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ABSTRACT
Background: The most important challenge regarding the use of
static analysis tools (e.g., FindBugs) is that there are a large number
of warnings that are not acted on by developers. Many features
have been proposed to build classification models for the automatic
identification of actionable warnings. Through analyzing these
features and related studies, we observe several limitations that
make the users lack practical guides to apply these features.

Aims: This work aims at conducting a systematic experimental
evaluation of all the public available features, and exploringwhether
there is a golden feature set for actionable warning identification.

Method:We first conduct a systematic literature review to col-
lect all public available features for warning identification. We
employ 12 projects with totally 60 revisions as our subject projects.
We then implement a tool to extract the values of all features for
each project revision to prepare the experimental data.

Results: Experimental evaluation on 116 collected features
demonstrates that there is a common set of features (23 features)
which take effect in warning identification for most project
revisions. These features can achieve satisfied performance with
far less time cost for warning identification.

Conclusions: These commonly-selected features can be treated
as the golden feature set for identifying actionable warnings. This
finding can serve as a practical guideline for facilitating real-world
warning identification.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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Static analysis, Actionable warning identification, Experimental
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1 INTRODUCTION
Static Analysis (SA) tools (e.g., FindBugs) are widely used to find
bugs in software. These tools mainly leverage heuristic pattern
matching approaches to scan source code or binary code of a soft-
ware project, and can infer a wide variety of bugs, security vulner-
abilities, and bad programming practices [2, 4, 10]. The widespread
adoption of SA tools for entire codebases by commercial software
companies provides solid evidence that SA is economically benefi-
cial to find potential defects [3].

The most important challenge regarding the use of SA tools is
that there are a large number of warnings that are not acted on
by developers. One major reason is the high false positive rate of
the reported warnings [10]. Since the software under analysis is
not executed, SA tools must speculate on what the actual program
behaviors will be. They often over-estimate possible program be-
haviors, leading to spurious warnings that do not correspond to
true defects. In addition, even if the warnings reveal true defects,
they can also be ignored. Reasons include warnings implicating
obsolete code, “trivial” defects with no impact on the use, and real
defects requiring significant effort to fix with little perceived ben-
efit [3, 10]. The large number of unactionable warnings make it
time- and effort-consuming to analyze the outcomes generated by
SA tools.

To make SA tools more practical, many researches have been
proposed to automatically identify actionable warnings [5–7, 11,
12, 14, 15, 17, 18, 26]. Most of them share a common procedure, i.e.,
propose a set of features and then build machine learning classi-
fiers using these features to predict which warnings are actionable.
Through analyzing these studies, we find the following nontrivial
limitations.

• Isolation: Different studies employed different set of fea-
tures to predict actionable warnings, and none of them has
conducted a complete comparison to explore which features
are more effective [5–7, 11, 12, 14, 15, 17, 18, 26].

• Confliction: Different studies, even those employed the
same features, often evaluated themselves on different
projects, and induced conflicting conclusions about features’
effectiveness. For example, experiments in [11] suggested
that warnings with short lifetime are more likely to be
actionable, while [7] found that there is not a clear binary
split between the lifetime of actionable and unactionable
warnings.
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• Ambiguity: Features with the same name but different
meanings are often observed in different studies. For
instance, “warning lifetime” is measured by the number of
revisions between the investigated revision and warning-
open revision in [7], while it is defined as the amount of
time between these two revisions in [12].

• Coarseness:Most studies only evaluated the overall perfor-
mance of their proposed features, rather than the effective-
ness of every single feature [5, 6, 11, 15, 26].

Because of the above limitations of existing studies, users lack
practical guides when using these features. They would feel con-
fused and unprepared about which features should be applied to
warning identification.

Motivated by the limitations, we aim at conducting a system-
atic experimental evaluation of all the public available features
that have been used in the SA Warning Identification (SAWI), and
exploring whether these is a golden feature set for actionable warn-
ing identification1. We will investigate the following two research
questions:

• RQ1: Is there a common set of features that takes effect in
warning identification for most project revisions?

• RQ2: What is the performance (i.e., AUC and time cost) of
the common feature set in warning identification?

To answer the two research questions, we first conduct an ex-
tensive systematic literature review to explore all public available
features for warning identification. We employ 12 projects with
totally 60 revisions as our subject projects. We then implement a
tool to extract the values of all available features for each project
revision to prepare the experimental data.

116 features are collected from 10 related studies. They fall into
8 categories, i.e., file characteristics and history; code character-
istics, history, and analysis; warning characteristics, history, and
combination respectively.

Experimental evaluation on these features demonstrates that
there is a common set of features (23 features) that takes effect
in warning identification for most project revisions. Most of them
belong to warning combination, code characteristics and warning
characteristics categories.

We then evaluate the classification performance of these com-
mon features from the view of both AUC and time cost. Results
reveal that these features can achieve satisfied performance with
far less cost for warning identification.

In this sense, these commonly-selected features can be regarded
as the golden feature set for warning identification. This finding
can serve as a practical guideline for facilitating real-world warning
identification.

This paper makes the following contributions:
• A rigorous and extensive evaluation about the golden feature
set for warning identification. To the best of our knowl-
edge, this is the first work to extensively evaluate fea-
tures for actionable warning identification.

• 116 public available features for warning identification from
a systematic literature review. This can be regarded as the

1Note that, this paper experiments with FindBugs (see Section 5 for details), which is
the most commonly-used SA tool, so in the following paper, the SA warning means
the warning generated by FindBugs.

complete set of features for warning identification and will
facilitate future research.

• A golden feature set for actionable warning identification. It
can serve as the practical guideline to use the public available
features.

• Public-access feature dataset and source code for extracting
the features2. They can facilitate the replication of our study
and serve as a benchmark to evaluate other SAWI or bug
detection approaches.

The rest of this paper are organized as follows. Section 2 de-
scribes the features under experiment. Section 3 presents the sub-
ject projects for experiment. Section 4 describes how we prepare
the experimental data. Section 5 shows our experimental design.
Section 6 presents the results of our research. Section 7 discloses
the threats to validity. Section 8 surveys related work. Finally, we
summarize this paper in Section 9.

2 FEATURES UNDER EXPERIMENT
To investigate whether there is a golden feature set for actionable
warning identification, we first conduct an extensive systematic
literature review to explore all public available features (Section
2.1). Secondly, we analyze and summarize all the collected features
based on their meanings (Section 2.2).

2.1 Literature Review to Explore Features
We conduct a Systematic Literature Review (SLR) to collect features
which have been used in SAWI.We use the SLR guidelines described
by Kitchenham [13] to develop our SLR protocol, which is described
in the following subsections.

2.1.1 Search Terms. We identify key terms used for the search
from previous work [8] and our experience with the subject area.
The search terms are as follows: static analysis and (alert or warn-
ing or bug or defect or fault) and (identification or classification or
detection or prediction or prioritization or ranking or reduction).

2.1.2 Sources of Information. The following four databases
are covered for retrieving related literatures: ACM Digital Library,
IEEE Xplore, Springer Link, and ScienceDirect. The searches were
conducted in May 2016.

2.1.3 Study Selection. Selection of studies for inclusion in the
SLR is a three-stage process: (1) initial selection of studies based
on the title; (2) selection of studies after reading the abstract; (3)
further selection of studies after reading the paper.

Since our SLR aims at selecting the studies which have proposed
features for actionable warning identification, we introduce the
following inclusion and exclusion criteria to facilitate the selection
process. Studies selected at each stage of the selection process meet
our inclusion criteria:

• Full and short peer-review papers with empirical results.
• Work on the results of SA tools.
• Focus on the automatic identification about whether a sin-
gle SA warning or a group of warnings are actionable or
unactionable.

2https://github.com/wangjunjieISCAS/SAWarningIdentification
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• Propose at least one feature (or factor, characteristic, at-
tribute) to conduct the identification.

• Focus on general types of warnings in Java language.
Studies rejected at each stage of the selection process meet our

exclusion criteria:
• Papers unrelated to static analysis or actionable warning
identification.

• Refinements or enhancements to SAWI approaches.
• Theoretical papers about SAWI (i.e., no empirical result).
• Studies focusing on specific types of warnings (e.g., security
vulnerability) or specific types of programming languages
(except Java language).

• Dynamic analysis.
Our initial protocol of inclusion and exclusion criteria are bor-

rowed from [8]. During the reviewing process, new criteria are
added. For example, we noticed several papers focusing on specific
types of warnings (e.g., [22] studied security vulnerability only).
Through reviewing them, we found that the proposed features are
not appropriate for identifying common types of warnings. Besides,
since this work focuses on evaluating the features’ effect on Java
projects. We also exclude the studies particularly focusing on other
types of languages (e.g., [25] focused on C language).

In summary, at stage 1, we started with 18,492 distinct papers
from the database search and 624 of them were selected and moved
to stage 2 for further selection. These studies are reviewed by their
abstracts and 58 papers with relevant abstracts are selected for
further reading in stage 3. 10 papers were finally selected.

2.1.4 Selection Verification. The first author did the selec-
tion of the studies following the process outlined before. The second
author provided validation of the studies at each stage of the selec-
tion process. After stage 1, 1,000 (5%) of the studies were randomly
selected for the second author to validate. The first author prepared
the selection, ensuring that the sample had approximately the same
proportion of selected and rejected studies as the full population.
968 (96%) of the studies had the same selection by the first and
second author. All the differences were between the studies the
first author selected but the second author did not. The discrepancy
is caused by the differences between the interpretations of the re-
finements to SAWI approaches. However, we found that all these
papers were not included in the final set, so it did not influence the
results.

After stage 2, the second author evaluated the abstracts for 50
(8%) randomly selected studies. We again ensured that the sample
had approximately same distribution of selected and rejected studies
as the full population of studies. 46 (92%) of the randomly selected
studies have the same classification by the two authors. Similarly
with stage 1, most of the differences came from these studies the
first author classified as “1” but the second author classified as “0”.
One study, which was classified as “1” by the second author and “0”
by the first author, was included in stage 3 of study selection. It is
worth mentioning that this paper was not included in the final set.

We also conducted similar selection verification process for stage
3, and all the randomly selected studies (10, 17%) has the same
selection by the two authors.

2.1.5 Study Quality Assessment. For each of the final se-
lected studies, we answered the questions below to assess its qual-
ity.

• Is there a clearly stated research goal related to SAWI?
• Is there a defined and repeatable SAWI technique?
• Are there plenty of features proposed for SAWI?
• Are the limitations to the SAWI enumerated?
• Is there a clear methodology for validating the SAWI?
• Are the subject programs selected for validation suitable (e.g.,
large enough to demonstrate the efficacy of the technique)
for the research goals?

• Are there control techniques or baselines to demonstrate the
effectiveness of the SAWI?

• Are the evaluation metrics relevant (e.g., evaluate the effec-
tiveness of the SAWI) to the research objectives?

• Are the presented results clear and relevant to the research
objectives stated in the study?

• Is there any explicit contribution to SAWI?
All of the questions have three possible responses and associated

numerical values: yes (1), no (0), or somewhat (0.5). The sum of
responses for the quality assessment questions provides a relative
measure of study quality. Five papers received a quality score of
10, and the average quality score was 8.6. This indicates the high
quality of the selected studies.

2.1.6 Data Extraction. For each of the selected studies, we ex-
tracted the following data: feature name, category, meaning, method
to extract it.

The features are then synthesized. For features with the same
name and the same meaning from different studies, we just merge
them into one feature. For two features with the same name but
different meanings, we rename them and keep them as two different
features, e.g., F34 and F40 in Table 1. For two features with different
names but the same meaning, we rename one of the features and
merge them as one feature, e.g., F21 in [7] and [17].

2.2 Overview of Collected Features
After the data extraction in Section 2.1.6, 116 features (summarized
in Table 1) are collected from the 10 papers selected in the SLR. The
features fall into 8 categories related with file, code and warning.
For the feature that has specified category in its original study, we
reuse the category. Otherwise, we manually group it into one of
the below categories.

File characteristic (fChr) and file history (fHst): fChr cat-
egory contains features about the static characteristics of the file
where the warning locates, e.g., F1–file name. fHst category con-
tains features about the change history of a warning file, e.g., F9–the
latest modification revision of a file.

Code characteristic (cChr), code history (cHst), and code
analysis (cAnl): cChr category contains features about the static
characteristics of the source code of the file where a warning lo-
cates, e.g., F22–number of comment lines of the code. cHst category
contains features about the modifications in lines of code in a warn-
ing file, e.g., F34–number of added lines in file during the past three
months. cAnl category contains features about the program anal-
ysis patterns mined from the source code in a warning file, e.g.,
F70–the name of the method being called.
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Table 1: Overview of the collected features

Id Name;Meaning Cat. Reference #Rev.
F1, F2, F3∗ file name, package name, project name; the file name, package name, project name where the warning locates fChr [6, 7, 14, 26] 17,15
F4 file type; file extension name fChr [7, 17] 1
F5∗ SA tool name fChr [15] n/a
(F6-F8)∗ location, file, project warnings for tool; warnings reported for the same location, file, project by each tool fChr [15, 26] n/a
F9, F10, F11∗ latest file, package, project modification; latest modification revision fHst [7] 15,9
F12, F13, F14∗ file, package, project staleness; amount of time between current revision and last modification revision of file, package, project fHst [7, 17] 12,11
F15 file age; number of days the file has existed fHst [17] 18
F16, F17 file creation, deletion revision fHst [7, 11] 24,8
F18 developers; set of developers who have made changes to the file fHst [7] 26
F19, F20, F21 method, file, package size; number of non-comment source code statements in method, file, package cChr [7, 17] 11,16,15
F22 comment length; number of comment lines in file cChr [15] 11
F23 comment-code ratio; ratio of comment length and code length in file cChr [15] 18
F24, F25 method, file depth; depth of warned line in method, file cChr [15] 24,20
F26, F27 method callers, callees; number of callers, callees of warned method cChr [15] 9,17
F28, F29 methods in file, package; number of methods in file, package cChr [7] 18,12
F30, F31 classes in file, package; number of (inner) classes in file, package cChr [7] 16,22
F32 indentation; spaces indenting warned line cChr [17] 16
F33 complexity; cyclomatic complexity cChr [7] 8
F34-F39 added, changed, deleted, growth, total, percentage of lines of code in file during the past 3 months cHst [17] 10-17
F40-F45 added, changed, deleted, growth, total, percentage of lines of code in file during the past 25 revisions cHst [7] 9-22
F46-F51 added, changed, deleted, growth, total, percentage of lines of code in package during the past 3 months cHst [17] 12-18
F52-F57 added, changed, deleted, growth, total, percentage of lines of code in package during the past 25 revisions cHst [7] 10-17
(F58-F63)∗ added, changed, deleted, growth, total, percentage of lines of code in project during the past 3 months cHst [17] n/a
(F64-F69)∗ added, changed, deleted, growth, total, percentage of lines of code in project during the past 25 revisions cHst [7] n/a
F70-F73 call name, class, parameter signature, return type; name of method being called, name of class containing the method cAnl [5] 14,11,24,15
F74, F75 new type, new concrete type; class, or concrete type of object being created cAnl [5] 9,9
F76 operator; operator for the binary operation cAnl [5] 14
F77, F78 field access class, field; class containing the field being accessed, name of field being accessed cAnl [5] 3,1
F79 catch; whether a catch statement is present cAnl [5] 12
F80-F83 field name, type, visibility, is static/final cAnl [5] 0,4,2,1
F84-F86 method visibility, return type, is static/final/abstract/protected cAnl [5] 19,16,0
F87, F88 class visibility, is abstract/interfact/array class cAnl [5] 8,0
F89-F92, F93∗ warning pattern, type, priority, rank, range (Google warning descriptors) wChr [6, 7, 11, 17] 18,18,24,13
F94-F96 warnings in method, file, package; number of warnings in method, file, package wChr [6, 7, 17] 0,17,18
F97 warning modifications; number of times the warning’s line number has changed wHst [7] 11
F98 warning open revision wHst [7, 11] 15
F99, F100 warning lifetime by revision, by time; number of revisions, amount of time between current revision and open revision wHst [7, 11, 26] 25,14
F101∗ developer idea; four different idea: fix, not a problem, ignore, analyse wHst [26] n/a
F102 size context for a warning type; number of warnings from a warning type normalized by S; S is total number of warnings wCmb [6, 7] 16
F103-F105 size context in method, file, package; number of warnings in the method, file, package normalized by S wCmb [6, 7] 14,11,15
F106 warning context for warning type; difference of actionable and unactionable warnings for a warning type normalized by S wCmb [6, 7] 20
F107-F109 warning context in method, file, package; difference of actionable and unactionable warnings for the method, file, package normalized by S wCmb [6, 7] 30,26,10
F110, F111 fix, non-fix change removal rate; warnings in a type that is removed by bug-fix commit, non-bug-fix commit normalized by S wCmb [12] 14,12
F112 defect likelihood for warning pattern; D(Pi j ) =Ti j /(Ti j +Fi j ), where Pi j denotes the jth warning pattern inCi warning type,Ti j is number

of actionable warnings for pattern Pi j , Fi j is number of unactionable warnings for pattern Pi j
wCmb [18] 23

F113 variance of likelihood; variance of D(Pi j ) for each warning pattern Pi j in a warning typeCi wCmb [18] 17
F114 defect likelihood for warning type; D(Ci ) = D(Pi1)*Si1+ · · · + D(Pin )*Sin , where Si j = Ti j +Fi j wCmb [18] 13
F115 discretization of defect likelihood; discretization of D(Ci ) for each warning typeCi in the project wCmb [18] 23
F116 average lifetime for warning type; average value for feature F100 for a warning type wCmb [11] 22

Note: The features marked with * denote they will not be experimentally investigated in this paper.
#Rev. is the number of project revisions in which the features are selected (details are in Section 6.1).

Warning characteristics (wChr), warning history (wHst),
and warning combination (wCmb): wChr category contains
features about the characteristics of a warning, e.g., F89–warning
pattern. wHst category contains features about the change history
of a warning itself, e.g., F98–warning open revision.wCmb category
contains features concerning the combination of warning charac-
teristics and other kinds of information, e.g., F106–warning context
for warning type. This feature reflects the percentages of action-
able warnings and unactionable warnings of a specific type (e.g.,
Correctness) during the evolution of a project.

Note that, not all collected features are applicable for this work,
which are marked with an asterisk (*) in Table I. Some of them are
about the status of the whole project (e.g., F3–project name), thus all
warnings of a project possess the same feature value. Hence these
features are useless for our within-project evaluation setting. Others
can only be collected in a specific context (e.g., F93 is a warning
descriptor in Google). Thus, we will not experimentally investigate
these features, and only use the remaining 95 features (i.e., features
without * in Table 1) for experiments. In the following paper, “all
features” or “all collected features” refer to these 95 features.

3 SUBJECT PROJECTS
Our experiment is conducted on 12 subject projects listed in Table
2. These projects are selected because of their sizes (they are large
enough to have many SA warnings), ages (they have source code
histories spanning multiple years) and the fact that they have Git (a
version control system) repositories which makes it easier to extract
features. The data are collected in September and October of 2016.
To ensure the selected project revisions are different enough with
each other so as to make solid conclusions, we set different revision
intervals for different projects, e.g., 3 months for Lucene-solr and 6
months for Maven.

We randomly separate the projects into two datasets, and each
dataset has 6 projects (as showed in Table 2). We use dataset1 to
answer RQ1, while use dataset1 and dataset2 to answer RQ2 to
avoid overfitting.

Note that, we have tried several other projects (e.g., jdom, aspectJ,
openEJB, etc.), which were used in the studies where the features
come from. They are not included in this paper because they have
few number of warnings (i.e., less than 100). We assume there is
little value for these projects to conduct the warning identification.
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Table 2: Subject projects

Data Project Domain Total
Revi-
sions

Start
Revi-
sion

End
Revi-
sion

Revision
Interval

#R
ev

Size
(KLOC)

Warnings
(min-max)

Act. Warn
(min-max)

Unact.
Warn
(min-max)

Del.
Warn
(min-
max)

#Sel.
Feature
(min,avg,max)

dataset1 Lucene-
solr

Search engine 26,840 2013.01 2014.01 3 month 5 283-329 3553-3865 1202-1235 1843-2257 440-475 36, 42, 52

dataset1 Tomcat Server 18,068 2013.01 2014.01 3 month 5 179-184 1435-1500 326-492 978-1054 0-0 15, 38, 58
dataset1 Maven Project manage 10,218 2012.01 2014.01 6 month 5 54-55 809-889 28-111 651-790 44-67 15, 24, 36
dataset1 Poi File formatting 8,793 2012.01 2014.01 6 month 5 410-443 2547-2759 498-576 2042-2177 6-7 50,63,74
dataset1 Derby Database 8,135 2013.01 2014.01 3 month 5 219-238 2457-2603 121-450 2149-2386 0-4 11, 28, 48
dataset1 Phoenix Driver 2,077 2013.01 2014.01 3 month 5 99-172 1147-2402 316-422 819-2046 11-13 45,49,55
dataset2 Cassandra Big data manage 22,580 2013.01 2014.01 3 month 5 347-362 2298-2665 356-830 1388-2245 54-87 38, 54, 77
dataset2 Jmeter Performance manage 14,127 2012.01 2014.01 6 month 5 71-75 598-652 145-206 376-468 7-16 17, 27, 36
dataset2 Ant Build manage 13,581 2012.01 2014.01 6 month 5 92-95 1115-1229 54-378 815-1061 0-4 21, 32, 44
dataset2 Log4j2 Logging Service 9,379 2012.01 2014.01 6 month 5 24-116 485-1063 175-366 226-652 32-114 9,25,34
dataset2 Qpid Messaging 7,831 2013.01 2014.01 3 month 5 196-200 1812-2052 275-400 1376-1586 6-129 14,27,51
dataset2 Commons

.lang
Java utility 4,862 2012.01 2014.01 6 month 5 49-55 534-786 42-183 349-744 0-2 4, 16, 47

4 DATA PREPARATION
To investigate whether there is a golden feature set, we need to
prepare the experimental data. In detail, we need to extract the
values of all available features for each project revision. Since
most of the existing studies did not release their tools for feature
extraction, we implement our own tool to extract the values for
each feature, strictly following the studies where the features come
from.

We prepare data by using the the following steps.

• For a project under investigation, use git log to retrieve all
commit logs from its Git repository.

• For a specific revision of the project under investigation, use
git checkout to obtain the source files.

• Compile the source code.
• Run FindBugs on the compiled code and generate a list of
warnings for the revision.

• Retrieve the commit types (bug-fixing or non-bug-fixing,
which are used to extract features F110, F111) using the issue
types recorded in issue tracking system (Jira or Bugzilla).
This is done based on the link established by issue id both in
the commit message and issue tracking system, which is a
common practice [6, 11, 12].

• Extract all the original data fields showed in Table 3 from the
warning information generated by the SA tool, the commit
logs and source code files.

• Obtain the value of features based on the data fields, with
details shown below.

Table 3: Data source and data field for feature evaluation

Data Source Data field
Warning SA tool warning pattern, type, priority, rank,

method name, file name, file type,
warned line number

Commit
log

Version control
system

changed file, change time, revision number,
added lines of code, deleted lines of code

Source
code

Version control
system

package name, file name, method name,
code, line number

Note that, to differentiate the source code in data column and source code in data field column, we
only use code to refer the data field.

File characteristics (fChr) and warning characteristics
(wChr): these features can be extracted directly from the data
fields in warning (e.g., F89–warning pattern) and data fields in
source code (e.g., F2–package name).

Code characteristics (cChr): these features can be extracted
based on the data fields in source code using JavaNCSS3 tool, as
introduced in [7, 15]. For example, taking the code of a file as input,
JavaNCSS can obtain the comment length (F22) automatically.

File history (fHst): these features can be extracted based on
the data fields of changed file, change time, and revision number in
commit log. Take F9 (latest modification revision of a file) as an
example, we just retrieve the revision number when the particular
file (changed file) was latest modified (change time) from all the
commit logs of the project.

Code history (cHst): these features can be extracted based on
the data fields in commit log. Based on the data fields of added lines
of code, deleted lines of code, all other types of code changes can be
inferred. For example, to extract F34 (number of added lines in file
during the past three months), we first retrieve all the commit logs
in which the particular file (changed file) was modified during the
past three months (change time). Then we sum the added lines in
these commits.

Warning history (wHst): these features can be extracted based
on the data fields of warned line number, data fields in commit log
and source code. Take F89 (warning open revision) as an example,
we first identify the exact code by matching warned line number to
code, then we use the data fields in commit log to locate the revision
number where the exact code is initially added (added lines of code).

Code analysis (cAnl): these features can be extracted from the
data fields of code and warned line number. We first retrieve a set of
related code statements, which is potentially relevant to the warned
code. We use the T. J. Watson Libraries for analysis (WALA)4 and
Eclipse JDT library5 for Abstract Syntax Tree (AST) generation, as
introduced in [5]. Then we traverse ASTs and use the warned code
snippets as seeds for program slice construction. The features are
finally extracted based on the related code statements, as well as
the class hierarchy of the subject program (details are in [5]).

Warning combination (wCmb): these features can be
extracted from the data fields in warning, commit log, and source
code. For features of F106-F109 and F112-F115, we first need to label
each warning as actionable or unactionable. Detailed methods are
shown in Section 5.2. For features F110 and F111, we need to label
each commit as a bug-fixing commit or a non-bug-fixing commit,
which is obtained from the issue tracking system.

3http://www.kclee.de/clemens/java/javancss/
4http://wala.sourceforge.net/wiki/index.php/
5https://www.eclipse.org/jdt/
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5 EXPERIMENT DESIGN
5.1 Static Analysis Tools
Typical static analysis tools include FindBugs, PMD, Jlint, etc. Previ-
ous work [16] has shown that FindBugs is more effective than PMD
and Jlint in terms of detection precision. Thus, in our experiments,
we use FindBugs6 as the subject SA tool. Future work will explore
other SA tools.

FindBugs is an open-source static analysis tool for Java programs.
The tool analyzes Java bytecode with 424 bug patterns. These
patterns are organized into nine types: Bad Practice (questionable
coding practices), Correctness (suspected defects), Experimental,
Internationalization, Malicious Code Vulnerability, Multithreaded
Correctness, Performance, Security, and Dodgy Code (confusing or
anomalous code). We use all these reported warnings to evaluate
the collected features.

5.2 Ground Truth Building
We also need to accurately label warnings as actionable or unaction-
able to build the ground truth. In this work, we use a commonly-
used method [5, 6, 15] to build the ground truth. The general idea
is that if a warning disappears in a later revision, it is treated as
actionable; otherwise, it is unactionable. The process is as follows:

• Choose a number of revisions across a project’s history
starting from the start revision (shown in Table 2) to two
years after the end revision (to ensure the trustworthy of
labeling results) with a specific revision interval (in Table 2).

• Run FindBugs on the compiled code of each revision and
generate a list of warnings for each revision (as Section 4
describes).

• For a specific warning, find whether it is closed in later
revisions, i.e., it is no longer present in later revisions.
– If a warning is closed, label it as actionable;
– If a warning is still present until the last revision of our
collected data, label it as unactionable;

– If the file containing a warning is deleted, label it as un-
known and remove it from the list.

Note that, there are at least two years between commit time
and data collection time, so the labelling results are trustworthy.
Detailed statistics of warnings for each project are shown in Table 2
column 9-12.

5.3 Experiment Method for RQ1
To answer RQ1, we first conduct the feature selection to select
features which take effect in each project revision. We employ the
greedy backward elimination algorithm for feature selection [23],
which is a common practice in feature selection of software engi-
neering tasks [24]. The algorithm begins with all the investigated
features. At each iteration, it builds a machine learning classifier
to conduct the warning classification, and greedily removes a fea-
ture from the current set of features such that the performance
of classification on the dataset is maximized. The feature set that
obtains the best performance across all iterations is returned. Dur-
ing the feature selection process, we employ Random Forest as the

6http://findbugs.sourceforge.net/

machine learning classifier and AUC as the evaluation metric for
classification performance (details are in Section 5.4).

Secondly, based on the selected features for each revision, we
find out the commonly-selected features, which are selected in most
circumstances (more than 60% experimental revisions).

5.4 Experiment Method for RQ2
To answer RQ2, we build classification models by using the
commonly-selected subset of features and record the performance
of these features for actionable warning identification.

We also employ other four treatments to serve as the baselines.
Details of the five treatments are shown below:

Commonly-selected features (common for short): Use the sub-
set of features that are common for most revisions (features in Table
4).

Total features (total for short): Use all features shown in Table
1, which is a common practice in previous studies [5, 15].

Prior-specific features (prior for short): Use the subset of fea-
tures selected based on the prior revision of the specific project,
which is another commonly-used validation method in previous
researches [17, 24].

Current-specific features (current for short): Use the subset of
features selected based on the experimental revision and conduct
10-fold cross validation within the revision. Note that this scenario
is the theoretical best performance, yet is actually unattainable in
real practice.

Random features (random for short): Randomly choose 23
features (equal numberwith commonly-selected features) from total
features and conduct warning classification. Repeat the experiment
for 10 times and obtain the average performance.

We have mentioned that current employs the cross validation
within the revision. Other four treatments all involve cross-revision
validation within a project, which is a most common evaluation
scenario [5, 6, 15]. In detail, we build a classifier in a prior revision,
and use a later revision to measure the performance. Since the first
revision do not have a prior revision, for each project, we conduct
four successive cross-revision experiments.

All these experiments involve utilizing machine learning clas-
sification algorithms to build classifiers. We experiment with six
frequently-used machine learning algorithms [23], i.e., Random
Forest, Decision Tree (J48 for short), Boost, Naive Bayes, Logistic
Regression (LR for short), Support Vector Machine (SVM for short).

For the classification performance, we use the AUC, which is
a widely adopted metric especially for imbalance data [5, 7, 15,
26]. It is the area under ROC curve, which measures the overall
discrimination ability of a classifier [23]. To investigate the cost of
warning identification, we record the feature extraction time and
feature selection time of each treatment.

6 RESULTS AND ANALYSIS
6.1 Answering RQ1
To answer this question, we first conduct the feature selection
process for each project revision as introduced in Section 5.3. Table 2
(the last column) presents a brief overview of the number of selected
features for each project. Table 1 (the last column) demonstrates
the number of project revisions in which a feature is selected.

6

http://findbugs.sourceforge.net/


Is There A “Golden” Feature Set for Static Warning Identification? ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 4: Commonly-selected features (RQ1)

Cat. Feature #Rev. (Revision Information)
F107: warning context in method 30(lu:5, tm:5, mv:5, dr:5, po:5, ph:5)
F108: warning context in file 26(lu:2, tm:5, mv:5, dr:4, po:5, ph:5)

wCmb F112: defect likelihood for warning pat-
tern

23(lu:3, tm:5, mv:2, dr:3, po:5, ph:5)

6/15=40% F115: discretization of defect likelihood 23(lu:5, tm:5, mv:1, dr:4, po:5, ph:3)
F116: average lifetime for warning type 22(lu:5, tm:3, mv:1, dr:3, po:5, ph:5)
F106: warning context for warning type 20(lu:5, tm:4, mv:2, dr:0, po:5, ph:4)
F24: method depth 24(lu:5, tm:5, mv:1, dr:4, po:4, ph:5)

cChr F31: classes in package 22(lu:4, tm:5, mv:3, dr:2, po:5, ph:3)
5/15=33% F25: file depth 20(lu:5, tm:2, mv:3, dr:2, po:5, ph:3)

F23: comment-code ratio 18(lu:0, tm:3, mv:3, dr:5, po:4, ph:3)
F28: methods in file 18(lu:0, tm:4, mv:4, dr:1, po:4, ph:5)
F91: warning priority 24(lu:5, tm:4, mv:4, dr:3, po:5, ph:3)

wChr F89: warning pattern 18(lu:4, tm:4, mv:1, dr:2, po:5, ph:2)
4/7=57% F90: warning type 18(lu:0, tm:5, mv:3, dr:1, po:5, ph:4)

F96: warnings in package 18(lu:1, tm:5, mv:0, dr:2, po:5, ph:5)
fHst F18: developers 26(lu:5, tm:5, mv:1, dr:5, po:5, ph:5)
3/8=37% F16: file creation revision 24(lu:5, tm:5, mv:2, dr:4, po:5, ph:3)

F15: file age 18(lu:1, tm:3, mv:2, dr:3, po:5, ph:4)
cAnl F72: parameter signature 24(lu:5, tm:5, mv:2, dr:2, po:5, ph:5)
2/19=10% F84: method visibility 19(lu:5, tm:5, mv:0, dr:2, po:4, ph:3)
cHst F40: added lines of code in file during the

past 25 revisions
22(lu:5, tm:5, mv:1, dr:3, po:5, ph:3)

2/24=8% F46: added lines of code in package during
the past 3 months

18(lu:1, tm:4, mv:2, dr:2, po:4, ph:5)

wHst F99: warning lifetime by rev 25(lu:5, tm:4, mv:4, dr:3, po:5, ph:4)
1/4=25%
fChr(0)

P:X denotes the feature is selected in X revisions of project P.
Projects are abbreviated as follows: lu:Lucene-solr, tm:Tomcat,mv:Maven, dr:Derby, po:Poi,

ph:Phoenix.

Based on the selected features for each project revision, we
further find out the features that take effect in most experimen-
tal revisions (more than 60% revisions). Table 4 demonstrates the
commonly-selected features with feature name, category, the per-
centage of selected features for each category, howmany and which
revisions the feature is selected. In total, 23 features involving 7
categories are selected.

We can easily observe that warning combination, which con-
tributes six features (40% of its total features), is the most important
category. This implies that the features combined of warning char-
acteristics and other information can act as the crucial indicators
for warning identification. This is why several researches only use
the features in this category for warning identification and can also
achieve relatively good performance [6, 11]. We notice that these
features rely on the software process information (e.g., whether
certain warnings are proved to be actionable during project his-
tory), which has been proven to be crucial for defect prediction [16].
Besides, warning context in method is selected by all experimental
project revisions, and warning context in file is selected by 90% revi-
sions. This suggests that if there were large percentage of actionable
warnings in the method (or file) where a new warning locates, then
the warning will have a higher probability to be actionable.

The second important category is code characteristics, which
contributes five features (33% of its total features). We infer that the
static characteristics of source code also act as the essential indi-
cators for warning identification. Some of the commonly-selected
features coincide with the static features for defect prediction [20],
which have been proven to be effective in indicating software bugs.

The third important category iswarning characteristics. Although
it only contributes four features, these features account for 57% of
its total features, which suggests the uniqueness of this category. It
is reasonable because the characteristics of warnings have the most
direct relationship with actionable warnings. The selected features
include warning priority, warning pattern, warning type, warnings in
package. We can infer that certain warning type or warning pattern
might be more likely to be actionable than others.

Figure 1: Performance of features on dataset1 (RQ2)

File history is another important category. 37% of its total features
are selected, including developers, file creation revision, and file
age. Features in this category measure the change history of the
files where the warning code locates, which further indicates the
importance of software process information.

Furthermore, code analysis and code history are also necessary
categories for warning classification. Features in code analysis,
e.g., parameter signature and method visibility, model the program
analysis patterns. Although the warnings are generated based on
the static analysis information, existing features in this category
cannot effectively capture the property of actionable warnings as
only 2 features (10% of total features) are selected. Features in code
history describe the changes in lines of code if the file or package
where a warning code locates. There are 24 features proposed in
previous studies, while only 2 features are commonly-selected.
We can infer that we do not need to extract all these features
for actionable warning identification. Furthermore, the selected
2 features are about the added lines of code. It might because when
a file or package is enhanced, the related warnings would be more
likely to be fixed in the meantime.

There is a common set of features that take effect in warning
identification on most project revisions. Most of them belong to
warning combination, code characteristics, and warning char-
acteristics categories.

6.2 Answering RQ2
To answer RQ2, we not only provide the classification performance
of different treatments (Section 6.2.1) and the performance under
different classifiers (Section 6.2.2), but also conduct the time cost
evaluation (Section 6.2.3) to further evaluate the effectiveness of
commonly-selected features.

6.2.1 Performance Comparison of Different Treatments.
Figure 1 and 2 present the AUC under the Random Forest classifier
for each of the five treatments introduced in Section 5.4. As the
commonly-selected features are selected based on dataset1, we
conduct the warning classification on both dataset1 and dataset2
to avoid overfitting.

We can easily observe that for both dataset1 and dataset2, the
random features achieve the lowest performance. This indicates
the necessity to conduct feature selection. Furthermore, we also
find that the classification performance based on total features
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Figure 2: Performance of features on dataset2 (RQ2)

Figure 3: Performance of different classifiers (RQ2)

is slightly worse than the performance using commonly-selected
features. This maybe because redundant features may bring noise to
the classification, and further indicate the need for refined feature
set.

Commonly-selected features, current-specific features, and prior-
specific features all involve careful and rigorous feature selection
process. We do not observe the difference in their classification
performance from Figure 1 and 2. When using the commonly-
selected features for warning identification, the median AUC for
dataset1 is 0.79 while the median AUC for dataset2 is 0.82. We
notice that for some projects (e.g., Log4j2), the AUC among different
revisions are not stable. We manually checked the commits logs
around the time of the 3rd experimental revision of Log4j2 (which
has a low AUC), and found that the project undergone enormous
changes during that time. Large number of files were deleted, while
many new files were added. This might be the root cause of the
performance decline of Log4j2.We also notice this happens for other
treatments. This indicates that the low classification performance
can not reflect the ineffectiveness of commonly-selected features.

We further conductMann-Whitney U test among the AUC for the
five treatments. Results turn out that, except random features, the
p-values between other pair of treatments are all higher than 0.05,
suggesting there is no significant difference among these treatments.
This further indicates the effectiveness of the commonly-selected
features for warning identification.

6.2.2 Performance Comparison of Different Classifiers.
In figure 3 we present the classification performance for different
machine learning classifiers. We can observe that the best perfor-
mance is obtained by the Random Forest classifier, following by J48,

Table 5: Time cost in hour (RQ2)

Project Setting ET ST Project ET ST
common

Lucene-solr

1.1 0

Cassandra

0.9 0
total 4.2 0 2.7 0
prior 4.2 26 2.7 14
common

Jmeter

0.6 0

Tomcat

0.8 0
total 1.8 0 2.9 0
prior 1.8 9 2.9 13
common

Ant

0.8 0

Maven

0.8 0
total 2.5 0 2.1 0
prior 2.5 12 2.1 11
common

Poi

0.9 0

Log4j2

0.8 0
total 3.7 0 2.0 0
prior 3.7 24 2.0 10
common

Commons.lang

0.7 0

Derby

0.9 0
total 1.9 0 2.8 0
prior 1.9 9 2.8 15
common

Phoenix

0.8 0

Qpid

0.8 0
total 2.8 0 2.3 0
prior 2.8 14 2.3 12

Boost and Naive Bayes. This is reasonable because Random Forest
is an ensemble learning method which combines the predictive
effect of numerous single classifier.

We then compare the performance of different treatments under
these six classifiers. No matter which machine learning classifier
is used, the classification based on commonly-selected features is
superior to, or equal with other experiment treatments.

6.2.3 Time Cost Evaluation. Since there is no significant dif-
ference among these experiment treatments, we additionally per-
form the time cost evaluation. It is performed on a computer with
CPU Intel(R) Core(TM) i7 2.5 GHz PC with 8GB RAM running Win-
dows7 OS (64-bit). For each treatment and each project, we record
the average feature extraction time and feature selection time for
all revisions of the project.

From Table 5, we can easily observe that when using all features
(total features), we need several hours to extract the values of
these features. When using features selected based on prior project
revision (prior-specific features), we not only need several hours to
extract features, but also need additional several tens of hours to
conduct feature selection. However, when using these commonly-
selected features, we can save the time both for feature selection
and for feature extraction. In detail, we do not need to conduct the
feature selection as prior-specific features. For feature extraction, it
only requires about 30% of the time compared with total features
and prior-specific features.

Note that, due to space limit, we do not present the time cost
for the treatment of current-specific features (only employed for the
theoretical best performance) and random features (the performance
is the worst).

Furthermore, besides the explicit time for extracting and select-
ing features, the users also need extra time to learn how to con-
duct feature extraction and selection. When using the commonly-
selected features, the time spent in learning can also be reduced.

Using the commonly-selected features for warning identifica-
tion can achieve satisfied performance with far less cost. In this
sense, these commonly-selected features can be regarded as the
golden feature set for warning identification.

8
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7 THREATS TO VALIDITY
Construct validity of this study mainly questions the selection of
studies. It is addressed through specifying a research protocol that
defines the search terms, selection strategy, inclusion and exclusion
criteria, as well as quality assessment. We also employ the selection
verification process to let the second author review some sampled
studies to further minimize the risk of exclusion of relevant studies.
In addition, our evaluation is only conducted in terms of one SA tool
(i.e., Findbugs), and the golden feature set might not perform well
for other SA tools. Besides, although we employ a commonly-used
feature selection methods, other feature selection methods might
come to a slight different golden feature set. Further exploration
is needed for other SA tools (e.g., PMD, Jlint) and other feature
selection methods.

The internal threats concern the implementation of feature ex-
traction. We strictly follow the procedures described in the original
studies where the features come from, and test the implementation
based on 326 test cases to ensure the correctness of feature extrac-
tion. Furthermore, for features in code analysis category, we re-use
the code7 provided by the author. In addition, we utilize the link
established by issue id in the commit message and issue tracking
system, which is a common practice [6, 11, 12], in feature extraction.
However, there could be impression considering various cases as
the typographical error in issue id, duplicate commits, etc.

The external threats concern the generality of this study. Our
dataset consists of 12 projects from various domains and in rela-
tively large size, which can help reduce this threats.

8 RELATEDWORK
Section 2 has introduced many actionable warning identification
approaches [5–7, 11, 12, 14, 15, 17, 18, 26], which proposed features
to automatically learn which warning is actionable. Due to space
limit, we will not mention these studies here.

Heckman and Williams [8] conducted a systematic literature
review of actionable warning identification techniques. They iden-
tified 21 studies and analyzed the identification approaches, the
evaluation methodology, subject projects, etc. Allier et al. [1] pro-
posed a framework to compare 6 warning ranking algorithms and
identified the best algorithms to rank warnings. Similarly, Heckman
and Williams [9] evaluated another 6 warning identification tech-
niques. These studies are to review or evaluate the performance of
the whole warning identification approach, rather than the effec-
tiveness of every single feature, as what we do in this work.

Johnson et al. [10] investigated why developers are not widely us-
ing static analysis tools. They conducted reviews with 20 developers
and found that false positives, and the way in which the warnings
are presented are the main barriers. Beller et al. [3] conducted a
large-scale evaluation about the state of the use of static analysis
tools on open source software. Results revealed that their use are
widespread, but not ubiquitous, and many projects typically do not
enforce a strict policy on their use. Avgustinov et al. [2] presented
an approach to track static analysis warnings over the history of
a project, and further use the information to capture developer’s
characteristics. Smith et al. [19] investigated questions developers
asked while diagnosing potential security vulnerabilities with static
7https://github.com/qhanam/Slicer

analysis. Thung et al. [21] studied to what extent could field defects
be detected by the state-of-the-art static analysis tools.

9 CONCLUSION
In this paper, we conduct a systematic experimental evaluation of
all the available features for static analysis warning identification.
Results demonstrate that there is a golden feature set (23 features)
for warning classification. This finding can serve as a practical
guideline for facilitating real-world warning identification.

Note that, this paper focuses on the relative effectiveness of
the features, rather than explores the minimal subset of features
that can achieve the best performance. Future work will conduct
further exploration. Our evaluation is only conducted in terms of
one SA tool (i.e., FindBugs), and the golden feature set might not
perform well for other SA tools. Besides, although we employ a
commonly-used feature selection method, other feature selection
methods might come to a slight different golden feature set. Future
work will also conduct evaluation for other SA tools and examine
other feature selection methods to provide more solid conclusions
and more guidelines.
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