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ABSTRACT
Background: Software bug prediction plays a fundamental role in
software quality assurance. Many software bug prediction models
have been proposed and evaluated on a set of well-known bench-
mark datasets.We conducted pilot studies on the widely used bench-
mark datasets and observed common issues among them. Specif-
ically, most of existing benchmark datasets consist of randomly
selected history versions of software projects, which poses non-
trivial threats to the validity of existing bug prediction studies since
the real-world software projects often evolve continuously. Yet how
to conduct software bug prediction in the real-world continuous
software development scenarios is not well studied.

Aims: In this paper, to bridge the gap between current software
bug prediction practice and real-world continuous software devel-
opment, we propose new approaches to conducting bug prediction
in real-world continuous software development regarding model
building, updating, and evaluation.

Method: For model building, we propose ConBuild, which lever-
ages distributional characteristics of bug prediction data to guide
the training version selection. For model updating, we propose
ConUpdate, which leverages the evolution of distributional charac-
teristics of bug prediction data between versions to guide the reuse
or update of bug prediction models in continuous software develop-
ment. For model evaluation, we propose ConEA, which leverages the
evolution of buggy probability of files between versions to conduct
effort-aware evaluation.

Results: Experiments on 120 continuously release versions that
span across six large-scale open-source software systems show the
practical value of our approaches.

Conclusions: This paper provides new insights and guidelines
for conducting software bug prediction in the context of continuous
software development.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Empirical software validation.
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1 INTRODUCTION
Software bug prediction techniques have been proposed to guide
bug detection and reduce software development costs [47, 66, 86].
Over the past decades, we have seen many successful cases of ap-
plying bug prediction models to help improve software quality
from many software organizations, e.g., Samsung Electronics [30],
AT&T [53], Microsoft Research [48, 49, 54, 83, 84], Google [35], and
Cisco [43, 58, 65]. To evaluate the performance of bug prediction
models, most of the existing studies adopt the widely used and pub-
licly available datasets, e.g., PROMISE dataset that contains 71 release
versions from 33 open source projects [26], NASA dataset that con-
tains 12 release versions from four projects [60], AEEEM dataset that
contains five release versions from five projects [8], SOFTLAB dataset
that contains three release versions from one project [68], or ReLink
dataset that contains three release versions from three open source
projects [50, 75], etc. Most of the above datasets were created based
on the widely-used heuristic approach, i.e., identifying post-release
defects (by using specific keywords/issue IDs) within a specific
post-release window period (e.g., six months) [9, 13, 28, 63, 67, 80].
Recently, Yatish et al. [79] proposed to use the affected releases
recorded in issue tracking systems to collect defect data more ac-
curately for a given software bug. We refer to their dataset as
YatishData, which contains 32 release versions from nine projects.
In our two pilot studies (Section 2.2), we evaluated these defect
datasets and found some common issues regarding building, up-
dating, and evaluating software bug prediction. These issues pose
non-trivial threats to the validity of many defect prediction studies
particularly under real-world continuous software development.

First, from our pilot study I (Section 2.2.1), we observed that most
defect datasets used in existing bug prediction studies do not fit
in with real-world continuous software development. Specifically,
these datasets contain randomly selected release versions from
software projects. The time span between two release versions (in
chronological order) from a bug prediction dataset could be up
years, e.g., the two selected versions from project ActiveMQ (in
YatishData dataset [79]) have a four-year interval and skipped 11
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in-between history release versions. However, an active software
project often evolves continuously and releases a large number of
continuous versions chronologically [12]. In addition, evaluating
a bug prediction model on randomly selected versions introduces
non-trivial bias in the its performance. For example, bug prediction
models built on different training datasets (i.e., release versions) of
project Camel (in PROMISE dataset [26]) have significant different
AUC values and the difference can be up to 0.359 and on average is
0.221 (see Figure 1). The randomness of version selection in current
widely used defect datasets opens a huge gap between existing
software bug prediction studies and real-world software practice,
which motivates us to explore bug prediction in the context of
continuous software development. Yet, little is known about how
to select defect datasets for building bug prediction models in the
continuous software development.

Second, our pilot study II (Section 2.2.2) shows that the per-
formance of a bug prediction model often evolves over time. It
is commonly known that the data distributions between datasets
from different release versions could be significantly different and
prediction models built on datasets of earlier release versions could
have performance declines on datasets from later release versions
because of the data drift problem during software evolution [6, 10].
However, we found that a bug prediction model built on datasets
of early release versions does not lose the predictive power sharply.
This sheds light on reusing prediction models built on early release
versions for saving model-building cost, since building bug predic-
tion models for a newly released version requires extra time and
space effort to relabel data, collect features, and tune the parameters
of classifiers [65, 67]. Yet, little is known about when to update bug
prediction models before they deliver unacceptable performance in
the real-world continuous software development.

Third, due to limited resources and human effort, developers
often can only inspect a limited number of lines of code given the
prediction results of a bug prediction model. Thus, effort-aware
evaluation is widely adopted by existing bug prediction models [23,
24, 65, 78]. Most of existing effort-aware evaluation approaches
prioritize the files in a version to be inspected by using their buggy
probabilities, i.e., checking files with a higher buggy probability
first. However, such approach cannot take the evolution of the fault
proneness of source files into consideration. For example, suppose
that a file f1 was predicted as buggy with a buggy probability of
0.0 on an early release version v1. Then it was predicted as buggy
with a probability of 0.51 on a later release version v2. Such a
dramatic change on the buggy probability may indicate a potential
bug appeared in file f1 between the two versions. Suppose that
another file f2 had buggy probability evolved from 0.52 to 0.521
on the same two versions (i.e., from v1 to v2). Existing effort-aware
evaluation approaches give higher priority to f2 since f2 has a
higher buggy probability in v2, although f1 has a higher chance to
be a real bug giving the dramatic change on its buggy probability
(from 0 to 0.51) between versions.

To bridge the gap between existing software bug prediction stud-
ies and real-world continuous software practice, in this paper, we
explore software bug prediction in real-world continuous software
development scenarios regarding the building, updating, and evalu-
ating of bug prediction models. Specifically, for model building, we
propose ConBuild, which leverages distributional characteristics

of data from different versions to guide the training data selection
for building bug prediction models in continuous software develop-
ment. For model updating, we propose ConUpdate, which leverages
the evolution of distributional characteristics of data from different
versions to guide the reuse or update of bug prediction models
in continuous software development. For model evaluation, we
propose ConEA, which leverages the difference of the buggy proba-
bilities of files between different versions to conduct effort-aware
evaluation of bug prediction results in continuous software devel-
opment. Experiments on 120 continuously released versions from
six software systems show the practical value of our approaches.

This paper makes the following contributions:
• We conduct the first empirical study to explore challenges
of current software bug prediction practice in the context of
continuous software development regarding the process of
bug prediction model building, updating, and evaluation.

• We propose ConBuild to guide the training data selection
for building bug prediction models in continuous software
development based on the distributional characteristics of
bug prediction datasets.

• We propose ConUpdate to guide the reuse or update of
bug prediction models in continuous software development
based on the evolution of distributional characteristics of
bug prediction datasets.

• We propose ConEA to conduct the effort-aware evaluation
of bug prediction models in the context of continuous soft-
ware development by leveraging the difference of the buggy
probabilities of files between versions.

• We provide a new benchmark bug prediction dataset of 120
continuously released versions that span across six open-
source software systems for facilitating future continuous
software bug prediction research1.

The rest of this paper are organized as follows. Section 2 describes
the background andmotivations of this study. Section 3 presents our
approaches. Section 4 shows the setup of our experiments. Section 5
presents the results of our study. Section 6 discusses open questions
and the threats to the validity of this work. Section 7 surveys the
related work. Finally, we summarize this paper in Section 8.

2 BACKGROUND AND MOTIVATION
This section introduces the background of bug prediction and two
pilot studies that motivate us to explore bug prediction models in
continuous software development.

2.1 Process of File-level Bug Prediction Models
The objective of a file-level bug prediction model is to determine
risky files for further software quality assurance activities. [19,
33, 45, 48, 56, 86]. A typical release-based file-level bug prediction
model mainly has three steps. The first step is to label the files in
an early version as buggy or clean based on post-release defects for
each file. Post-release defects are defined as defects that are revealed
within a post-release window period (e.g., six months) [56, 72].
One could collect these post-release defects from a Bug Tracking
System (BTS) via linking bug reports to its bug-fixing changes.

1https://zenodo.org/record/3830114
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Files related to these bug-fixing changes are considered as buggy.
Otherwise, the files are labeled as clean. The second step is to
collect the corresponding defect features to represent these files.
Instances with features and labels are used to trainmachine learning
classifiers. Finally, trained models are used to predict files in a later
version as buggy or clean. In this work, we refer to the release
version used for building models as a training version, whereas the
release version used to evaluate the trained models is referred to as
a test version.

2.2 Problems of Existing Bug Prediction
Process

2.2.1 Pilot Study I: Nature of Existing Benchmark Data and
its Influence. As most of the existing bug prediction models are
evaluated on the widely used benchmark datasets, i.e., PROMISE [26],
AEEEM [8], SOFTLAB [68], ReLink [50, 75], and YatishData [79],
we start from manually analyzing the nature of these datasets to
check whether the datasets are in line with real-world continuous
software development process, i.e., whether the selected versions
from a project are continuous. During the above manual analysis,
we exclude three datasets either because the datasets only contain
one version from each project (i.e., AEEEM [8] and ReLink [50, 75])
or the dataset did not release version numbers (i.e., SOFTLAB [68]).

Overall, in half of PROMISE projects [26] and all the YatishData
projects [79], the selected release versions for bug prediction stud-
ies are incontinuous. We also find that the time span between two
selected release versions (in chronological order) from a dataset
could be up to years, e.g., the selected latest two release versions
from project ActiveMQ in YatishData [79] have a four-year inter-
val with skipping 11 in-between history release versions. However,
during the lifetime of a software project, a large number of contin-
uous versions is released chronologically. Thus, the widely used
PROMISE [26] and YatishData [79] datasets do not fit in with real-
world continuous software development.

We further investigate the potential performance bias of bug
prediction models on current widely used bug prediction bench-
mark datasets. Specifically, we select two projects that were used
in both PROMISE [26] and YatishData [79], namely, Camel and
Lucene as our experimental subjects to examine how much perfor-
mance difference a bug prediction model could have with training
data from different release versions. For each project, we select 20
continuous release versions (details are in Table 2) and build the
ADTree based bug prediction models. We further select recent five
release versions (from v16 to v20) as the test versions. For each
test version, we build bug prediction models with defect data from
each of its previous versions to train prediction models. In total,
we have 2 (projects) * 85 (training-test pairs) = 170 prediction
experiments. Given a test version (from v16 to v20), we record the
AUC values of the models trained on different training versions
and obtain the difference between each model and the best model.

Figure 1 shows the performance difference. As we can see, bug
prediction models with different training datasets significantly dif-
fer in their performance (Wilcoxon signed-rank test, p < 0.05).
Specifically, on project Camel, the difference of AUC values can
be up to 0.359 and on average is 0.221. On the project, Lucene, the
difference of AUC values can be up to 0.227 and on average is 0.151.
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Figure 1: The distributions of performance difference of AUC val-
ues between the best model and other models.

Figure 2: Performance evolution of bug predictionmodels built on
the first versions on Camel and Lucene.

The problems of current widely used bug prediction benchmark
datasets, i.e., the prevalence of randomness regarding data col-
lection in these benchmark datasets, could introduce non-trivial
performance bias and do not fit in with real-world continuous
software development.

2.2.2 Pilot Study II: Performance Evolution of Bug Predic-
tion Models. As reported by existing studies, software analysis
models for predicting buggy commits [6, 41] or monthly bug fre-
quency [10] lost the predictive power over time due to the data drift
issue during the evolution of software projects, i.e., the distribution
of software artificial data (e.g., bug types, code changes, function-
alities, etc.) can be changed over time. In this pilot study, we set
out to investigate whether a release-based file-level bug prediction
model also suffers from the same issue. Specifically, we trained bug
prediction models on the first release versions (i.e., v1) from Camel
and Lucene, and then we use a later release version (from v2 to v20)
as the test data to examine the performance of the models.

Figure 2 shows the performance of the two bug predictionmodels
on test data from different release versions over time. Overall, the
performance of bug prediction models declines on both projects
with the evolution of projects, i.e., the AUC values drop from 0.775
(on v2) to 0.428 (on v20) on Camel and from 0.671 (on v4) to 0.508
(on v20) on Lucene. This confirms that release-based file-level bug
prediction models also suffer from the data drift issue, which makes
the prediction performance decline over time. In addition, we can
also find that a bug prediction model does not lose the predictive
power sharply. For example, the performance of the model has a
stable AUC values (0.63 ± 0.014) on test versions from v4 to v7
on Camel, the same phenomenon is observed on Lucene, e.g., test
versions v11-v13. This sheds light on the reuse of bug prediction
models built on early versions for saving model-building effort.

One of the possible reasons for the performance evolution is
the different distribution of features among release versions. Test
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versions that have similar distributional characteristics with a given
training version could generate better performance [52, 74]. In order
to verify such assumption, we use the above two models built on
v1 from Lucene and Camel as the experiment datasets and check
whether there exists correlation between the performance of the
models and the similarity of distributional characteristics between
the training version (v1) and a test version (from v2 to v20). We use
the standard deviation of each bug prediction metric to represent
its distributional characteristic in the training and test datasets. We
then use the standard deviation values of bug prediction metrics
to calculate the cosine similarity between a training dataset and
a test dataset to measure their distance, which is widely used in
prior studies to measure the similarity [70]. Note that, the goal of
this pilot study is not to find the best metrics of measuring the
similarity between two release versions, thus we only use standard
deviation to measure the distributional characteristic of a dataset.
More metrics to capture the distributional characteristics of data
are discussed in Section 3.1.

Following the existing studies [39, 85], we use the Spearman
rank correlation [46] to measure the correlation between the per-
formance of a bug prediction model on test versions (i.e., AUC)
and the similarity between the training version (v1) of the bug
prediction model and the test versions. The closer the value of a
correlation is to +1 (or -1), the higher two measures are positively
(or negatively) correlated. The Spearman correlation values are 0.84
and 0.91 on Lucene and Camel respectively, which confirms that
the performance of a bug prediction model on a given test version
is correlated to the similarity between the training version and the
test version.

Due to the data drift issue in the bug prediction datasets, the
performance of a bug prediction model evolves over time. How-
ever, a model does not lose the predictive power sharply, which
sheds light on model reuse to save model rebuilding effort.

Results of our pilot studies motivate us to look deeper in practic-
ing bug prediction in continuous software development, and inspire
us to propose solutions for effectively building, updating, and eval-
uating bug prediction models in continuous software development
by using the evolution information of projects’ distributional char-
acteristics.

3 METHODOLOGY
In this section, we present our solutions to guide building, updat-
ing, and evaluating bug prediction models in continuous software
development. Specifically, to build effective bug prediction models
for a given release version, we propose ConBuild, which leverages
the distributional characteristics of bug prediction data to select
the appropriate training versions (Section 3.1). To acknowledge the
reuse or update of bug prediction models, we propose ConUpdate,
which leverages the evolution of the distributional characteristics of
bug prediction data to guide the model reuse or update (Section 3.2).
In addition, we also propose ConEA, which leverages the differences
of buggy probabilities of files between versions to conduct effort-
aware evaluation of bug prediction models (Section 3.3). The details
of these three approaches are shown in Figure 3.

Figure 3: The overview of our proposed approaches for building,
updating, and evaluating bug prediction models in continuous soft-
ware development.

3.1 ConBuild: Model Building in Continuous
Software Development

Motivated by our pilot study II (Section 2.2.2), given a test version
vn , ConBuild leverages the similarity of distributional characteris-
tics between a candidate training version and the test version vn
to identify an appropriate training version from history to build a
bug prediction model for the test version vn .

To capture the characteristics of a bug prediction dataset prop-
erly, we use 11 widely used indicators in existing studies to describe
the distributional characteristics [21, 34, 38], which are shown in
Table 1. In this work, we consider the characteristics of a dataset
as the collection of distributional characteristics of each bug pre-
diction metric (as listed in Table 3). Combining these indicators
together, we generate a vector of 594 indicators (i.e., 54 bug predic-
tion metrics multiplying 11 indicators) to describe the distributional
characteristics of a given training dataset or test dataset. Following
our pilot study II (Section 2.2.2), we use cosine similarity to measure
their similarity.

Given a test versionvn and each of its previous versions (fromv1
to vn−1), ConBuild first collects the value for each bug prediction
metric and obtains the characteristic indicators as described in
Table 1. Then, ConBuild applies cosine similarity to calculate the
similarities between vn and each of its previous versions by using
the indicator vectors. Finally, ConBuild ranks the previous versions
based on the similarities and recommends the top version as the
training version to build a bug prediction model. The details of
ConBuild are described in Algorithm 1.

3.2 ConUpate: Model Reuse/Update in
Continuous Software Development

Given a newly released version, we aim to acknowledge developers
whether to reuse previous models for saving efforts or to update
previous models, e.g., relabeling data with additional bug infor-
mation and finding an appropriate training version to rebuild a
bug prediction model. Specifically, we propose ConUpdate, which
leverages the evolution of distributional characteristics of datasets
to guide bug prediction model reuse or update for a newly released
version in continuous software development.

For a newly released version vn , ConUpdate recommends ei-
ther Reuse or Update operations. If both the previous version vn−1
and the training version of vn−1’s applied model (i.e., the bug
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Algorithm 1 ConBuild: training version selection

Require:
version to be predicted vn ;
history version list Vtrainings ;

Ensure:
recommended version vr ;

1: initialize a Map S ;
2: for each version v in Vtrainings do
3: extract characteristic indicators listed in Table 1;
4: compute the similarity s between v and vn ;
5: put v and s into S ;
6: end for
7: sort S by s;
8: return top one from S ;

Table 1: Descriptions of indicators used to describe the distribu-
tional characteristics of a dataset used in this work.

Indicator Description
Mode The most frequent value
Median The middle value
Mean The average value
Minimum The smallest value
Maximum The largest value
First Quartile The value cutting off 25% lowest cases
Third Quartile The value cutting off 75% lowest cases

Variance The arithmetic mean of the squared
deviation of the Mean to values in a dataset

Standard Deviation The square root of the variance
Skewness A measure of the asymmetry of a dataset
Kurtosis A measure of the peakedness of a dataset

prediction model that used to predict bugs onvn−1) have similar dis-
tributional characteristics to vn , ConUpdate recommends to reuse
the applied model of vn−1 to conduct bug prediction tasks on
vn , otherwise, ConUpdate recommends to update bug prediction
models and developers can find an appropriate training version to
rebuild a bug prediction model with ConBuild (in Section 3.1).

ConUpdate first calculates the similarities between each previous
release version (including version vn−1 and the training version of
its applied model) and vn . Second, ConUpdate ranks all previous
versions based on the similarity values. If both vn−1 and the train-
ing version of its applied model are ranked in top k (1 < k < n),
ConUpdate recommends a Reuse operation. Otherwise, ConUpdate
recommends an Update operation. For the Update operation, de-
velopers could use ConBuild algorithm in Section 3.1 to find an
appropriate training version to rebuild a bug prediction model for
version vn . Algorithm 2 describes the details of ConUpdate.

3.3 ConEA: Effort-aware Evaluation in
Continuous Software Development

As described in Section 1, most of current effort-aware evaluation
approaches only focus on files with high buggy probabilities, i.e.,
rank the probabilities of the predicted buggy files and prioritize
the files to be inspected based on the ranking [23, 24, 42, 65, 78].

Algorithm 2 ConUpdate: bug prediction model reuse/update

Require:
newly released version to be predicted vn ;
previous version vn−1;
training version of vn−1’s applied model Appliedn−1;
all existing version list Vall ;
threshold k ;

Ensure:
recommended operation;

1: initialize a Map S ;
2: for each version v in Vall do
3: extract characteristics indicators listed in Table 1;
4: compute the similarity s between v and vn ;
5: put v and s into S ;
6: end for
7: sort S by s;
8: if vn−1 and Appliedn−1 are in top k of S then
9: return Reuse;
10: else
11: return Update;
12: end if

However, such approaches do not take the evolution of fault prone-
ness of source files into consideration. We assume files that have a
dramatic change on the fault proneness between release versions
may indicate a potential risk and should be given higher priority. In
this work, we propose ConEA, to evaluate bug prediction models in
the continuous software development, which gives files that have
a dramatic change on the fault proneness (i.e., buggy probability)
between two release versions a higher priority.

Given the predicted buggy files in the version vn , ConEA first
calculates the probability differences between version vn and its
previous version vn−1. Second, ConEA ranks these files based on
the probability differences and then prioritizes their orders to be
inspected with the ranking. Note that, version vn would have new
files, e.g., introduced by new features, which are not in the previous
versions. For the newly added files in version vn , ConEA uses their
buggy probabilities in vn as the probability differences to rank
them together with other files to be inspected. Given the example
in Section 1, i.e., file f1 (whose probability evolves from 0 to 0.51)
and file f2 (whose probability evolves from 0.52 to 0.521), ConEA
gives file f1 a higher priority than file f2 since f1 has a higher
probability difference value (i.e., 0.51) than that of f2 (i.e., 0.01).
Algorithm 3 describes the details of ConEA.

4 EXPERIMENT SETUP
4.1 Data Collection
In this work, we set out to investigate software bug prediction mod-
els in real-world continuous software development, while as shown
in Section 2.2, most of the existing benchmark datasets do not satisfy
our criterion, i.e., a dataset of continuously released versions. Thus,
we follow the process described in Section 2.1 to collect experiment
data. Specifically, we first collect a set of bug-fixing commits within
a given period by using the heuristic approach proposed in [13],
i.e., using regular expression to search for specific keywords (e.g.,
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Table 2: Details of the experimental subjects and the 20 recent continuous release versions from each project.

Project Description #Files #KLOC Bug rate Studied Releases
Ant Java project building framework 0.71K-0.86K 94-107 9.7%-16.4% from v1.7.1 to v1.9.13
Poi Java library for handling Microsoft Office docs 1.8K-2.3K 199-244 7.2%-13.1% from v3.10.1 to v4.0.1
ActiveMQ Java based open source message broker 19K-36K 142-299 6.2%-15.5% from v5.12.3 to v5.15.8
HBase Distributed scalable data store 1.5K-1.8K 364-525 6.1%-20.5% from v1.1.10 to v2.0.3
Lucene Text search engine library 3.9K-4.5K 497-643 4.1%-6.2% from v5.5.4 to v7.6.0
Camel Enterprise integration framework 4.6K-7.7K 133-362 3.3%-9.6% from v2.17.7 to v2.23.0

Algorithm 3 ConEA: effort-aware evaluation

Require:
predicted result of version vn : Rn ;
predicted result of version vn−1 Rn−1;

Ensure:
result map F ; // maintaining inspection priority of files

1: for each file f in Rn do
2: if f in Rn−1 and f is true buggy in Rn−1 then
3: calculate the probability diff diff f in Rn and Rn−1;
4: put f and diff f into F ;
5: end if
6: if f not in Rn−1 and f is predicted as buggy in Rn then
7: put f and its probability from Rn into F ;
8: end if
9: end for
10: sort map F by diff ;
11: return F ;

f ix(e[ds])?,buдs?,de f ects?) and issue/report IDs in the commit
messages. Then we label files modified in these bug-fixing commits
as buggy. To make our dataset more representative, we select two
unique projects from PROMISE [26] (i.e., Ant and Poi), two unique
projects from YatishData [79] (i.e., ActiveMQ and HBase), and two
shared projects of them (i.e., Lucene and Camel). For each project,
we collect recent 20 continuous release versions before 2018-12-31
(i.e., the time when we collect data). Table 2 shows the details of the
six projects and the 20 continuous release versions selected from
each project.

4.2 Bug Prediction Metrics
Prior studies introduced many different bug prediction metrics to
build accurate bug prediction models. Since the goal of this study
is not to find the best bug prediction metrics, we adopt the widely
used code metrics, e.g., lines of code [36], code complexity metrics
(e.g., McCabe Cyclomatic) [40, 44], and object-oriented metrics (e.g.,
coupling between object classes) [18], etc., to build bug prediction
models. We use the Understand2 to collect code metrics, the detailed
explanation of each code metric is available on SciTools website.
Since some software metrics are computed at the method level,
following existing study [79], we use three aggregation schemes
(i.e., min, max, and average) to aggregate these metrics to the file
level. Table 3 describes the details of the studied code metrics.

4.3 Evaluation Metrics
We use AUC to evaluate the performance of a bug prediction model.
It has been widely used to evaluate classification algorithms in
2https://scitools.com

prediction tasks [14, 50, 51, 55, 69, 71, 81]. We use accuracy to eval-
uate the performance of ConBuild and ConUpdate. The accuracy is
defined as the ratio of the correctly recommended training versions
(for ConBuild) or actions (for ConUpdate) among all the recom-
mendation results. For evaluate ConEA, we employ PofB20 [24] to
measure the percentage of bugs that a developer can identify by
inspecting the top 20 percent lines of code. A higher PofB20 score
indicates that a developer can detect more bugs when inspecting a
limited number of LOC.

4.4 Benchmark Approaches
To explore the performance of the proposed ConBuild, we compare
it to the following baselines.

FSSBagging [20]: This is the state-of-the-art training version
selection approach for cross project bug prediction (CPBP), which
adopts a different data similarity measure from ConBuild. Specifi-
cally, it first generates a synthetic dataset by combining data from a
candidate training version and the given test version. It then trains
a Logistic Regression based classifier on the synthetic dataset and
uses its accuracy to measure the similarity between the candidate
training version and the given test version. Based on the similarity,
FSSBagging selects topN training versions from different projects
and filters out unstable features and then uses the bagging ensemble
method to combine defect prediction results generated by models
built with different training sets.

RandomBuild: It does not have any training version selection
strategy, which randomly selects a release version as the training
data and builds a bug prediction model.

To evaluate ConEA, we compare it to the existing effort-aware
bug prediction evaluation approaches.

EA [24, 72]: It first sorts files in the test dataset based on the
probabilities of being predicted as buggy by a bug prediction model.
With the list of sorted files, EA then accumulates the lines of code
(LOC) and the number of buggy files identified until 20 percent of
the LOC in the test data have been inspected and the percentage of
buggy files that are identified is referred to as the PofB20 score. The
calculation of PofB20 for ConEA is slightly different from existing
effort-aware evaluation approaches, instead of sorting files based
on the probabilities, ConEA sorts files based on the difference of
buggy probability between versions.

4.5 Research Questions
We answer the following research questions to evaluate the perfor-
mance of our proposed approaches.
RQ1: Towhat degree ConBuild can find the appropriate train-
ing version formodel building in continuous software devel-
opment?

https://scitools.com
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Table 3: Details of the metrics used to build software bug prediction models in this work.
Type Metrics Count

File

AvgCyclomatic, AvgCyclomaticModified, AvgCyclomaticStrict, AvgEssential, AvgLine, AvgLineBlank, AvgLineCode, AvgLineComment,
CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclFunction, CountDeclInstanceMethod,
CountDeclInstanceVariable, CountDeclMethod, CountDeclMethodDefault, CountDeclMethodPrivate, CountDeclMethodProtected,
CountDeclMethodPublic, CountLine, CountLineBlank, CountLineCode, CountLineCodeDecl, CountLineCodeExe, CountLineComment,
CountSemicolon, CountStmt, CountStmtDecl, CountStmtExe, MaxCyclomatic, MaxCyclomaticModified, MaxCyclomaticStrict,
RatioCommentToCode, SumCyclomatic, SumCyclomaticModified, SumCyclomaticStrict, SumEssential

37

Class CountClassBase, CountClassCoupled, CountClassDerived, MaxInheritanceTree, PercentLackOfCohesion 5
Method CountInput_{Min, Mean, Max}, CountOutput_{Min, Mean, Max}, CountPath_{Min, Mean, Max}, MaxNesting_{Min, Mean, Max} 12

RQ2: How effective is ConUpdate in guiding model reuse and
update in continuous software development?

RQ3: How much ConEA can improve existing effort-aware
bug prediction approaches in continuous software develop-
ment?

RQ1 explores the effectiveness of our approach for training ver-
sion selection for building bug prediction models proposed in Al-
gorithm 1. In RQ2, we aim to understand the performance of our
model update or reuse recommendation approach proposed in Algo-
rithm 2. In RQ3, we investigate the performance of our effort-aware
bug evaluation approach for continuous software bug prediction
models proposed in Algorithm 3.

4.6 Terminologies
This section presents the basic terminologies used to evaluate our
proposed approach.
Best model is the bug prediction model that achieves the best
performance (i.e., AUC) on a given test version.
Applicable models include the best models and other models
with less than 5% deviation compared to the best models on a
given test version, since 5% deviation is considered as acceptable in
statistics [34]. Other models are inapplicable models.

5 RESULT ANALYSIS
5.1 RQ1: Performance of ConBuild
To evaluate ConBuild (Algorithm 1), we select the latest ten release
versions (fromv11 tov20) from each project (listed in Table 2) as the
test datasets. For each test dataset, we label its early release versions
with the available bug information when the test version is released
and collect features for each version, then we use early release
versions to build and tune ADTree based bug prediction models.
After that, we obtain its best models, applicable models and
inapplicable models as the ground truth. We use Algorithm 1
to recommend the training version for each test version and check
how many test versions could obtain the applicable modelswith
our recommendations. In addition, for the ones that our approach
cannot recommend an applicable model, we further calculate the
performance difference between the bug prediction models trained
on our recommended versions and the best models.

Table 4 shows the results of ConBuild on the 60 experimental
test versions (from v11 to v20) from the six projects. Overall, of
78.3% (47 out of 60) experiment runs, ConBuild can help find an
applicable model. We can also observe that for the left 21.7% (13
out of 60) experiment runs, ConBuild cannot find their applicable
models. Since an inappropriate training version could introduce a
performance decline, thus for these unsuccessful recommendations
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Figure 4: The distributions of performance of the best model ( ),
ConBuild ( ), FSSBagging ( ), and RandomBuild ( ).

we further check the performance differences between the mod-
els built on recommended training versions and the best models,
which are also presented in Table 4. Overall, the performance dif-
ferences between models built with the unsuccessful recommended
training versions and the best models range from 5.5% to 14.5%
and on average is 8.6%, which means ConBuild does not lose too
much predictive power for the unsuccessful recommendations.

We further evaluate ConBuild by comparing it to two bench-
marks, i.e., FSSBagging [20] and RandomBuild. Note that we use
the recommended parameter values [20] and ADTree classifier to
drive FSSBagging on each of the test versions fromv11 tov20 on the
six experiment projects. To compare the performance of ConBuild
and RandomBuild, for each of the test versions from v11 to v20, we
randomly select one of its previous versions to build a bug predic-
tion model and further evaluate its performance on the test version.
We repeat RandomBuild on each test version 100 times to remove
potential bias. We also collect the performance of the best models
across all the test versions in the six projects as the best baseline.

The distributions of performance of the best model ( ), ConBuild
( ), FSSBagging ( ), and RandomBuild ( ) on the test versions are
shown in Figure 4. Overall, ConBuild outperforms both FSSBagging
and RandomBuild on the six experiment projects. FSSBagging de-
livers better results than RandomBuild on five out of the six experi-
ment projects. Our statistical test (i.e., Wilcoxon signed-rank test)
shows that ConBuild is significantly better than both FSSBagging
and RandomBuild.

One possible reason that FSSBagging does not perform well
in continuous bug prediction scenarios is that the assumption of
FSSBagging, i.e., combining multiple bug prediction models built
with different training versions from different projects could gen-
erate better results than the model built with insufficient training
data from the same project, does not hold in continuous software
development scenarios, since in continuous software development,
a project often has sufficient history training data to build effective
bug prediction models.
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Table 4: Results of ConBuild on the ten test versions (from v11 to v20) on each project. ‘
√
’ denotes that the bug prediction model built on the

recommended training version is an applicable model. ‘×’ denotes an unsuccessful recommendation. Numbers in the brackets are the relative
performance difference (i.e., AUC difference) between bug predictionmodels built on the recommended training versions and the best model.

Project v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
Ant

√
× (-9.9%)

√
× (-6.3%)

√
× (-7.9%) × (-14.5%) × (-8.1%)

√ √

Poi
√ √ √ √

× (-7.1%)
√ √ √ √ √

ActiveMQ
√ √ √ √

× (-10.1%)
√ √ √ √ √

HBase
√ √

× (-5.5%)
√ √ √

× (-13.5%)
√ √

× (-9.8%)
Lucene

√ √ √ √ √
× (-6.7%)

√ √ √ √

Camel
√

× (-5.8%)
√ √ √ √ √

× (-6.0%)
√ √

ConBuild can help find the best training versions for 78.3%
test versions. In addition, ConBuild significantly outperforms
existing approaches, which shows its practical value.

5.2 RQ2: Performance of ConUpdate
To evaluate ConUpdate (Algorithm 2), we use the same experiment
settings as RQ1 (Section 5.1), e.g., we select the latest ten release
versions (from v11 to v20) as the test datasets and for each test
dataset, we label its early release versions with the available bug
informationwhen the version is released, thenwe use early versions
to build and tune ADTree based bug prediction models. After that,
we obtain its best model, applicable models, and inapplicable
models as the ground truth. Note that for the first test version, i.e.,
v11, we use the best model of its previous version v10 as the
applied model to drive ConUpdate, for a later test version (i.e.,
from v12 to v20), if ConUpdate recommends an Update operation,
we use the training version selected by ConBuild (details are in
Section 3.1) as its applied model.

Given a test version vn , we define a Reuse recommendation
is valid, if the applied model of previous version vn−1 (i.e., the
bug prediction model that used to predict bugs on vn−1) is in the
applicable model set (i.e., ground truth) of vn . Analogically, we
define an Update recommendation is valid, if the applied model
of previous version vn−1 is not in the applicable model set of
vn . To find the best k in Algorithm 2, we experiment k from 1 to 5
and check the accuracy of our recommendation. Results show that
when k equals to 3, ConUpdate generates the best performance.

Table 5 shows the detailed recommendation results on the six
projects when k equals to 3. Specifically, ConUpdate makes 60 rec-
ommendations, 29 of them are Reuse and 31 are Update. We fur-
ther calculate the performance of our recommendation of Reuse
and Update regarding the accuracy of the recommendation results.
For the Reuse, ConUpdate achieves an accuracy of 62.1% and for
the Update, ConUpdate achieves an accuracy of 83.9%. Overall,
ConUpdate achieves an accuracy of 73.3% on these two types of rec-
ommendations. Since an unsuccessful Reuse may introduce a per-
formance decline, for these unsuccessful recommendations, we fur-
ther check the performance differences between the recommended
previous applied model and the ground truth best model, which
are shown in Table 5. Overall, the performance declines range from
5.5% to 15.0% across the six projects and on average is 9.5%.

In addition, as the goal of ConUpdate is to help developers save
unnecessary modeling building effort. Without ConUpdate, for each
newly released version, developers would either randomly reuse
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Figure 5: Model-building effort saved (i.e., the percentage of saved
model building runs) by ConUpdate.

previous models (which could bring dramatic performance decline
as shown in Section 2.2.1) or use ConBuild to find an appropriate
training version to build a bug prediction model. ConBuild requires
10 model-building runs on test versions from v11 to v20 in each
of the six projects. To show how much effort our approach could
save on each project, we calculate the model building runs that
our approach could save (i.e., a successful Reuse recommendation
could save one model building run), details are in Figure 5. As we
can see from the figure, the effort our approach saved ranges from
10.0% to 60.0% across the six experimental projects and on average
is 28.3%, which shows the practical value of ConUpdate.

ConUpdate can guide bug prediction model reuse or update for
73.3% test versions, and save 28.3% model-building effort.

5.3 RQ3: Performance of ConEA
To evaluate ConEA (Algorithm 3), we use the same experiment set-
tings as RQ1 (Section 5.1) and RQ2 (Section 5.2), i.e., select the latest
ten release versions (from v11 to v20) as the test versions from each
project. For each of the test version, we use early versions to build
and tune ADTree based bug prediction models, after that we obtain
its best model, finally we use the best model to predict bugs on
each test version. Based on the prediction results we then calculate
the widely used effort-aware evaluation metric, i.e., PofB20 (de-
tails are in Section 4.3), by following the existing studies [24, 72]
(denoted as EA) and our proposed ConEA.

Table 6 shows the comparison of the PofB20 values generated
by EA [24, 72] and ConEA. Overall, on 85% of the experiment pairs,
ConEA can generate better or equal PofB20 values to EA. In addition
on the 65% of the experiment pairs, ConEA generates better results
than that of EA. The improvements can be up to 58.83 percentage
points (i.e., v20 of project Ant), and on average the improvement is
9.5 percentage points. Results of our statistical test (i.e., Wilcoxon
signed-rank test) suggests that the proposed ConEA generates sig-
nificantly better PofB20 values than EA.



Continuous Software Bug Prediction ESEM 2021, 11st - 15th October 2021, Bari

Table 5: Results of ConUpdate on deciding whether to reuse previous applied model (i.e., R) or to update bug prediction models, i.e., finding
an appropriate training version and building a new bug prediction model (i.e., U). Numbers in the brackets are the performance difference
between the recommended previous applied model and the ground truth best model of the versions to be predicted. ‘

√
’ denotes a successful

recommendation and ‘×’ represents an unsuccessful recommendation.

Project v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
Ant R

√
R × (-8.1%) R × (-14.3%) R

√
U
√

R
√

R
√

R × (-8.3%) R × (-6.5%) U
√

Poi R × (-8.7%) R × (-13.4%) U
√

R
√

U × U
√

R × (-15.0%) U
√

R
√

U
√

ActiveMQ R
√

U
√

R
√

U
√

R
√

R × (-5.2%) R
√

U
√

R
√

R
√

HBase U
√

R
√

R
√

U
√

U
√

U
√

U × U
√

R × (-5.4%) U ×

Lucene U
√

R
√

U
√

U
√

R × (-6.8%) U × U × U
√

U
√

R
√

Camel U
√

R × (-5.5%) U
√

R × (-8.0%) U
√

U
√

U
√

U × U
√

R
√

Table 6: Comparison of PofB20 between our proposed continuous
effort-aware evaluation (i.e., ConEA) and current effort-aware evalu-
ation approach (i.e., EA) [24, 72]. Better or equal PofB20 values gen-
erated by ConEA are shown in bold.

Project Ant Poi ActiveMQ HBase Lucene Camel

v11
EA 15.00 19.50 38.89 3.45 19.64 30.69

ConEA 15.00 19.50 61.11 3.45 31.55 45.58

v12
EA 24.24 20.68 58.62 33.33 28.57 26.34

ConEA 24.24 31.28 72.41 33.33 27.33 38.68

v13
EA 62.50 28.45 71.42 47.27 28.47 20.87

ConEA 68.75 38.12 71.42 49.09 58.33 55.39

v14
EA 21.81 28.37 69.23 74.19 23.17 14.87

ConEA 10.90 28.71 69.23 74.19 33.55 14.87

v15
EA 6.25 14.41 40.00 37.63 32.65 22.44

ConEA 12.50 16.59 11.11 40.86 65.30 20.95

v16
EA 40.00 22.25 48.78 30.50 21.62 23.12

ConEA 60.00 45.07 75.61 37.29 61.26 27.81

v17
EA 22.22 24.34 44.44 55.93 18.09 12.59

ConEA 30.56 28.98 66.66 55.93 36.67 33.01

v18
EA 24.52 20.05 60.71 53.03 28.17 20.45

ConEA 24.52 25.13 92.86 53.03 26.76 20.45

v19
EA 31.57 22.64 51.61 18.70 22.22 16.56

ConEA 15.78 18.24 70.96 23.58 25.00 17.18

v20
EA 35.29 27.11 55.55 43.47 23.72 28.65

ConEA 94.12 55.42 96.29 46.09 53.85 22.16
Improvement 7.30 7.79 14.8 1.93 17.33 7.94
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Figure 6: The distribution of performance of ConBuild, ConUpdate,
and ConEA with different bug prediction models.

ConEA significantly improves the existing effort-aware evalua-
tion approaches and the improvements can be up to 58.8% and
on average are 9.5%.

6 DISCUSSION
6.1 Generalizability of Our Approaches
In this work, following existing studies [24, 49, 65, 73, 76, 79], we
build bug prediction models with ADTree. However software bug

Table 7: Performance of ConBuild, ConUpdate, and ConEAwith
different bug prediction models built on different machine
learning classifiers.

ADTree RF NB LR
ConBuild 78.3% 66.7% 95.0% 88.3%
ConUpdate 73.3% 65.0% 68.3% 60.0%
ConEA 9.5% 14.4% 9.2% 14.7%

prediction models with Random Forest (RF), Naive Bayes (NB),
and Logistic Regression (LR) have also been adopted in existing
work [11, 25, 79]. To explore the generalizability of our techniques,
we further examine the performance of the proposed ConBuild,
ConUpdate, and ConEA with bug prediction models based on three
other classification techniques, i.e., RF, NB, and LR. We use the
accuracy to measure the performance of ConBuild and ConUpdate.
We use the average improvement on PofB20 to measure the per-
formance of ConEA with different machine learning classifiers. The
results are shown in Table 7. We also show the detailed distribu-
tion of the improvements of ConBuild, ConUpdate, and ConEAwith
different bug prediction models in Figure 6.

As we can see from Table 7, with all the four examined bug pre-
diction models, ConBuild can help at least 40 out of 60 experiment
runs (i.e., accuracy is 66.7%) find the applicable models. Statistic
test (i.e, Wilcoxon signed-rank test) also shows that all of them are
significantly better than FSSBagging. With different machine learn-
ing based bug prediction models, ConUpdate can achieve accuracy
larger than 60.0% regarding model reuse or update recommenda-
tions. Compared to current effort-aware evaluation approach (i.e.,
EA), the average improvement of ConEA variants can be up to 14.7%
(i.e., ConEA with bug prediction models built on LR).

Overall, the fact that the performance of ConBuild, ConUpdate,
and ConEA does not stick to a specific machine learning classifier
suggests that our approaches are generalizable for software bug
prediction models built on different machine learning algorithms.

6.2 Compare to Cross-Project Bug Prediction
The most similar work to this study is cross-project bug prediction
(CPBP) [2, 3, 5, 27, 57, 82, 84]. The difference between CPBP and con-
tinuous bug prediction can be summarized as follows: CPBP is de-
signed for projects with insufficient training data (e.g., new projects
with no prior data), continuous bug prediction is designed for solv-
ing the problems encountered when building prediction models
in continuous software development scenarios, i.e., the projects
involved often have sufficient history training data. Nevertheless,
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similar to our continuous bug prediction, one common solution for
CPBP is choosing a proper training dataset. The state-of-the-art
training version selection approach in CPBP, i.e., FSSBagging [20],
utilized bagging ensemble method to build multiple bug predic-
tion models with training versions selected from different projects
and then combine their results for achieving better performance.
Our comparison between FSSBagging [20] and ConBuild shows
that ConBuild delivers significant better results than FSSBagging
on training version selection in continuous software development
scenarios.

Note that, there also exist instance selection based approaches
for training data selection in CPBP [22, 59, 68], which create a
new training dataset by selecting data instances from different
projects. We do not compare ConBuild to instance selection based
approaches, since these approaches often require non-trivial time
cost, e.g., [22] required 28.3 hours to finish its experiments.

6.3 Threats to Validity
Internal Validity: We only used code metrics as available from
SciTool’s popular Understand tool, which does not generate all
possible code metrics ever reported or used in literature. However,
it does produce a large set of diverse code metrics.

External Validity: In this work, all the experiment subjects are
open-source projects from Apache Software Foundation (ASF) and
written in Java. Although they are popular projects and widely
used in existing software bug prediction studies, our findings may
not be generalizable to commercial projects or projects in other
ecosystems.

In addition, the conclusions of our case study rely on one defect
prediction scenario (i.e., within-project bug prediction models).
However, there are a variety of bug prediction scenarios in the
literature (e.g., change-level bug prediction [24, 28, 65] and method-
level bug prediction [15]). Therefore, the conclusions may differ for
other scenarios.

7 RELATEDWORK
Software bug prediction techniques leverage various metrics to
build machine learning models to predict unknown defects in soft-
ware projects [7, 19, 33, 56, 86].

Most bug prediction techniques leverage features that are manu-
ally extracted from labeled historical defect data to train machine
learning based classifiers [44]. Software prediction features can be
divided into static code features (e.g., Halstead features [17], Mc-
Cabe features [40], MOOD features [18], etc.), process features [24,
45, 48, 56, 65], semantic features [62, 73], context metrics [31],
etc. Most of the above studies were evaluated on the widely used
and publicly available datasets, e.g., PROMISE dataset [26], NASA
dataset [60], AEEEM dataset [8], SOFTLAB dataset [68], or ReLink
dataset [50, 75], etc. While these datasets contain randomly se-
lected discrete versions as shown in Section 2.2.1, evaluating bug
prediction models on these datasets could introduce non-trivial
bias in performance. Some other studies also consider leveraging
information between different versions to predict bugs, e.g., Kastro
et al. [29] used the change information between versions to predict
the number of bugs that would be appeared in a new version. Kr-
ishna et al. [32] used a time series analysis of the last 4 months of

issues to forecast how many bug reports and enhancement requests
will be generated next month. Liu et al. [37] used the difference of
code metrics between two versions to build bug prediction models,
which were evaluated on projects from PROMISE dataset [26]. Dif-
ferent from the above studies, this work explores the challenging
issues of file-level software bug prediction in the context of con-
tinuous software development regarding model building, updating,
and evaluation.

Most of the above studies were evaluated without considering
the effort to check the bug prediction results. Mende et al. [42]
first introduced the notion of effort into a bug prediction model.
Along this line, many effort-aware bug prediction models have been
proposed and well studied [4, 5, 23, 24, 61, 77]. In most of the above
studies, the number of lines of code in a file was used as the de facto
measure of effort required to inspect the file. Files are ranked based
on their buggy probability to be inspected for finding potential bugs.
Other studies related to effort estimation focus on estimating the
time required to fix software bugs [1, 16]. Different from these stud-
ies, in this work we leverage the evolution of the buggy probability
of files between two sequential versions to redefine effort-aware
evaluation in continuous software development.

Software bug prediction models can be categorized into file-
level [19, 86], change-level [6, 24, 41, 65, 87], or method-level [15]
based on the prediction granularities. As the first study on explor-
ing software bug prediction models in the context of continuous
software development, we only focus on file-level bug prediction.
We plan to extend our approach to other bug prediction models in
our future work.

8 CONCLUSION
In this paper, we revisit software bug prediction in the real-world
continuous software development scenarios regarding bug pre-
diction model building, updating, and evaluation. Specifically, for
model building, we propose ConBuild, which leverages the dis-
tributional characteristics of bug prediction data to redefine the
process of training data selection. For model updating, we propose
ConUpdate, which leverages the evolution of distributional charac-
teristics of bug prediction data to guide the reuse or update of bug
prediction models. For model evaluation, we propose ConEA, which
leverages the evolution of the buggy probabilities of files to rede-
fine effort-aware evaluation in continuous software development.
Experiments on 120 continuous releases that span across six large-
scale open-source software systems show the practical value of our
approach. Although we focus on software bug prediction models in
this study, we believe this study opens the door to rethink existing
software analysis models in the context of continuous software
development, e.g., software effort estimation, reviewer recommen-
dation, and bug triage models, in the context of continuous software
development.
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