RQ1 evaluates to what extent the proposed features can predict
the GFIs. RQ2 examines the relative contribution of each category
of features in predicting GFIs, which aims at understanding these
features. RQ3 examines the performance when using feature se-
lection algorithms, which aims at providing actionable decision
support for developers when choosing features in building GFIs
prediction models.

4.2 Experiment Setup
To answer RQ1, following existing studies [6, 9, 29], we conduct the
5-fold cross validation on each project, record each model’s perfor-
mance and treat the average value as the final performance of the
project to avoid bias. To reduce the impact of data distribution on
model performance, we use stratified k-folds to ensure consistent
data distribution between the training data and the testing data.
The training set is oversampled using SMOTE [11] to balance the
data, while we keep the testing data as it is to maintain its true dis-
tribution. Note that, since the features related to Code Complexity
can only be retrieved after the issue is closed, we omit this category
of features and employ other six categories for model building.

We experiment with the following four commonly-used ma-
chine learning algorithms to evaluate the GFIs prediction per-
formance, i.e., Logistic Regression (LR) [7], Support Vector Ma-
chine (SVM) [13], Random Forest (RF) [23], and Multilayer Percep-
tor (MLP) [35].

To answer RQ2, we use the same experimental setup as RQ1.
We first experiment with each category of features and obtain the
performance of GFIs prediction; we then conduct experiments after
removing each category of features from the full feature set.

To answer RQ3, we experiment with three commonly-used fea-
ture selection algorithms. In detail, SelectFromModel (SFM) is an
algorithm based on the estimator’s attribute like coefficients [1].

SequentialFeatureSelector (SFS) is a greedy based algorithm that
adds the best feature every iteration [2, 17]. Recursive Feature Elim-
ination (RFE) is an algorithm that recursively removes the least
important features [3]. Furthermore, we additionally employ other
two feature subset choices, i.e., using all the significant features in
Table 2 (short for SIG_FET ) and using all the features whose effect
size is not negligible in Table 2 (short for H_SIG_FET ).

4.3 Baselines
To further demonstrate the effectiveness of our approach, we com-
pare it with the state-of-the-art baseline and a random approach.

TextPredictor [42] : is a natural language processing based pre-
diction approach, which automatically identifies the issues that
newcomers can resolve. It first vectorizes the textual descriptions
in the issue report by term frequency and inverse document fre-
quency (TF-IDF). Together with the features from sentiment analy-
sis and the number of words in the issue, it builds machine learning
models for the prediction.

Random: simulates the scenario that the developers assign the
GFIs label randomly. In detail, we randomly label a subset of issues
as GFIs, and calculate the performance of random labeling. The
process is repeated 10 times and the average metric values are used
to evaluate its performance.

4.4 Evaluation Metrics
As shown in Table 1, the number of GFIs are highly imbalanced
among all the issues of a project, thus we use AUC, which is widely
utilized in measuring the performance of prediction models for
imbalanced data [32, 48, 52, 56], for measuring the performance.

AUC refers to the area under the Receiver Operating Charac-
teristic (ROC) curve, which measures the overall discrimination
ability of the model. The ROC curve is drawn by calculating the
true positive rate and false positive rate under various thresholds.
AUC for a perfect model would be 1.0, and a model is considered
applicable if its AUC is larger than 0.7 [49].

In addition, we also adopt the effort-aware evaluation and use a
metric, i.e., PofG{K}, borrowing from defect prediction studies (also
imbalanced scenario) [26, 46, 56], to measure the performance.

PofG{K} is defined as the percentage of true GFIs identified
by inspecting the top K% issues predicted by the model. A higher
PofG{K} indicates that one can identify more GFIs when inspecting
a limited number of total candidates. In our experiments, we set
K as 5, 10, and 20 (i.e., PofG5, PofG10, and PofG20) to obtain a
thorough view of the prediction performance.

5 RESULT ANALYSIS
5.1 Answering RQ1
Figure 2(a) presents the PofG5, PofG10, PofG20, and AUC values
for each experimental project under different machine learning
models. Overall, as we can see, among the four types of machine
learning based models, RF can outperform others in all four metrics.
For the RF-based model, with the proposed features, it can achieve
0.79 to 0.91 AUC, with a median AUC of 0.88. The high AUC values
indicate that our proposed features are good at predicting the GFIs.
Furthermore, the median PofG5 of RF-based model is 0.42, and the
median PofG20 is 0.77, indicating that by inspecting a mere of 5%
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(a) Performance under different machine learning algorithms (b) Performance under different approaches

Figure 2: Performance of GFI prediction

issues predicted by our model, a median of 42% total GFIs can be
retrieved, and by inspecting a mere of 20% issues predicted by our
model, about 77% total GFIs can be retrieved.

The best model, i.e., RF, is an ensemble learning method, which
consists of multiple estimators, and even if some of them obtain
wrong predictions, others can correct the results, which makes it
perform well in GFIs prediction. MLP, which is a deep learning algo-
rithm, is supposed to perform well. Yet it is inferior to the random
forest model. This might because the model is good at utilizing large
amount of training parameters to fit the data. But in this scenario,
the GFIs only account for a small proportion of all issues, even over-
sampling is applied to balance the data, there is less information
to learn. Besides, the over-sampling would potentially amplify the
noise in the data, and easily mislead the MLP model. Hence, in the
following experiment, if not specified, we will use random forest
model.

Comparison with baselines. In order to demonstrate the ad-
vantages of the features we proposed, we compare our approach
with two baselines (see Section 4.3). The results are shown in the
Figure 2(b). We can see that the performance of our approach is
significantly higher than the two baselines, which further indicates
the effectiveness of the proposed features in predicting GFIs.

The random baseline achieves quite lower performance, indi-
cating a well-designed approach is necessary for GFIs prediction.
Another baseline, i.e., TextPredictor, uses TF-IDF to model the tex-
tual descriptions, and consider the sentiment score and number of
words in the issue, to jointly predict the GFIs. In comparison, our
approach employs the topic model and four Bayes scores to model
different aspects of the textual descriptions. We also consider other
issue features as the readability and text richness to promote the
prediction. This again suggests the necessity and effectiveness of
our proposed features.

Our GFIs prediction approach can achieve a median AUC of 0.88
with the proposed features, which significantly outperforms the
state-of-the-art baseline.

Table 3: P-value and effect size between performance of the
predictionmodel with the full feature set and a sub category
of features.

Sub-Features PofG5 PofG10 PofG20 AUC
Reporter Experience *** L *** L *** L *** L
Text Richness *** L *** L *** L *** L
Readability *** L *** L *** L *** L
Influenced Scope *** L *** L *** L *** L
Issue Types *** L *** L *** L *** L
Semantics *** L *** L *** L *** L

***p<0.001, **p<0.01, *p<0.05
N:Negligible, S:Small, M:Medium, L:Large

5.2 Answering RQ2
Figure 3 (a) demonstrates the GFIs prediction performance with
each category of features, i.e., Reporter Experience, Text Richness,
Readability, Influenced Scope, Issue Types, and Semantics.
We also present the performance using all the proposed features
(i.e.,All) for comparison. Table 3 additionally presents theWilcoxon
signed-rank [54] test results to compare whether the performance
with each category of features demonstrates significant difference
with the performance using all features.

We can see that with any category of features, the GFIs prediction
performance is significantly lower than the performance using the
whole set of features.

Figure 3 (b) demonstrates the GFIs prediction performance when
removing each category of features, as well as using all the proposed
features (i.e.,All). Table 4 additionally presents theWilcoxon signed-
rank test results to compare whether the performance using all
features demonstrates significant difference with other settings.

We can see that when removing any category of features, the
median PofG10 would decrease notably. Furthermore, when remov-
ing each category of features (except Issue Types), the prediction
performance would undergo a significant decline in at least one of
the four evaluation metrics.
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(a) Performance of each category of features (b) Performance of complement sets for each category of features

Figure 3: Performance of subsets of features

Table 4: P-value and effect size between performance with
all features and complement sets of features of different cat-
egories (the superscript𝐶 means the subset features with ex-
cluding the specific category)

Sub-Features PofG5 PofG10 PofG20 AUC
Reporter Experience𝐶 ** S *** S N * N
Text Richness𝐶 N ** S N N
Readability𝐶 N * N N * N
Influenced Scope𝐶 N ** N N N
Issue Types𝐶 N N N N
Semantics𝐶 ** S *** M *** S *** S

***p<0.001, **p<0.01, *p<0.05
N:Negligible, S:Small, M:Medium, L:Large

The experimental results indicate all categories of features can
contribute to the GFIs prediction and the developers should try their
best to collect all these categories of features in order to achieve
satisfying prediction results.

Among the six categories of features, the performance would
drop sharply when removing the Semantics features. This indi-
cates the importance of this category of features, and is also con-
sistent with the hypothesis testing results in Section 3.2. Besides,
we also notice that, when using the Readability features for pre-
diction, the performance is relatively high; yet when we remove
the Readability features, the performance decline is not so sig-
nificant. This implies that the contribution of the Readability
features overlap with other features, e.g., the hard words might also
potentially be considered in Semantics features.

In comparison, we can see that although the Reporter Experience
has less significant features, it also has a significant impact on per-
formance.When removing features related to Reporter Experience,
the performance (especially PofG5 and PofG10) undergoes signif-
icant decline; yet when only using this category of features, the
performance is relatively low. This might indicate, the informa-
tion characterized by the reporter’s experience is relatively unique

Figure 4: Performance under different feature selection al-
gorithms

and has less intersection the information characterized by other
features. In other words, these features are less substitutable than
other features.

Overall, all the categories of proposed features can contribute
to the GFIs prediction and the Semantics category of features
contribute the most to the prediction performance.

5.3 Answering RQ3
Figure 4 presents the performance of GFI prediction under different
feature selection algorithms, as well as with all proposed features.

We can see that compared with using all proposed features, no
matter what feature selection algorithm is utilized, the performance
would decline.

Moreover, the same situation also occurs both in SIF_FAT and
H_SIG_FAT, and compared with SIF_FAT, H_SIG_FAT decreases
greatly, which shows that although some features have negligible
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effect size, they also have a big influence on the prediction of GFIs.
Therefore, when discarding features is required, careful feature
selection is required.

In general, the results indicate all the proposed features are
useful in predicting GFIs, and we recommend the practitioners
utilize all the features in model building.

6 DISCUSSION
6.1 User Study
The performance in Section 4 is obtained based on the historical
issues with the marked GFI label. This section conducts an experi-
ment on the newly reported issues to further examinewhether these
proposed features can accurately predict GFIs, and to investigate
whether the developers think them useful.

In detail, we use the projects fromGood First Issue collectionweb-
site5 as the candidate projects for experiment. Since these projects
have at least one issue marked as GFIs, we suppose they are uti-
lizing this mechanism. We crawl the issues created after the latest
GFI’s creation time, run our prediction model on these issues, and
obtain the top 2 predicted GFIs of each project. For the issues with
low probability (less than 0.5) to be a GFI, we ignore them.

We then submit a comment below the related issue, suggesting
the issue can be marked as a GFI together with the primary idea
about how we determine it. In total, 16 responses are received
among the 48 submitted comments. Of all the responses, 10 issues
are confirmed as GFIs, while 6 issues are denied. Due to the space
limit, we put the detailed information on our website6, and present
few examples below.

Among the identified issues, some are confirmed directly by the
developers, and several developers show interest in this research.
Note that, the content within the brackets before the response (e.g.,
solidity #10035) denotes the project name and issue id.

• (coq #13280) “yes, that seems reasonable, thanks”
• (amphtml #30592) “Yes, this could be a GFI. Cheers.”
• (solidity #10035) “This is very interesting indeed! Could you
identify other issues in this repository to be potentially labelled
GFI?”

• (polar-bookshelf #1556) “I guess it should - but I’m not com-
pletely sure of the evaluation criteria of a GFI from the previous
message. I found really interesting that an ML is analyzing
what gets posted, keep continuing this :)”

Some issues are considered to be non-GFIs because GFIs have
special criteria in their projects. This further indicates the difficul-
ties of GFIs auto-labeling, and the necessity of the exploration in
this topic.

• (oppia #10610) “In this repo, good first issues are tagged if
the solution is known and/or have sufficient well-documented
examples. This issue does not fall under the "good first issue"
category because it requires debugging to figure out the root
cause of the issue before it can be fixed.”

5https://goodfirstissue.dev/
6https://github.com/20210515/GFI

• (joplin #4203) “No, not a good first issue. Spec is not fully
developed and implementing this requires a relatively good
knowledge of the codebase.”

In addition, developers also post constructive suggestions about
using the GFIs mechanism. For example, one developer thinks that
the total number of GFIs should not be too high, and the GFIs need
to be strictly reviewed.

• (jabref #6865) “I think, the discussion is also whether a good-
first-issue should be something being a quick win for the con-
tributor or whether it should be hard-to-do, but afterwards,
the contributor knows nearly everything about the software.
We optimize for the former when putting GFI labels. A nearly
forgotten property of GFI issues is that the total number of GFI
issues should not be too high. A GFI should be well-described
and provide the newcomer a good start. This is hard work to
do.”

6.2 Lower Cross-project Performance and Data
Shift Problem

We also have conducted the cross-project GFI prediction, and Table
5 presents the AUC of cross project prediction by treating each
project as testing data and every other project as training data in
turn, with the worst performance in blue and best cross-project
performance in red. Other metrics exert a similar trend, and we did
not present them due to the space limit.

We can see that the cross-project prediction achieves lower per-
formance than within project prediction. The average performance
decreased by 11%. This coincides with the trend of cross-project
report prediction [15]. Different projects can easily demonstrate
different distribution of features caused by the developer habits,
team organization, programming languages, etc. These can easily
cause performance degradation in cross-project prediction.

We can also observe that the best performance (i.e., red value)
tends to appear in the largest 5 training projects (projects with
more than 8000 issues), while worst performance (i.e., blue value)
tends to appear in the smallest 5 training projects (projects with
less than 6000 issues), which indicates that enough training data
can improve the performance of the model. Besides, we also find a
relatively small project react-admin can predict project jest more
accurately than other training projects, which might be due to
the fact that they belong to the same domain and use the same
programming language. Yet, more exploration is needed to better
investigate the cross-project GFIs prediction and developers should
carefully choose the training data when building prediction models
with the data from other projects.

6.3 Threats to Validity
The internal threats are related to the acquisition of available infor-
mation. During the feature extraction process, some issue features
are affected by time. When we capture an issue, we get all the
information from issue creation to closure, but for GFIs, some infor-
mation is not generated when labeling as a GFI, which may result
in confusion of information. We make some constraints time to
mitigate this threat.

The threats to external validity concern the generality of this
study. Our data are crawled from GitHub, one of the largest open
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Table 5: Performance of cross-project prediction (AUC)

Test
Train babel bitcoin jest lighthouse skaffold packer graphql-engine minikube react-admin server

babel 0.88 0.73 0.71 0.67 0.61 0.70 0.69 0.64 0.73 0.74
bitcoin 0.71 0.79 0.72 0.67 0.60 0.68 0.69 0.69 0.71 0.69
jest 0.69 0.68 0.87 0.75 0.71 0.73 0.63 0.73 0.79 0.74
lighthouse 0.57 0.68 0.74 0.85 0.65 0.68 0.78 0.68 0.68 0.73
skaffold 0.74 0.74 0.77 0.83 0.90 0.80 0.72 0.83 0.77 0.84
packer 0.66 0.64 0.69 0.70 0.67 0.88 0.70 0.71 0.78 0.79
graphql-engine 0.72 0.80 0.73 0.76 0.77 0.76 0.90 0.78 0.74 0.78
minikube 0.66 0.68 0.74 0.75 0.70 0.75 0.68 0.91 0.75 0.73
react-admin 0.78 0.74 0.77 0.79 0.72 0.80 0.67 0.76 0.87 0.81
server 0.58 0.69 0.70 0.64 0.55 0.64 0.54 0.67 0.68 0.82

source software websites, and the selected projects are popular. The
results of this study are based on these projects and may not be
applicable to all scenarios, but the size of these projects can help
reduce this threat.

The threats to construct validity are mainly derived from the met-
rics selected in our experiment. We use AUC and PofG to evaluate
the performance of the model. The selection of these two metrics
may have potential threats. However, these measures have been
used in previous work [26, 56], so the threat is relatively small.

7 RELATEDWORK
In recent years, many researchers focus on the motivation of con-
tributors in OSS. Ye et al. [57] theorized that learning is one of the
motivational forces for developers to participate in an OSS and
discussed the significance of the theory in OSS and software en-
gineering. Von Krogh et al. [50] reviewed the previous research
related to the motivation of developers, and proposed a new the-
oretical framework. Allaho [4] conducted a statistical analysis on
the social networks of OSS, and the results show that social rela-
tions have a significant impact on contributors. Krishnamurthy [30]
pointed out that peripheral developers would be more involved if
they are more likely to gain reputation.

There are also studies focusing on the barriers developers may
encounter. Shibuya et al. [41] pointed out that the lack of appro-
priate tasks, up-to-date documents, new tools are the factors that
hinder developers from joining the project. Steinmacher et al. [43]
has identified 58 possible barriers that newcomers may face. Lee et
al. [31] found that most developers just want to fix issues, rather
than become long-term maintainers, and discussed four kinds of
barriers the contributor faced. Mendez et al. [36] revealed the issues
on both tools and infrastructure, and believed that there were six
types of newcomer barriers related to tools and infrastructure.

In the face of the barriers, some scholars have conducted research
on newcomers in OSS and how to attract more newcomers to join
projects. Jensen et al. [25] found that for newcomers, whether they
can receive a response in time affects whether they will participate
in it. Zhou et al. [59] modeled the willingness and opportunity of

the contributors and found out the factors for the newcomers to
become long-term contributors. Wang et al. [51] designed a tool
extension, which can provide visual bug information for developers
and help them search for bugs they are interested in. Wolff-Marting
et al. [55] made suggestions on both the procedural environment
and the newcomers’ confidence to help the newcomers save time
in building the environment. Panichella et al. [37] defined several
tools which can recommend suitable mentors for newcomers and
help them understand the code. Steinmacher et al. [45] believes
that some guidelines can help newcomers join the project, and
puts forward suggestions in the three aspects of the contribution
process, social behavior, and technology.

This paper aims at providing automatic GFIs labeling to help
newcomers easily find the appropriate tasks, so as to increase the
possibility of becoming long-term contributors.

8 CONCLUSION
In this work, we aim to identify the differences between GFIs and
non-GFIs by analyzing the various features of issues and recom-
mend candidate GFIs for developers to reduce their labeling burden.
To achieve this goal, we first crawl ten large projects from GitHub
and extract 79 features from them. Quantitative analysis reveals
that most of the features are significantly different between GFIs
and non-GFIs. After that, we build the machine learning based
model with these features to predict GFIs. The results show that
these features can well recommend candidate GFIs for developers.

It should be noted that the features used in model training in
this paper are based on the text or attributes in the issue, and do
not involve the code of the project. Therefore, in the future, we can
extract more features by combining code localization to enhance
our current approach.
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