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ABSTRACT
Background: Given the invisibility and unpredictability of dis-
tributed crowdtesting processes, there is a large number of duplicate
reports, and detecting these duplicate reports is an important task
to help save testing effort. Although, many approaches have been
proposed to automatically detect the duplicates, the comparison
among them and the practical guidelines to adopt these approaches
in crowdtesting remain vague.
Aims:We aim at conducting the first experimental evaluation of
the commonly-used and state-of-the-art approaches for duplicate
detection in crowdtesting reports, and exploringwhich is the golden
approach.
Method: We begin with a systematic review of approaches for
duplicate detection, and select ten state-of-the-art approaches for
our experimental evaluation. We conduct duplicate detection with
each approach on 414 crowdtesting projects with 59,289 reports
collected from one of the largest crowdtesting platforms.
Results: Machine learning based approach, i.e., ML-REP, and deep
learning based approach, i.e., DL-BiMPM, are the best two ap-
proaches for duplicate reports detection in crowdtesting, while
the later one is more sensitive to the size of training data and more
time-consuming for model training and prediction.
Conclusions: This paper provides new insights and guidelines
to select appropriate duplicate detection techniques for duplicate
crowdtesting reports detection.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Crowdtesting, duplicate detection, information retrieval, machine
learning, deep learning
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1 INTRODUCTION
Crowdtesting is an emerging paradigm which can improve the
cost-effectiveness of software testing and accelerate its process, es-
pecially for mobile applications [1–3, 16, 27, 56]. It entrusts testing
tasks to online crowdworkers whose diverse testing environments,
background, and skill sets could significantly contribute to more
reliable, cost-effective, and efficient testing results [2, 3]. Crowdtest-
ing has been adopted by many software organizations, including
but not limited to Google, Facebook, Amazon, Microsoft [4]. Ac-
cording to the latest statistics fromApplause (also known as uTest)1,
benefits of leveraging crowdtesting include average increases on
testing capacity by 200%, the number of releases per year by 150%,
and average reduction of critical fixes by 50%.

In crowdtesting, crowdworkers are required to submit test re-
ports after performing testing tasks. A typical report describes how
the test was performed and what happened during the test. In order
to attract workers, testing tasks are often financially compensated;
thus workers may submit thousands of test reports due to financial
incentive and other motivations [14, 15, 44, 45, 47, 50]. Given the in-
visibility and unpredictability of distributed crowdtesting processes,
there are large number of duplicate reports. Previous study based
on real industrial crowdtesting data revealed that an average of 82%
crowdtesting reports are duplicates of others [46]. A significant
problem with such a large number of duplicate reports is that the
subsequent analysis by software testers becomes extremely com-
plicated. For example, existing studies found that merely working
through 500 crowdtesting reports to find the duplicate ones takes
almost the whole working day of a tester [46].

Many approaches have been proposed to automatically detect
the duplicate open source bug reports or duplicate sentences [9, 10,
12, 29–31, 36, 38–40, 53, 55, 57]. For example, [30, 36] applied infor-
mation retrieval techniques for duplicate detection by computing
the textual similarity between two reports. [39, 40, 57] designed
a set of features for measuring the reports’ similarity in terms of
textual descriptions and attributes, and employed machine learn-
ing techniques for duplicate detection. [12, 29, 38, 53, 55] modeled
1https://www.applause.com/
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the semantic similarity of reports using deep learning techniques
for duplicate detection. Despite of that, different studies employed
different mechanisms or features for duplicate detection, and eval-
uated on different datasets. Besides, none of them has conducted
a complete comparison to explore which approaches are more ef-
fective, resulting in a lack of practical guides when using these
previous approaches for duplicate crowdtesting reports detection.

This work aims at conducting an experimental evaluation of
the commonly-used and state-of-the-art approaches for duplicate
detection, and exploring which is the golden approach, i.e., the most
effective, for crowdtesting reports. Specifically, we first conduct
a literature review of duplicate detection approaches, and select
ten state-of-the-art approaches as baselines. We conduct our ex-
periments on 414 crowdtesting projects with 59,289 reports. Since
obtaining training data is often time and effort consuming, we
also investigate the sensitivity of these approaches to the training
data size to evaluate these approaches under effort-aware scenar-
ios. Besides, we also present the time cost for model training and
prediction to better facilitate the selection of these approaches in
real-world crowdtesting practice.

Results show that machine learning based approach, i.e.,ML-REP
[39], and deep learning based approach, i.e.,DL-BiMPM [53], are the
best two approaches of crowdtesting reports duplicate detection.
Median 𝑟𝑒𝑐𝑎𝑙𝑙@1 of these two approaches are 0.74 and 0.73 respec-
tively, indicating in 74% and 73% cases they can find the duplicate
reports with the first recommendation; and the 𝑟𝑒𝑐𝑎𝑙𝑙@5 are 0.93
and 0.91 respectively, indicating in 93% and 91% cases they can find
the duplicate reports with the first five recommendations. Further-
more, the best deep learning based approach, i.e., DL-BiMPM, is
more sensitive to the size of training data andmore time-consuming
in model building and prediction than ML-REP. Among the deep
learning based duplicate detection approaches, these adopt such
network structure, i.e., modeling the interactive aspect of report
pair, can achieve better performance than others.

This work provides new insights and guidelines for duplicate
crowdtesting reports detection. Specifically, if there are few data
or less time available for model training, we recommend ML-REP
for duplicate detection; Otherwise, both ML-REP and DL-BiMPM
are applicable. In addition, since deep learning is sweeping various
fields, the more promising deep network structure found, i.e., mod-
eling the interactive aspect, can serve as guidelines when designing
new deep learning based approaches for duplicate detection.

This paper makes the following contributions:
• A rigorous evaluation of existing crowdtesting reports dupli-
cate detection approaches. To the best of our knowledge,
this is the first work to extensively evaluate the dupli-
cate detection approaches.

• An extensive survey on approaches for duplicate detection
of bug reports and general sentences.

• The comparison of ten state-of-the-art duplicate detection ap-
proaches on crowdtesting data, which can serve as the practi-
cal guidelines to choose approaches for duplicate crowdtest-
ing reports detection.

• Public-access implementations2 of the examined duplicate
detection approaches to facilitate the replication of this study.

2https://doi.org/10.5281/zenodo.3852690

The rest of this paper are organized as follows. Section 2 and 3
respectively describe our literature review of duplicate detection
and the selected ten duplicate detection approaches. Section 4 de-
scribes the crowdtesting dataset used in this work. Section 5 and
6 present the experimental design and obtained results. Section
7 discloses the threats to validity. Section 8 surveys related work.
Finally, we summarize this paper in Section 9.

2 LITERATURE REVIEW FOR DUPLICATE
DETECTION APPROACHES

To extensively survey existing applicable techniques for detecting
duplicate crowdtesting reports, we conduct a Literature Review.
We use Kitchenham’s description [23] to extend our system review
principles, which are described as follows.

2.1 Search Terms
We identify key terms used for the search from previous work [9,
10, 12, 29–31, 36, 38–40, 53, 55, 57] and our experience with the
subject area. The search terms are as follows: (report or bug or text
or sentence) and (duplicate or duplication or similar or similarity
or rank or match). Note that, we noticed that there are duplicate
sentences detection approaches which can also be utilized for dupli-
cate crowdtesting reports detection, we set the search terms with
text or sentence to include these studies for facilitate the thorough
exploration of existing approaches.

2.2 Sources of Information
The following three databases are covered for retrieving related
literatures: DBLP, IEEE Xplore, and ACM digit library, and the search
is conducted in June 2019.

2.3 Study Selection
Selection of studies for inclusion in the literature review is a three-
stage process: (1) initial selection of studies based on the title, (2)
selection of studies after reading the abstract, and (3) further selec-
tion of studies after reading the paper.

Since our literature review aims at selecting the studies which
can be used in the duplicate detection of crowdtesting reports, we
introduce the following inclusion and exclusion criteria to facilitate
the selection process. Studies selected at each stage of the selection
process meet our inclusion criteria:

• Full peer-review papers with validation results.
• Propose a method of duplicate detection for bug reports or
sentences.

• Have detailed method description.
Studies rejected at each stage of the selection process meet our

exclusion criteria:
• Papers unrelated to duplicate detection.
• Theoretical research about duplicate detection.
• Refinements or enhancements to duplicate detect approaches.

In summary, we started with 41,196 records from database search
and limit the search to the title, we get 2,911 records and enter the
first phase. In the first phase, we selected papers based on the title,
and 110 papers were selected and moved to the second phase for
further selection. In the second phase, these studies are mainly

https://doi.org/10.5281/zenodo.3852690
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Table 1: Overview of ten duplicate detection approaches

Abbreviation Title Venue Category Reference
IR-TF Detection of Duplicate Defect Reports Using Natural Language Processing ICSE 2007 Information Retrieval [36]
IR-DBTM Duplicate Bug Report Detection with a Combination of Information Retrieval and Topic Modeling ASE 2012 Information Retrieval [30]
ML-ADMA A Discriminative Model Approach for Accurate Duplicate Bug Report Retrieval ICSE 2010 Machine Learning [40]
ML-REP Towards More Accurate Retrieval of Duplicate Bug Reports ASE 2011 Machine Learning [39]
ML-BugSim Learning to Rank Duplicate Bug Reports CIKM 2012 Machine Learning [57]
DL-DCNN Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks SIGIR 2015 Deep Learning [38]
DL-MALSTM Siamese Recurrent Architectures for Learning Sentence Similarity AAAI 2016 Deep Learning [29]
DL-CWEIR Combining Word Embedding with Information Retrieval to Recommend Similar Bug Reports ISSRE 2016 Deep Learning [55]
DL-BiMPM Bilateral Multi-Perspective Matching for Natural Language Sentences IJCAI 2017 Deep Learning [53]
DL-CRNN Towards Accurate Duplicate Bug Retrieval using Deep Learning Techniques ICSME 2017 Deep Learning [12]

Figure 1: Summarized overview of the ten duplicate detection approaches

reviewed through their abstracts and 82 related papers are selected
for further reading. Finally, 31 papers are selected and move to
quality assessment.

2.4 Selection Verification
The first author did the selection of the studies according to the
criteria outlined above. At each selection stage, the second author
validated the selection of the studies. In the first phase, 300 of the
studies were randomly selected for the second author to validate.
293 of the studies have the same decision by the first and second
author. The discrepancy is caused by the differences between the
interpretations of whether an approach is a refinement of duplicate
detect method, such as [41]. However, we find that all these paper
were not included in the final set, so it did not influence the results.

In the second stage, the second author evaluated the abstracts
for 50 randomly selected studies. 47 of the selected studies have the
same decision by the two authors. All the differences were between
the studies the first author selected but the second author did not.
It is worth mentioning that they are not included in the final set.

We also conducted similar selection verification process for the
third stage, and all the selected studies has the same decision by
the two authors.

2.5 Study Quality Assessment
For the final selected researches, we answer the following questions
to assess their quality:

• Is there a clear stated research goal for duplicate detection?
• Is there a detailed method description?
• Is there a clear methodology for validating the approach?

• Are the subject projects selected for validation suitable (e.g.,
large enough for demonstrate the effectiveness of the ap-
proach) for the research goals?

• Is the selected evaluation metrics reasonable?
• Are there control techniques or baselines to demonstrate the
effectiveness?

• Are the presented results clear and relevant to the research
goals?

• Are the limitations of the approach enumerated?
• Is there any explicit contribution to duplicate detection?
• Can it be directly used in the crowdtesting reports?

All the above questions can be answered in three ways: yes,
no, and to somewhat, corresponding to 1/0/0.5 points. The sum of
the scores is used to measure the research quality of the selected
literature. For the 31 selected papers3 after the selection proce-
dure, we first filter 15 papers with an quality score below 8.0. We
then remove 2 papers that require specific information [18, 52],
e.g., [18] employed contextual information which does not exist in
crowdtesting environment. Besides, for the approaches of duplicate
sentence detection, if there are a similar approach for duplicate
reports detection, we also remove them, i.e., [20, 22, 42, 43]. Finally,
10 approaches are remained for further experimental evaluation,
which will be described in detail in Section 3.

3 APPROACHES OVERVIEW AND
PREPARATION

Table 1 and Figure 1 present an overview of the ten duplicate detec-
tion approaches. According to their utilized techniques, we group

3We list these papers in https://doi.org/10.5281/zenodo.3852690 to facilitate future
studies.
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them into three categories and rank them by their publication time
in each category. Note that, for the abbreviation of these approaches,
we prefix them with the abbreviation of category name for better
understanding. Another note is that, for the approaches which do
not have a name in their original paper, e.g., [12, 36, 38, 40, 55], we
name them based on their main idea to facilitate reading.

3.1 Information Retrieval (IR) based
Approaches

The first category contains two approaches, i.e., IR-TF [36] and
IR-DBTM [30]. They apply information retrieval (IR) techniques
for duplicate detection by computing the similarity between two
reports.

IR-TF is the first work in duplicate bug reports detection. It
computes the term frequency (TF) for each report and employ the
cosine similarity to determine whether two reports are duplicate.

IR-DBTM improves IR-TF from two aspects. Firstly, it replaces
term frequency with BM25F [33] which is an advanced document
similarity function based on the weighted term frequency (TF) and
inverse document frequency (IDF) to accurately measure the global
and local importance of a term.

Secondly, it includes the topic similarity of two reports to address
the problem of textual dissimilarity between duplicate reports. The
Latent Dirichlet Allocation (LDA) [6] topic model is employed, and
these two similarities are linearly combined with the weight learned
with a searching algorithm by maximizing the𝑚𝐴𝑃 in training set.

3.2 Machine Learning (ML) based Approaches
The second category contains three approaches, i.e.,ML-ADMA [40],
ML-REP [39], andML-BugSim [57]. They design a set of features for
measuring the reports’ similarity from various aspects, and employ
machine learning algorithms to determine whether two reports are
duplicate.

ML-ADMA designs 2 types of features to measure the textual
similarity between two reports and builds machine learning model
to automatically determine the duplicate status. It computes the
inverse document frequency (IDF) for each term, finds the shared
terms of two reports, and treats the sum of their IDF values as the
feature (i.e., the first type of feature). The second type of feature
is obtained in a similar way but in terms of bi-gram (e.g., treat
two adjacent terms as one term). Different combinations of report’s
fields (e.g., summary, description) for these two feature types finally
generate 54 features for the machine learner.

ML-REP improves ML-ADMA from two aspects. Firstly, it in-
cludes five attributes of reports (e.g., the component where the
bug resides, the priority of the report), and designs five features to
measure the similarity of these categorial information. Secondly,
to better measure the textual similarity, it extends BM25F model
(BM25Fext) [33] for structured long queries to better fit duplicate
reports detection problem.

The BM25Fext scores are calculated based on uni-gram and bi-
gram respectively, and treated as two features in the learning model.
Seven features are imported into a learning to rank model to de-
termine the duplicates among reports, in which RNC (a ranking
cost function) [11] as loss function is optimized by gradient descent
method. Note that, since crowdtesting reports do not have some of

the five attributes, we use two counterparts, i.e., task id, priority of
bug, for similarity measurement.

ML-BugSim argues that many of the report’s attributes may be
unknown at the time of submission, thus it only utilizes textual
information for duplicate detection. It designs nine textual similarity
features considering the term frequency (TF), inverse document
frequency (IDF), and their combinations for both report’s summary
and description. A learning to rank model is utilized for predicting
the duplicate score.

3.3 Deep Learning (DL) based Approaches
The third category contains five approaches, i.e., DL-DCNN [38],
DL-MALSTM [29],DL-CWEIR [55],DL-BiMPM [53], andDL-CRNN [12].
The main idea of them is to model the semantic similarity of reports
with deep learning techniques for duplicate detection.

DL-DCNN builds convolutional neural network (CNN) to mea-
sure the semantic similarity of text chunk in two reports. In detail,
the textual descriptions are first encoded using CNN, and similarity
is calculated between each pair of reports through a similarity layer.
Meanwhile, additional features, i.e., IDF values and term overlaps,
are extracted based on all terms and terms removing stopwords.
Finally, the output of CNN layer, the similarity output by similarity
layer, and additional features are jointly input into the softmax layer
for determining the duplicate status. To ensure the correctness of
our implementation, we refer to two open source implementations
on GitHub45.

DL-MALSTM argues the sequential information of the textual
description should be considered, therefore it builds recurrent neu-
ral network (RNN) to measure the semantic similarity of text se-
quence in two reports. In detail, the textual descriptions are encoded
using a siamese Long Shot TermMemory (LSTM) network (a special
RNN structure) [8, 19], in which the text of two reports are input
into the same LSTM network, and encoded into vectors, then the
Manhattan distance between the two reports is calculated.

DL-CWEIR utilizes both information retrieval and deep learn-
ing techniques for duplicate detection. It combines three similarity
scores to determine whether two reports are duplicates. The first
similarity is based on the term frequency (TF) and inverse docu-
ment frequency (IDF). The second similarity is obtained with word
embedding technique which focuses more on the relationship of
terms considering the context they appear. Following its original
work, we use word2vec to pre-train word embedding model and
convert the text to a word embedding vector for similarity calcula-
tion. The third similarity is based on two report’s attributes, i.e., the
component where the bug resides and the product of the report. We
use task id (see Table 2), which is the most similar one, to substitute
these two attributes.

DL-BiMPM also measures the semantic similarity of text se-
quence in two reports asDL-MALSTM. To improve the performance,
it includes matching-aggregation [51, 54] to match the two text
sequences from multiple perspectives. In detail, Bi-directional Long
Shot Term Memory (Bi-LSTM) [19, 37] is used to encode the textual
descriptions, then multi-perspective matching layer is utilized for
encoding the output of each time step to the matching vectors.

4https://github.com/aseveryn/deep-qa
5https://github.com/gvishal/rank_text_cnn

https://github.com/aseveryn/deep-qa
https://github.com/gvishal/rank_text_cnn


Quest for the Golden Approach: An Experimental Evaluation of Duplicate Crowdtesting Reports Detection ESEM ’20, October 8–9, 2020, Bari, Italy

The aggregation is then added to generate the matching vectors,
and finally the softmax layer is used for determining the duplicate
status. To ensure the credibility of this study, we re-use the author’s
implementation on GitHub6 directly.

DL-CRNN employs different types of neural network tomeasure
the semantic similarity of different fields of a report, i.e., CNN for
encoding long descriptions, RNN for short descriptions, and single
layer neural network for report’s attributes (i.e., task id and priority
in this study). After calculating the three types of encodings, a
simple concatenation is made to form the final encoding, and then
the cosine similarity between two final encoding will be calculated.

Before implementing these approaches for experimental evalu-
ation, as previous approaches are designed and experimented on
English dataset while our crowdtesting dataset is in Chinese, we
additionally conduct the following data preprocessing steps. First,
we use the Jieba Chinese word segmentation tool7 to tokenize the
summary and description into terms. Secondly, we remove the stop-
words, e.g., the and on, to reduce noise. After that, the summary
and description of crowdtesting reports are expressed as a list of
terms. For the approaches which do not distinguish the fields of
textual descriptions, we concatenate the summary with description
to generate the overall textual description of a crowdtesting report.

4 SUBJECT PROJECTS
We have collected 414 crowdtesting projects with 59,289 crowdtest-
ing reports from one of the largest crowdtesting platforms8, which
were closed between January 2015 and August 2016.

Figure 2 shows the statistics of these projects. There are a median
of 108 crowdtesting reports in a project, and one report has amedian
of 7 duplicates. Each report is described with a median of 33 terms.

Figure 2: Detailed statistics of the dataset

Table 2 presents an example of crowdtesting reports. It contains
a report ID, a task ID (i.e., which task is conducted), a crowd worker
ID (i.e., who submit the report), the bug summary and reproduce
steps of how the test was performed and what happened during
the test, as well as the submission time. It also includes a duplicate
tag assigned by the test engineer to indicate with which the report
6https://github.com/zhiguowang/BiMPM
7https://github.com/fxsjy/jieba
8Baidu CrowdTest crowdtesting platform

is duplicate. Note that, a typical bug report in open source software
contains two textual fields, i.e., summary and description, which
are commonly-used by existing duplicate detection approaches. To
facilitate reading, we call the reproduce steps of a crowdtesting
report as the description in the following paper.

Table 2: An example of crowdtesting report

Field Name Example Value
Report ID R1002987362
Task ID T00008
Crowd worker id W1000917120
Summary Stop when downloading about 90%
Reproduce steps
(Description)

Follow the steps to download. When it reaches 90%,
the progress stops. Click pause/start repeatedly, but
the download does not continue

Priority P2
Submission time 2015/6/16 20:28:15
Duplicate tag 4

As three of the examined approaches, i.e., DL-MALSTM, DL-
DCNN, and DL-BiMPM, are originally designed for the duplicate
sentences detection, in order to provide amore thorough view of the
performance for the ten examined approaches, we also experiment
with the dataset of duplicate sentences. In detail, we employ the
SNLI [7] dataset with 570k human written English sentence pairs.
It is commonly-used in sentence matching tasks [25, 26] and has
been utilized for evaluating our examined DL-BiMPM [53].

5 EXPERIMENT DESIGN
5.1 Research Questions
This paper aims at answering the following three research ques-
tions:

• RQ1: Which approach is more effective for crowdtest-
ing reports duplicate detection?

As we have shortlisted ten applicable approaches for duplicate
detection in Section 3, in this question, we examine the performance
of these ten duplicate detection approaches on detecting duplicate
crowdtesting reports. We also experiment on duplicate sentences to
obtain a more comprehensive understanding of these approaches.

• RQ2: Are these approaches sensitive to the size of the
training data?

Obtaining training data for duplicate crowdtesting report detec-
tion is often time and effort consuming, we also investigate the
sensitivity of these approaches to the training data size to evaluate
these approaches under effort-aware scenarios.

• RQ3:What is the time cost of these duplicate detection
approaches?

Building machine learning or deep learning based solutions is
often reported time consuming, which could limit their generaliz-
ability in real-world applications [28]. As most of the ten selected
state-of-the-art duplicate detection approaches are based on either
machine learning or deep learning techniques, this research ques-
tion explores the time cost of model building and duplicate detection
of the studied approaches to present a more comprehensive view
of these approaches.

https://github.com/zhiguowang/BiMPM
https://github.com/fxsjy/jieba
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5.2 Experiment Setup
To answer RQ1, for the 414 experimental crowdtesting projects
(see details in Section 4), we randomly select 300 projects and use
them for training, while use the left 114 projects for testing. We run
each duplicate detection approach on each project from the testing
dataset to conduct performance comparison. We also experiment
with duplicate sentences dataset SNLI (see Section 4), and use the
original separation of training sets and test sets provided in the
dataset. Most of the examined duplicate detection approaches have
many parameters that could affect their performance. In this work,
for each approach, we adopted hyperparameter tuning to find the
best values of each parameter involved. To answer RQ2, we experi-
ment with different number of projects as training dataset while
keep using the 114 projects as testing dataset (same as RQ1). Specif-
ically, we respectively use the first 20, 50, 100, 150, and 300 (same
as RQ1) projects as training dataset to investigate the performance
variation for each duplicate detection approach. All the above ex-
periments are conducted on a personal computer with CPU Intel(R)
Core(TM) i9 3.1 GHz PC with 32GB RAM running Windows10 OS
(64-bit). We record the time to run these experiments for answering
RQ3.

Among the ten duplicate detection approaches,DL-MALSTM,DL-
DCNN,DL-BiMPM andML-ADMA require a set of positive instances
and negative instances as training data.We treat each pair of reports
with the same duplicate tag (see Table 2) as the positive instances.
To keep the data balance, we randomly sample equal number of
instances with two reports of different duplicate tags and treat
them as negative instances. For approaches with learning to rank
algorithm (i.e., ML-REP and ML-BugSim) and approaches using
BM25F (i.e., IR-DBTM and ML-REP), the training data should be
organized in the form of triplets, i.e., (report 𝑟𝑖 , duplicate report of
𝑟𝑖 , non-duplicate report of 𝑟𝑖 ). For each report, we treat the reports
with the same duplicate tag as duplicate report, and random choose
the report with different duplicate tags as non-duplicate report to
build the training data.

When conducting duplicate detection on the testing dataset, for
deep learning based approaches, ML-ADMA and IR-TF, we input all
pairs of reports in a crowdtesting project to the model, obtain the
duplicate probability or similarity of each pair, and use the value
for determining the duplicates. For the approaches with learning
to rank algorithm (i.e., ML-REP and ML-BugSim) and approaches
using BM25F (i.e., IR-DBTM and ML-REP), we obtain the duplicate
score of each pair, and use the score to determine the duplicates.

5.3 Evaluation Metrics
Following existing studies [12, 30, 36, 39, 40, 55, 57], we use 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘

and𝑚𝐴𝑃 as the metrics for measuring the performance of duplicate
detection approaches.

Given a query report 𝑞, we set its ground truth duplicate re-
ports as 𝐺 (𝑞), and the top-k reports recommended by a duplicate
detection method as 𝑅(𝑞). 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 checks whether there exist
duplicate reports in top-k recommendation. We define 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘

as follows:

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 =

{
1, 𝑖 𝑓 𝐺 (𝑞) ∩ 𝑅(𝑞) ≠ ∅
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

According to the formula, if there exists at least one ground truth
duplicate report in the top-k recommendation, the top-k recom-
mendation is useful for the query report 𝑞. Given a set of query
reports in a crowdtesting project, we use the average 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 of
all query reports to measure the performance. Following existing
studies [30, 39, 40, 55, 57], we experiment 𝑘 with values of 1, 3, 5,
and 10 to obtain the corresponding performance.

𝑚𝐴𝑃 (Mean Average Precision) is defined as the mean of the Av-
erage Precision (𝐴𝑃 ) values obtained for all the evaluation queries.
The 𝐴𝑃 of a single query report 𝑞 is calculated as follows:

𝐴𝑃 (𝑞) =
|𝐺 (𝑞) |∑
𝑛=1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑞)
|𝐺 (𝑞) | (2)

In the above formula, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑞) is the predicted precision
over all the top-k reports in the ranked list, i.e., the ratio of ground
truth duplicate reports of the query report 𝑞 in the top-k recommen-
dations. We calculate 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑞) with the following equation,
where 𝑛 is an iterator of all ground truth duplicates reports 𝐺 (𝑞)
in Equation 2 and 3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑞) = #𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑖𝑛 𝑡𝑜𝑝 𝑘

𝑛
(3)

6 RESULT ANALYSIS
6.1 Answering RQ1: Performance Comparison
6.1.1 Performance Comparison on Crowdtesting Data. Fig-
ure 3 shows the performance of the ten investigated duplicate
detection approaches on 114 crowdtesting projects. We also con-
duct Mann-Whitney Test between each pair of these approaches,
and rank them based on their performance and whether the perfor-
mance difference is significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05), with results in
Table 3. Specifically, we start from the approach with the highest
performance, and put these approaches with which no significant
performance is observed (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05) into the same ranking
bucket. We then iterate the process on the remaining approaches.
Ri in Table 3 denotes the approaches in the 𝑖𝑡ℎ ranking.

Table 3: Performance ranking of the ten approaches (RQ1)

Ranking Recall@1 Recall@3 Recall@5 Recall@10 mAP

R1
DL-BiMPM
ML-REP
DL-CWEIR

ML-REP
DL-BiMPM
DL-CWEIR

ML-REP
DL-BiMPM ML-REP DL-BiMPM

ML-REP

R2
ML-BugSim
IR-DBTM

IR-DBTM
ML-BugSim

IR-DBTM
ML-BugSim
DL-CWEIR

DL-BiMPM
IR-DBTM
ML-BugSim
IR-TF
DL-DCNN
DL-CWEIR

ML-BugSim
DL-CWEIR
IR-DBTM
DL-DCNN

R3
IR-TF
DL-DCNN

IR-TF
DL-DCNN

IR-TF
DL-DCNN ML-ADMA IR-TF

ML-ADMA

R4 ML-ADMA ML-ADMA ML-ADMA DL-MALSTM DL-CRNN
DL-MALSTM

R5 DL-CRNN DL-CRNN
DL-MALSTM

DL-CRNN
DL-MALSTM DL-CRNN –

R6 DL-MALSTM – – – –

ML-REP is the only approach which is ranked at the first level in
all evaluation metrics, indicating it is the best duplicate detection
approach on our crowdtesting dataset. The median 𝑟𝑒𝑐𝑎𝑙𝑙@1 is
0.74, indicating in 74% cases,ML-REP can find the duplicate reports
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Figure 3: Performance of the ten duplicate detection approaches (RQ1)

with the first recommendation. The median 𝑟𝑒𝑐𝑎𝑙𝑙@5 is 0.93, indi-
cating in 93% cases, it can find the duplicate reports with the first
five recommendations. This is promising in reducing the effort of
project managers for manually examining the duplicate reports.
ML-REP extracts similarity features and utilizes machine learning
technique for duplicate detection. There might be two reasons for
its superiority in duplicate detection performance. Firstly, it utilizes
BM25F model which is an advanced document similarity function
compared with the original term frequency and inverse document
frequency, and it extends the model for structured long queries to
better fit duplicate reports detection problem. Secondly, it includes
features to measure the similarity of reports’ attributes which can
further help overcome the problem of textual dissimilarity between
duplicate reports.

DL-BiMPM is the second best duplicate detection approachwhich
is ranked at the first level in four metrics, and second level in the
other metric. It models the semantic similarity of reports with deep
learning techniques for duplicate detection. Compared with other
approaches with deep learning techniques, it has better encoding
and similarity calculation treatment. In detail, it uses Bi-LSTM
[19, 37] to encode the text which can model the text sequential
information compared with DL-DCNN. After encoding, it employs
match-aggregation framework to calculate the similarity which can
get the interactive features between texts from multiple perspec-
tives compared with DL-MALSTM or DL-CRNN.

Other approaches with promising results are DL-CWEIR, IR-
DBTM,ML-BugSimwhich are ranked in the first and second level in
most evaluation metrics. Although these three approaches belong
to different categories, what they have in common is they utilize
advanced term matching strategies for measuring the textual sim-
ilarity of reports. In detail, DL-CWEIR utilizes word embedding
technique to capture the relationships of terms considering the con-
text they appear. IR-DBTM not only utilizes BM25F for advanced
similarity measurement but also incorporates topic model to further
capture the similarity beyond text matching. ML-BugSim designs
nine features to capture different aspects of textual similarity.

We also notice that two of the deep learning based approaches,
i.e., DL-MALSTM and DL-CRNN, are ranked lower in all evaluation
metrics. We will further analyze possible reasons in Section 6.1.3.

Further exploration in terms of projects. From Figure 3, we
also observe that the duplicate detection performance varies among
crowdtesting projects. We examine the projects with low perfor-
mance, and find that in these projects, duplicate reports are ex-
pressed with different terms, while non-duplicate reports share a
large portion of terms, which makes it hard to detect the duplicate
reports accurately. This can be influenced by many factors, e.g., the
number of functions under test, the number of paths of the appli-
cation, etc. For example, if there exist multiple paths in a function,
the reproduce steps for duplicate bugs related to this function can
be described diversely which would confuse the duplicate detection
approaches.

6.1.2 PerformanceComparisononDuplicate SentencesDataset.
To better examine the performance of these duplicate detection
approaches, we also run them in duplicate sentences dataset (see
details in Section 4), with the results in Table 4. To calculate our
applied metrics (𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝑚𝐴𝑃 ), we need to collect all the
duplicates of each sentence which is not provided in our applied
duplicate sentences dataset.

Instead, we use precision, recall, and F1 score to measure the
performance of these approaches on the duplicate sentences dataset
used in existing studies [29, 53].

Table 4: Performance of the ten selected duplicate detection
approaches on the general sentence dataset.

Ranking by F1 Method Precision Recall F1 Score
1 DL-BiMPM 90.60% 88.24% 89.41%
2 DL-DCNN 81.33% 76.58% 78.88%
3 DL-CRNN 74.78% 69.26% 71.91%
4 DL-MALSTM 76.15% 66.36% 70.92%
5 ML-BugSim 62.91% 80.26% 70.54%
6 ML-REP 63.26% 77.60% 69.70%
7 IR-DBTM 51.31% 69.85% 59.17%
8 DL-CWEIR 41.99% 87.20% 56.69%
9 ML-ADMA 43.66% 64.35% 52.02%
10 IR-TF 51.90% 48.65% 50.22%

The top four ranked approaches on duplicate sentences dataset
are all deep learning based approaches, i.e., DL-BiMPM, DL-DCNN,
DL-MALSTM and DL-CRNN. It is quite different from the perfor-
mance on crowdtesting dataset, in which three of them (i.e., DL-
DCNN, DL-MALSTM and DL-CRNN ) is ranked almost in the rear of
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all approaches in Table 3. This indicates that the deep learning based
approaches are the most promising ones for detecting duplicate sen-
tences, while this is not the case for crowdtesting reports. It might
because the local bias issue of crowdtesting projects which have
been noticed in crowdtesting reports classification task [44, 47].
Specifically, reports from different domains of testing applications
would use quite different terms, for example, navigation, location
in map domain, and lyric, song in music domain. When conducting
duplicate detection in testing projects with emerging terms in new
domains, the above mentioned approaches might fail to take effect.

6.1.3 Performance Difference of Deep Learning based Ap-
proaches. As deep learning is sweeping various fields, we further
examine the deep learning based approaches to seek for guidelines
when designing new deep learning based approaches for duplicate
detection. For the four deep learning approaches which have well-
designed network structures (except DL-CWEIR), we find that, no
matter in crowdtesting dataset and general sentences dataset, DL-
MALSTM and DL-CRNN are worse than DL-BiMPM and DL-DCNN.
We further analyze the possible reasons and find that the basic
network structure of the first two approaches is different from that
of the last two approaches.

Figure 4: Two types of network structure of the deep learn-
ing based approaches.

Specifically, DL-BiMPM and DL-DCNN would first encode the
single report, then use the interactive representation of the two
encoded reports for further feature extraction and similarity pre-
diction, as shown in Figure 4 (b). On the contrary, DL-MALSTM
and DL-CRNN only encode the single report for similarity com-
putation, as shown in Figure 4 (a). Hence, without utilizing the
interactive information of pair of reports, DL-MALSTM and DL-
CRNN lose important sources of information to accurately detect
the duplicates.

1) Machine learning based approach, i.e., ML-REP, and deep
learning based approach, i.e., DL-BiMPM, are the two best dupli-
cate detection approaches. 2) Deep learning based approaches
which perform good in duplicate sentences detection might fail
in duplicate crowdtesting reports detection due to local bias is-
sues. 3) Among the deep learning based approaches, these with
such network structure, i.e., modeling the interactive aspect of
report pair, can achieve better performance than others.

6.2 Answering RQ2: Sensitivity to Training Size
Figure 5 presents the performance of the ten duplicate detection
approaches with different training sizes. Table 5 shows the ranking
of their performance based on the results of Mann-Whitney Test as
RQ1. Due to space limit, we only present the results of𝑚𝐴𝑃 , and
other metrics demonstrate a similar trend.

Table 5: Ranking of the ten approaches with different train-
ing sizes based on mAP (RQ2)

Ranking TS = 20 TS = 50 TS = 100 TS = 150 TS = 300

R1
ML-REP
DL-CWEIR ML-REP ML-REP DL-BiMPM

ML-REP
DL-BiMPM
ML-REP

R2 IR-DBTM IR-DBTM
DL-CWEIR

DL-BiMPM
IR-DBTM
DL-CWEIR
ML-BugSim

ML-BugSim
DL-CWEIR
IR-DBTM

ML-BugSim
DL-CWEIR
IR-DBTM
DL-DCNN

R3
ML-BugSim
IR-TF ML-BugSim DL-DCNN

IR-TF DL-DCNN IR-TF
ML-ADMA

R4 ML-ADMA
IR-TF
DL-DCNN
DL-BiMPM

ML-ADMA IR-TF
ML-ADMA

DL-CRNN
DL-MALSTM

R5 DL-DCNN ML-ADMA DL-MALSTM
DL-CRNN

DL-CRNN
DL-MALSTM –

R6 DL-BiMPM DL-CRNN – – –

R7
DL-CRNN
DL-MALSTM DL-MALSTM – – –

*TS is the number of training projects.

We can see that four of the deep learning based approaches (i.e.,
DL-DCNN, DL-MALSTM, DL-BiMPM, and DL-CRNN ) are sensitive
to the training size. Specifically, their performance undergoes a
noticeable improvement with the increase of the training data,
especially when the number of training projects increase from 20
to 100. For example, although DL-BiMPM is one of the best two
approaches with 300 projects as the training data, it is low in the
ranking with only 20 training projects, indicating one should be
careful in applying this approachwhen few training data is available.
This is not surprising since deep learning based approaches are
commonly known as heavily reliance on data.

We also notice that the another deep learning based approach,
i.e., DL-CWEIR, does not show such a large performance variation.
This might because it employs word embedding technique which
has fewer parameters to be tuned thus requires less data than other
deep learning based approaches. In addition, this approach also
utilizes the TF-IDF similarity and reports’ attributes similarity for
determining the duplicates, and these two types of similarities are
far less sensitive to training size.

For the three machine learning based approaches, the perfor-
mance increases with the increase of the training data size at
the beginning (i.e., the number of training projects increase from
20 to 50), and then almost keeps unchanged (i.e., the number of
training projects increase from 50 to 300). This indicates these
approaches are less sensitive to training size. For example, even
with 50 crowdtesting projects as the training data, ML-REP can
achieve comparable performance with the setup when employing
300 projects as training data. The two information retrieval based
approaches undergo none or very slight performance variation,
indicating they are the least sensitive to training size. Note that, the
reason why IR-DBTM approach undergoes slight performance vari-
ation is because it needs training data to build an effective BM25F
model and topic model.
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Figure 5: Performance (mAP) of ten duplicate detection approaches with different training sizes (RQ2)

When there are fewer training data (e.g., the number of training
projects < 100), ML-REP is the best approach. If there are more
training data (e.g., the number of training projects > 150), DL-
BiMPM and ML-REP are the best approaches. In addition, with the
increase of training data size, a larger improvement is observed on
DL-BiMPM than ML-REP. These findings provide new insights and
practical guidelines when applying these approaches for duplicate
detection in terms of different training size.

1) Most deep learning based approaches are sensitive to the
training size, while machine learning based and information
retrieval based approaches are less sensitive to the training size.
2) ML-REP is the best approach when there are fewer training
data, while DL-BiMPM and ML-REP are the best approaches
with more training data.

6.3 Answering RQ3: Time Cost
Table 6 provides the model building time and prediction time with
different training size. Specifically, we train the duplicate detec-
tion models with different training data (ranging from 20 to 300
projects) and then evaluate the performance of the built models on
an average-sized crowdtesting project (with 32,260 report pairs).

Generally speaking, deep learning based approaches which em-
ploy Recurrent Neural Network (i.e., DL-BiMPM, DL-CRNN, and
DL-MALSTM) are more time-consuming than other approaches in
model building and duplicate detection. For example, training DL-
BiMPM with 300 crowdtesting projects consumes around 25 hours
(1513.3 minutes), while training a machine learning based approach
as ML-REP with the same dataset requires 35.3 minutes. This is
because the output of neurons in RNN is related to the previous
neurons, so the network needs to be trained according to the time
sequence, which makes the training of RNN more complicated and
time-consuming. The deep learning based approach DL-CWEIR con-
sumes much less time than other deep learning based approaches
because its utilized word embedding model is a simple network
structure and has fewer parameters to be tuned.

The information retrieval based and machine learning based
approaches consume less time. Take the machine learning based
approach ML-REP as an example, training the model with 300

crowdtesting projects consumes about half an hour, while con-
ducting duplicate detection for a typical crowdtesting project re-
quires less than 1 minute. Among these information retrieval based
and machine learning based approaches, we noticed that IR-DBTM
and ML-AMDA consumes more time. For IR-DBTM, adjusting the
weight between the topic model and BM25F is time-consuming,
i.e., occupying about 60% of the model training time. ML-ADMA
employs more features than the other two machine learning based
approaches, thus requires more iterations to balance these features
in the final model.

Table 6: Time cost (in minutes) of the ten examined dupli-
cate detection approaches with different training data sizes
(RQ3)

TS = 20 TS = 50 TS = 100 TS = 150 TS = 300
Approaches T P T P T P T P T P
IR-TF NA 0.1 NA 0.1 NA 0.1 NA 0.1 NA 0.1
IR-DBTM 3.3 0.7 9.5 0.6 21.7 0.6 40.5 0.5 50.0 0.5
ML-ADMA 4.7 0.1 18.2 0.1 51.3 0.1 100.8 0.1 115.2 0.1
ML-REP 2.4 0.1 7.5 0.1 17.1 0.1 31.2 0.1 35.3 0.1
ML-BugSim 1.3 0.1 4.0 0.1 8.7 0.1 15.5 0.1 17.6 0.1
DL-DCNN 3.8 0.1 11.1 0.1 25.7 0.1 46.3 0.1 52.3 0.1
DL-MALSTM 9.6 0.4 27.9 0.4 68.2 0.4 119.5 0.4 140.8 0.4
DL-CWEIR 0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.7 0.1 0.7
DL-BiMPM 130.8 3.3 356.8 3.3 759.2 3.4 1329.2 3.4 1513.3 3.4
DL-CRNN 93.2 0.8 295.9 0.8 657.0 0.8 1168.5 0.8 1416.1 0.8

*TS is the number of training projects.
*T means train time and P means prediction time.

Nevertheless, since the model building step can be conducted
offline, we can focus more on the duplicate detection time. Even
with the most time-consuming approach DL-BiMPM, the duplicate
detection can be done in about 5 minutes for a typical crowdtesting
project. For other less time-consuming approach (e.g.,ML-REP), the
duplicate detection can be done within one minute. This implies
the feasibility of applying these approaches in real-world practice.

1) The deep learning based approaches employing RNN (e.g.,
DL-BiMPM) are more time-consuming than others. 2) Informa-
tion retrieval based and machine learning based approaches
can conduct the duplicate detection for a typical crowdtesting
project within 1 minute, and the time for DL-BiMPM is about 5
minutes.
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7 DISCUSSION AND THREATS TO VALIDITY
The above experimental results have shown that with the learning
based techniques, the duplicate reports can be recognized with
high accuracy, and these techniques can be utilized to facilitate the
manual duplicate detection. According to existing work [45, 47],
the users prefer the actionable prediction outcomes, i.e., tagging
each report with its predicted probability of being duplicates when
presenting to the users for manual detection. In this way, for a can-
didate with higher probability, the users can treat it as the duplicate
report without any consideration; on the contrary, the users can
put more attention on those candidates with lower probabilities.

Construct validity of this study mainly questions the selection
of the studies in the literature review. It is addressed through speci-
fying a research protocol that defines the search terms, selection
strategies, inclusion and exclusion criteria, and quality assessment.
We also employ the selection verification process to let the second
author review some sampled studies to further minimize the risk
of exclusion of relevant studies. Besides, limited by the size of our
experimental dataset, we do not examine the performance of dupli-
cate detection with more than 300 training projects. Thus we could
not conclude whether DL-BiMPM is better than ML-REP with suffi-
cient amount of training data. We will conduct more exploration in
future work.

The internal threat is the implementation of these duplicate
detection approaches. We strictly follow the procedures described
in the original studies, and test the implementation based on 152 test
cases to ensure the correctness of duplicate detection. Furthermore,
for DL-BiMPM, we re-use the code provided by the author, and for
DL-DCNN, we refer to two implementations in Github to ensure the
correctness of our implementation. In addition, for the attributes
which are utilized in the original approaches but do not contain in
our crowdtesting reports, we either use the most similar ones or
ignore them in the implementation.

The external threats concern the generality of this study. Our
crowdtesting dataset consists of 414 projects from one of the largest
crowdtesting platforms with various domains and project sizes,
which could help reduce this threats.

8 RELATEDWORK
It is critical to effectively manage and triage crowdtesting reports
so as to facilitate the following bug fixing process [5, 16, 48, 49, 56].
To address this challenge, Feng et al. [14, 15] and Jiang et al. [21]
proposed approaches to prioritize test reports in crowdtesting. They
designed strategies to dynamically select the most risky and diver-
sified test report for inspection in each iteration. Wang et al. [44, 45,
47] proposed approaches to automatically classify crowdtesting re-
ports. Their approaches can overcome the different data distribution
among different software domains, and attain good classification
results. Liu et al. [24] proposed an automatic approach to generate
descriptive words of crowdtesting reports for the screenshots based
on the language model and Spatial Pyramid Matching technique.
Hao et al. [17] proposed CTRAS to automatically aggregate du-
plicates based on both textual information and screenshots, and
summarize the duplicate test reports into a comprehensive and com-
prehensible report. Compared with the above studies, this paper
focuses on the duplicate detection of crowdtesting reports.

Besides the researches mentioned in Section 3, these are several
empirical studies of duplicate detection. Rocha et al. [35] conducted
an empirical comparison of two duplicate detection approaches,
i.e., NextBug [34] and REP [39], and results showed that the two
approaches obtain similar performance when only considering the
component of bug reports and short descriptions. Rakha et al. [32]
conducted an empirical comparison of BM25F [33] and REP [39],
and found that by using the resolution attribute of reports, the
performance can be improved. Compared with these studies, this
paper conducts a more thorough empirical comparison of duplicate
detection approaches.

Besides the textual descriptions and attributes of reports, several
researches employed other types of information to improve the
duplicate detection performance. Wang et al. [52] presented an ap-
proach that uses both natural language information and execution
information to compute the similarity, and designed a heuristic
algorithm to combine the two similarity values. Hindle et al. [18]
investigated how contextual information about software-quality
attributes, software-architecture terms, and system-development
topics can be used in duplicate bug report detection. Ebrahimi et
al. [13] considered that only a few approaches used the execution
information of the bug report, so they proposed a new approach
that that automatically detects duplicate bug reports using stack
traces and Hidden Markov Models. Wang et al. [46] employed the
screenshot information together with textual descriptions for boost-
ing the duplicate detection accuracy. They extracted four types of
features to characterize the screenshots (i.e., image structure feature
and image color feature) and the textual descriptions (i.e., TF-IDF
feature and word embedding feature), and designed a hierarchical
algorithm to detect duplicates based on the four similarity scores
derived from the four features respectively. Although these infor-
mation can improve the duplicate detection performance, they are
often hard to obtain. Therefore, this work only consider the re-
searches with textual descriptions, and future work will include
more for empirical comparison.

9 CONCLUSION
This paper conducts the first empirical evaluation of ten commonly-
used and state-of-the-art duplicate detection approaches in crowdtest-
ing reports. The results show that machine learning based approach,
i.e., ML-REP, and deep learning based approach, i.e., DL-BiMPM,
are the best two approaches for crowdtesting reports duplicate
detection, while the later one is sensitive to the size of training
data. In addition, several deep learning based approaches can per-
form well in general sentence duplicate detection, but achieve bad
performance in duplicate crowdtesting report detection due to the
local bias in crowdtesting reports. We also find that the deep learn-
ing based approaches which adopt such network structure, i.e.,
modeling the interactive aspect of report pair, can achieve better
performance. This paper provides new insights and guidelines for
conducting duplicate crowdtesting reports detection in real-world
crowdtesting practice.
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