
Towards Effectively Test Report Classification to Assist
Crowdsourced Testing

Junjie Wang1, Qiang Cui1, Qing Wang1,2, Song Wang3

1Laboratory for Internet Software Technologies, 2State Key Laboratory of Computer Science,
Institute of Software Chinese Academy of Sciences, Beijing, China

3Electrical and Computer Engineering, University of Waterloo, Canada
{wangjunjie, cuiqiang, wq}@itechs.iscas.ac.cn, song.wang@uwaterloo.ca

ABSTRACT
Background: Automatic classification of crowdsourced test
reports is important due to their tremendous sizes and large
proportion of noises. Most existing approaches towards this
problem focus on examining the performance of different ma-
chine learning or information retrieval techniques, and most
are evaluated on open source dataset. However, our ob-
servation reveals that these approaches generate poor and
unstable performances on real industrial crowdsourced test-
ing data. We further analyze the deep reason and find that
industrial data have significant local bias, which degrades
existing approaches.

Aims: We aim at designing an effective approach to over-
come the local bias in real industrial data and automatically
classifying true fault from the large amounts of crowdsourced
reports.

Method: We propose a cluster-based classification ap-
proach, which first clusters similar reports together and then
builds classifiers based on most similar clusters with ensem-
ble method.

Results: Evaluation is conducted on 15,095 test reports
of 35 industrial projects from Chinese largest crowdsourced
testing platform and results are promising, with 0.89 preci-
sion and 0.97 recall on average. In addition, our approach
improves the existing baselines by 17% - 63% in precision
and 15% - 61% in recall.

Conclusions: Results imply that our approach can effec-
tively discriminate true fault from large amounts of crowd-
sourced reports, which can reduce the effort required for
manually inspecting the reports and facilitate project man-
agement in crowdsourced testing. To the best of our knowl-
edge, this this the first work to address the test report clas-
sification problem in real industrial crowdsourced testing
practice.

Keywords
Crowdsourced testing; Report classification; Cluster

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEM ’2016 Ciudad Real, Spain
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

1. INTRODUCTION
Crowdsourced testing is an emerging trend in both the

software engineering community and industrical practice. In
crowdsourced testing, crowd workers are required to submit
test reports after performing testing tasks in crowdsourced
platform. A typical report contains description, screenshots,
and an assessment as to whether the worker believed that
the software behaved correctly or behaved incorrectly (i.e.,
passed or failed). In order to attract workers, testing tasks
are often financially compensated, especially for these re-
vealed failed behaviors [5]. In this context, workers may sub-
mit thousands of test reports due to financial incentive and
other motivations. The Baidu crowdsourced testing plat-
form delivers approximately 100 projects per month, and
receives more than 1,000 test reports per day on average.
Among those reports, more than 70% are reported as failed.
However, these test reports often have many false positives,
i.e., a test report marked as failed that actually described
correct behavior or behavior that was considered outside of
the studied software system.

Project managers or testers need manually inspect these
failed test reports to judge whether they actually reveal
faults—true fault. Inspecting 1,000 reports takes almost
half a working week for a tester on average. Besides, only
less than 50% of them are finally determined as true fault
[5]. Hence, the process is time-consuming, tedious, and low-
efficient.

Therefore, it would be beneficial to automatically classify
true fault from the large amounts of test reports. There have
been various existing researches focused on classifying issue
reports of open source projects [13][16][22][24][25][27]. Nev-
ertheless, crowdsourced reports are more noise than issue
reports. There are two reasons. First, most of the test re-
ports are submitted by non-specialized crowd workers. Sec-
ond, crowd workers often work under financial incentives and
tend to submit many reports without caring their quality.
Hence, classifying them is more valuable, yet possesses more
challenges. Furthermore, most existing approaches focus on
examining the performance of different machine learning or
information retrieval techniques, and most are evaluated on
open source dataset.

However, our observation on real industrial crowdsourced
testing data reveals that previous approaches generate poor
and unstable performances on these industrial data. We
further analyze the deep reason and find that industrial data
have significant local bias, i.e., data are heterogenous within
dataset and their distributions are often different from one
project to another (details are in Section 6.1).

10.475/123_4

To address such problem, we propose a cluster-based ap-
proach for effectively test report classification. Our idea
behind is to cluster similar crowdsourced reports together
and build machine learning classifiers based on most simi-
lar training clusters with ensemble method (details are in
Section 3.3).

We experimentally investigate the feasibility of the pro-
posed approach on 15,095 test reports of 35 projects from
Chinese largest crowdsourced testing platform. Our ap-
proach demonstrates the advantages on both precision and
recall, with 0.89 precision and 0.97 recall on average, which
is 17% - 63% higher in precision and 15% - 61% higher in re-
call than existing baselines. This implies that our approach
can effectively discriminate true fault from large amounts
of crowdsourced reports, which can reduce the effort re-
quired for manually inspecting the reports and facilitate
project management in crowdsourced testing. Additionally,
we explore the relative contribution of different features (i.e.,
term, sentiment, worker experience) on report classification.

This study makes the following contributions:

• We investigate the problem of crowdsourced test re-
port classification and reveal its local bias, which is
different from traditional or open source issue report
classification in prior researches. To the best of our
knowledge, this is the first work to address the
test report classification problem in real indus-
trial crowdsourced testing practice.

• We propose a cluster-based classification approach to
overcome the local dilemma.

• We evaluate our approach on 15,095 test reports of
35 projects from Chinese largest crowdsourced testing
platform. The experimental results indicate its feasi-
bility in terms of high precision and recall.

The rest of this paper is organized as follows. Section 2
provides background of crowdsourced testing. Section 3 de-
scribes our proposed approach. After showing the experi-
mental setup in Section 4, we demonstrate the results and
analysis in Section 5. Section 6 and Section 7 present discus-
sion and related work respectively. We conclude this paper
in Section 8.

2. BACKGROUND
In this section, we describe the background of crowd-

sourced testing to help better understand the challenges we
meet in real industrial crowdsourced testing practice.

Our experiment is conducted with Baidu crowdsourced
testing platform1. The general procedure of such crowd-
sourced testing platform is shown in Figure 1.

In general, testers in Baidu prepare packages for crowd-
sourced testing (software under test and testing tasks) and
distribute them online using their crowdsourced testing plat-
form. Then, crowd workers could sign in to conduct the task
and are required to submit crowdsourced test reports2. Ta-
ble 1 demonstrates the attributes of a typical crowdsourced

1Baidu (baidu.com) is the largest Chinese search service provider.
Its crowdsourcing test platform (test.baidu.com) is also the
largest one in China.
2We will simplify “crowdsourced test report” as “crowdsourced
report” or “report”, potentially avoiding the confusion with “test
set” in machine learning techniques.

Figure 1: The procedure of crowdsourced testing [5]

Table 1: An example of crowdsourced test report

Attribute Description: example
Environment Phone type: Samsung SN9009

Operating system: Android 4.4.2
ROM information: KOT49H.N9009
Network environment: WIFI

Crowd
worker

Id: 123456
Location: Beijing Haidian District

Testing task Id: 01
Name: Incognito mode

Input and
operation
steps

Input “sina.com.cn” in the browser, then click
the first news. Select “Setting” and then set
“Incognito Mode”. Click the second news in
the website. Select “Setting” and then select
“History”.

Result de-
scription

“Incognito Mode” does not work as expected.
The first news, which should be recorded, does
not appear in “History”.

Screenshot
Assessment Passed or failed given by crowd worker: Failed

report3. The platform can automatically record the crowd
worker information and environment information on which
the test is carried on. A worker is required to submit the
testing task s/he carried on and descriptions about the task
including input and operation steps, results description and
screenshots. The report is also accompanied with an assess-
ment as to whether the worker believes that the software
behaved correctly (i.e., passed) or incorrectly (i.e., failed).

In order to attract more workers, testing tasks are often
financially compensated. Workers may then submit thou-
sands of test reports due to financial incentive and other
motivations. Usually, this platform delivers approximately
100 projects per month, and receives more than 1,000 test re-
ports per day on average. Among those reports, more than
70% are reported as failed. Nevertheless, they have many
false positives, i.e., a test report marked as failed that ac-
tually described correct behavior or behavior outside of the
studied software system. This is due to the financial com-
pensation mechanism, which favors reports revealing failed
behaviors.

Testers need to manually inspect these failed test reports
to judge whether they actually reveal faults—true fault. How-
ever, inspecting 1,000 reports manually could take almost
half a working week for a tester. Besides, only less than

3Reports are written in Chinese in our projects. We translate
them into English to facilitate understanding.

baidu.com
test.baidu.com

50% of them are finally determined as true fault. Obviously,
such process is time-consuming, tedious, and low-efficient.
In consequence, this motivates us to efficiently automate the
classification of crowdsourced test reports.

3. APPROACH
As we mentioned that most existing issue classification

approaches focus on examining the performance of different
machine learning or information retrieval techniques, and
most are evaluated on open source dataset [13][16][22][24][25]
[27]. However, our experiments show that these approaches
generate poor and unstable performances on our industrial
crowdsourced testing data (see details in Section 5.1), be-
cause of the significant local bias in industrial data, i.e., data
are heterogenous within dataset and their distributions are
often different from one project to another.

Hence, we propose a cluster-based classification approach
to overcome the local dilemma. Figure 2 illustrates the
overview of our approach. Firstly, we carry out feature
extraction, which is to obtain features from crowdsourced
report to train machine learning classifiers. Secondly, we
cluster similar reports together to construct more homoge-
neous training dataset. Thirdly, we build classifiers based on
most similar clusters and combine classification results from
these classifiers. In the following subsections, we explain
each step in detail.

3.1 Extracting Features
The goal of feature extraction is to obtain features from

crowdsourced reports which can be potentially used as in-
put to train machine learning classifiers. We abstract these
features from the following three dimensions: textual, sen-
timent, and crowd worker experience. Each dimension
may contain a set of features.

For textual dimension, we first collect different sources of
text description together (input and operation steps, result
descriptions). Then we conduct word segmentation, as
the crowdsourced reports in our experiment are written in
Chinese. We adopt ICTCLAS4 for word segmentation, and
segment descriptions into words. We then remove stop-
words (i.e., “the”, “am”, “on”, etc.) to reduce noise. Note
that, workers often use different words to express the same
concept, so we introduce the synonym replacement tech-
nique to mitigate this problem. Synonym library of LTP5 is
adopted.

Each of the remaining word token corresponds to a fea-
ture. For each feature, we take the frequency it occurs in the
description as its value. We used the TF (term frequency)
instead of TF-IDF because the use of the inverse document
frequency (IDF) penalizes terms appearing in many reports.
In our work, we are not interested in penalizing such terms
(e.g., “break”,“problem”) that actually appear in many re-
ports because they can act as discriminative features that
guide machine learning techniques in classifying reports.

These textual features describe what the report is and
play a significant role in revealing true fault. Most of the
previous researches would utilize text related features to con-
duct the report classification problem in open source soft-

4ICTCLAS (http://ictclas.nlpir.org/) is widely used Chinese
NLP platform.
5LTP (http://www.ltp-cloud.com/) is considered as one of the
best cloud-based Chinese NLP platforms.

Table 2: Features used in this work

Dimension Feature Num
Textual Words segmented from descrip-

tion excluding stop words and
replaced with synonym

2262 in our
experiment

Sentiment Positive score
Negative score
Combined score

3

Crowd
worker
experience

Number of reports
Number of true faults
Percentage of true faults

3

ware [16][22][27]. This is why we bring these features in our
classification model.

For sentiment dimension, we apply SentiStrength [21],
which has been successfully used in app review of English
corpus, to crowdsourced report for sentiment analysis. For
each report, SentiStrength assigns one negative sentiment
score in a scale of -5 to -1 and one positive score in a scale
of 1 to 5. The English Sentiment Words List is substituted
with Chinese ones provided by HowNet6. We retrieve three
features: the positive score, negative score and combined
score for each crowdsourced report.

Intuitively, crowdsourced reports usually reflect users’ pos-
itive or negative emotions. For example a true fault will
probably include a negative sentiment. Prior researches for
classifying app reviews [12][18] also leverage sentiment anal-
ysis to improve their results. As both app reviews and our
crowdsourced reports are written by non-specialized people,
we assume sentiment related features might contribute to
report classification.

For crowd worker experience dimension, we capture
three features to measure crowd worker’s experience: the
number of reports submitted, the number of true faults sub-
mitted, and the percentage of true faults among one’s sub-
mitted reports.

We extract these features based on the hypothesis that if
the crowd worker often reported high reliable crowdsourced
reports, he might continue submitting true faults. Note that,
some researches also consider the name of reporter or as-
signee of a issue report as a feature to assist the classification
problem [24][27]. However, simply using the crowd worker
itself might not work well in our context, because numerous
workers only submit very few reports. Thus, currently we
model worker’s experience only by these three features.

We organize all the features under investigated (Table 2)
into a feature vector. For each crowdsourced report, we
extract the value for each feature and prepare the feature
vector for building machine learning classification models.

3.2 Clustering Reports
For mitigating the local bias of our industrial crowdsouced

data, we perform clustering techniques to ensure the homo-
geneity within training data. Intuitively, the crowdsourced
reports within the same cluster tend to homogeneous with
each other. Specifically, we apply K-means algorithm [1] to
separate all training data into different clusters. Note that,
we break the boundary exerted by projects and reorganize
all available crowdsourced reports into clusters.

Given feature vectors for crowdsourced reports of all train-

6HowNet (http://keenage.com/) is the largest Chinese knowledge
database.

http://ictclas.nlpir.org/
http://www.ltp-cloud.com/
http://keenage.com/

Figure 2: Overview of our cluster-based classification approach

ing data, number K of desired clusters, K-means first selects
one centroid for each cluster, and then associates each fea-
ture vector with the nearest centroid, thus identifying clus-
ters. We apply cosine similarity to measure the distance
because prior study showed that it performs better for high-
dimensional text documents than other distance measures
(e.g., euclidean distance) [6].

Furthermore, we utilize the top para F descriptive fea-
tures to represent the cluster, denoted as descriptive vec-
tor. The descriptive features are determined by selecting
the features that contribute the most to the average similar-
ity between the objects of each cluster.

One of the challenges of K-means algorithm is to estimate
the number of clusters that should be created. To identify
the best solution, we use the element silhouette [19]. The
silhouette of an element is the measure of how closely the
element is matched to the other elements within its clus-
ter, and how loosely it is matched to other elements of the
neighboring clusters. When the value of the silhouette of an
element is close to 1, it means that the element is in the ap-
propriate cluster. If the value is close to -1, instead, it means
that the element is in the wrong cluster. Thus, to identify
the best solution, we compute the average of the elements’
silhouette for each solution using K as the number of clus-
ters, and we select the solution whose average silhouette was
closest to 1. In our experiment, candidate K is ranged from
1 to 1000.

3.3 Building Classifiers
To further mitigate the influence of local bias in our clas-

sification model, we choose the training data from the most
similar clusters to build classifiers. In addition, it is natural
that classifiers learned from different clusters place different
emphasis on predictive features. So to combine the knowl-
edge from multiple sources, we adopt the bagging ensemble
method to combine the classification results from these clas-
sifiers.

We have noted that reports from the same crowdsourced
project can be dramatically different in their descriptions.
This can result in different reports corresponding to different
set of most similar clusters. For this reason, our approach
would find most similar clusters and build classifiers for each
crowdsourced report, not the whole project.

When a new test set is coming, for each crowdsourced re-
port, we first retrieve the feature vector. Then we compute
the similarity with each descriptive vector of corresponding
cluster in training set. We select the top para C most simi-

lar clusters and with similarity value higher than thres sim.
Note that, we restrict the selected clusters with both num-
ber and similarity value. This is because we try to avoid the
classification results from quite dissimilar clusters. For each
selected cluster, we build machine learning classifier based
on feature vectors of the crowdsourced reports in that clus-
ter. The classifiers are then used to classify the report and
classification results are combined using bagging.

Bagging is essentially a method to eliminate the potential
prediction bias caused by each individual model through in-
tegrating their predictive power [3]. For the crowdsourced
report under test, voting score is computed as follows:

score =

∑p
i=1 scorei

p

where scorei is 1 if the classification result from ith model
claims true fault, otherwise scorei is 0; p is number of se-
lected models. If voting score is bigger than thres vot, the
final classification result of that report will be set as “true
fault”.

4. EXPERIMENT SETUP

4.1 Research Questions
To systematically evaluate our cluster-based classification

approach, we set four research questions.

• RQ1: How effective of our cluster-based classification
approach in classifying crowdsourced reports?

We additionally conduct five comparison experiments (Sec-
tion 4.3) to demonstrate the effectiveness of our approach.

• RQ2: Which classification algorithm works better?

We employ four machine learning algorithms to conduct
classification (Section 4.4). This question aims at investigat-
ing whether these classification algorithms behave differently
on model performance.

• RQ3: What is the impact of cluster number on model
performance?

We have applied element silhouette to determine the clus-
ter number K. To investigate whether there is alternative
K which can achieve significant better results, we conduct
experiments with K ranging from 1 to 1,000.

• RQ4: What is the effect of each dimension of features
on model performance, used in isolation and in combi-
nation?

We utilize features involved in three dimensions (textual,
sentiment, crowd worker experience shown in Table 2) to
conduct the classification. To investigate the relative ef-
fect of features in each dimension, we build classifiers using
features in isolation and in combination. We aim at inves-
tigating which dimension of features contribute more to the
classification results.

4.2 Data Collection
Our experiment is based on crowdsourced reports from

the repositories of Baidu crowdsourced testing platform. We
collect all crowdsourced testing projects closed between Oct.
20th 2015 and Oct. 30th 2015. There are totally 35 projects
covered 8 categories. Table 3 provides more details with to-
tal number of crowdsourced reports submitted (#), number
of failed reports (#Fa), number and ratio of reports judged
as true fault (#TF, %TF). Due to commercial considera-
tion, we replace detailed project names with serial number.
The serial number is determined based on the chronological
order of its closed time. These projects are organized into
categories corresponding to those in the platform.

Note that, our classification is conducted on failed reports,
not the complete set. This is because through talking with
testers in the company, we find that workers tended to label
correct behavior as failed report, while almost none of the
true fault was labeled as passed, due to financial incentives
(failed reports can often receive higher rewards).

We use the judgement attributes (Table 1) to construct
the ground truth of classification. We additionally verify its
validity through randomly sampling and relabeling. Specif-
ically, we randomly select one project from each category,
and sample 10% of crowdsourced reports from each selected
project. A tester from the company is asked to relabel the
data, without knowing previous label. We then compare the
difference between prior label and new label. The number
of different labeling for each projects are all below 4%.

4.3 Experimental Design with Baselines
For the 35 projects under investigation (Table 3), we di-

vide them into 5 folds according to the chronological order,
i.e., P1 to P7 in 1st fold, P8 to P14 in 2nd fold, p29 to
p35 in 5th fold. When classifying a project, the candidate
training data are these projects from all its preceding folds.
To be more specific, if we want to classify the crowdsourced
reports in P8 (P30), we can only utilize the data from P1
to P7 (P1 to P28). In this way, we only present the classi-
fication results of P8 to P35, as projects in 1st fold did not
have any training data.

We set parameters para F as 30, para C as 5, thres sim
as 0.2, thres vot as 0.5 based on our experimental outcomes.

We compare our ClUster-based REport claSsifica-
tion approach (CURES) to five baselines.

The first baseline relates with the classification without
considering the local bias of dataset, which is the common
practice in prior researches [22][24].

Classification based on all available training data
(U Total). It represents a very intuitive prediction setting:
combine all available crowdsourced reports into a big train-
ing set without any data selection operation, and then learn
a classifier from it.

Table 3: Projects under investigation

#Fa #TF %TF # #Fa #TF %TF
Tools
P1 321 267 183 68.5 P2 874 717 144 20.1
P8 688 647 253 39.1 P15 217 157 46 29.3
P22 802 672 177 26.3 P23 466 402 102 25.3
P29 391 317 253 35.2 P30 390 334 87 26.0
P31 495 417 83 19.9
Entertainment
P3 302 168 125 74.4 P9 1094 727 447 61.4
P16 423 272 250 91.9 P17 556 398 251 63.1
P24 1414 1034 500 48.3 P25 1502 1152 583 50.1
P32 832 754 465 61.7
Efficiency
P4 216 144 31 21.5 P10 504 394 157 39.8
Finance
P13 436 232 165 71.1
Music
P5 683 486 51 10.4 P11 320 163 61 37.4
P18 815 667 262 39.3 P26 342 181 76 41.9
News
P6 492 455 280 61.5 P19 307 180 122 67.8
P27 824 503 131 26.0 P33 806 522 199 38.1
Photo and Video
P12 637 537 220 40.9 P20 632 545 183 33.5
P21 580 323 112 34.7 P34 358 93 49 52.7
Read
P7 403 304 25 8.2 P14 297 223 129 57.8
P28 524 424 163 38.4 P35 452 284 58 20.4

Summary
#Fa #TF %TF
20,395 15,095 6,423 42.5

The second baseline relates with the classification using
a straightforward data selection method to overcome local
bias.

Classification based on training data within cate-
gory (U Catg). It represents combing all available crowd-
sourced reports in the same category with test set, and then
learning a classifier from it. It is designed considering that
projects within same category tend to be more similar with
each other so as to improve the classification performance.
Note that, for projects without satisfied training data (e.g.,
P12, P13), we adopt the average values under this scenario
as their performance.

The third and fourth baselines are about the classification
with data selection, but using more straightforward data
organization methods than cluster-based approach.

Classification based on random-partition and data
selection (S Rand). It randomly separates the training
set into K parts and then conducts classification as step 3
of cluster-based approach. K is set accorded with cluster-
based approach. This setup is to compare the performance
of random separation and cluster-based separation of train-
ing data.

Classification based on project-partition and data
selection (S Prj). It separates the training set just as it
was by projects and then conducts classification as step 3 of
cluster-based approach. This setup is to examine whether
the pre-existing boundary of training data can work as well
as cluster-based separation.

The fifth baseline concerns with the most common valida-
tion method in previous researches [16][27], which is actually
unattainable in real practice.

Cross validation within project (CV Prj). It rep-
resents within project validation scenario, i.e., 10-fold cross
validation on test set. It is often treated as the theoretical
best performance.

4.4 Classification Algorithms
We employ four machine learning algorithms to construct

classifiers. They are Naive Bayes (NB), Decision Tree (J48),
Support Vector Machine (SVM), and Logistic Regression
(LR).

Naive Bayes is a very popular algorithm, which is based
on applying Bayes’ theorem with strong independence as-
sumptions between the features [1]. Decision Tree learning
is another popular classification algorithm [11]. It builds the
tree structure from the training data by using information
entropy. Leaves in the tree structure represent classifications
and branches represent judgment rules. The SVM learner
performs classification by finding the optimal hyper-plane
that maximally separates samples in two different classes
[11]. The Logistic Regression measures the relationship be-
tween the dependent variable and one or more independent
variables by estimating probabilities using a logistic func-
tion, which is the cumulative logistic distribution [1].

4.5 Evaluation Metrics
To evaluate our proposed approaches, we use three met-

rics: precision, recall, and F −Measure. These three met-
rics are widely adopted to evaluate issue report classification
techniques [16][22][25][27]. To explain these measures, we
use the following contingency table.

Observed
True fault Not true fault

Predicted
True fault TP FP
Not true fault FN TN

Precision TP/(TP+FP) denotes the percentage of crowd-
sourced reports observed as true faults that are classified
correctly.

Recall TP/(TP+FN) denotes the percentage of crowd-
sourced reports classified as true faults that are classified
correctly.

We also calculated the F-Measure, which is the harmonic
mean of precision and recall, providing a single accuracy
measure.

5. RESULTS AND ANALYSIS

5.1 Addressing RQ1
RQ1: How effective of our cluster-based classification ap-
proach in classifying crowdsourced reports?

Figure 3 illustrates the performance of our cluster-based
classification approach (CURES), as well as five baselines.

For all four classification algorithms, CURES achieves best
performance in terms of precision and recall. For models
using Naive Bayes, our approach can achieve 0.89 of preci-
sion and 0.97 of recall on average. In other words, among
the crowdsourced reports we classified as true fault, 89% of
them are really true faults and they can cover 97% of total
true faults. Furthermore, results of Naive Bayes show that
CURES improves the baselines by 17% - 63% in precision
and 15% - 61% in recall. However, as the recall does not
reach 100%, indicating our method might have missed few
vulnerabilities. We will investigate how to improve the re-
call value without sacrificing much in precision, in our future
work.

Analysis of the projects with low performance. We
have carefully examined the projects with low performance

values, e.g., P11, P15 and P23. Project P11 is a new-released
cloud music service provider, with immature music database.
An alarming number of failed reports are about failing to
find particular songs, which is actually not fault. There
are also a large part of failed reports related with the in-
terruption when playing or downloading particular songs,
which is actually outside the scope of this software (mainly
due to the slow network). But the diverse words from song
names, which rarely show up in other projects, bring noises
for the classification. The low performance values of other
two projects are originated from similar reason. To summa-
rize, we assume the decline in performance values is due to
the data drift problem in learning tasks [23]. We plan to
introduce other techniques (e.g., transfer learning) to over-
come the data drift problem.

Comparison of CURES with U Total and U Catg.
CURES conducts careful data selection process, while U Total
and U Catg do not. Intuitively we can see that, performance
of U Total produce very bad classification results in terms of
precision and recall. This leads to the finding that learning
from all available data without data filtering will lead to bad
performance. The low and unstable performances of U Catg
further confirm that building classifier without careful data
selection is not a good practice.

We carefully examine the data and find that the bad per-
formance of U Total and U Catg might due to the local
bias (i.e., data heterogeneity) in crowdsourced report. More
specifically, the term appearance and distribution in differ-
ent crowdsourced categories may differ a lot. For exam-
ple, classification features in entertainment category (such
as “play”, “load”) are often irrelevant to the fault behavior
of projects in tool category. Even in the same category, as
there are different projects (e.g., ranging from animation to
adventure game in entertainment category), this can also
happen quite often. When data from multiple projects are
combined, the cumulative effect of these extreme cases on
overall model would increase significantly.

Comparison of CURES with S Rand and S Prj.
CURES clusters similar reports together, while S Rand and
S Prj organize reports in more straightforward ways. For all
four classification algorithms, CURES achieves higher and
more stable performances than S Rand and S Prj. This im-
plies that through clustering similar reports together, our
approach can build better classifier based on more homo-
geneous training data. Moreover, separating training data
randomly or as projects themselves cannot effectively or-
ganize training data, thus potentially reduce classification
performance.

Comparison of S Prj with CV Prj. We also note that
S Prj produces better performance results than CV Prj. This
maybe because combining results produced by classifiers of
nearest projects can potentially avoid the prediction bias
caused by the classifier of each project. For classification
within project, some crowdsourced projects can contain sev-
eral different testing tasks, which might be the root of bad
performance.

Impact of training data size on performance. We
additionally present the statistics of performance values un-
der Naive Bayes for each fold in Table 4. Results reveal that
performances tend to go higher as available training data
increases, especially for precision and F-Measure. But this
does not always hold true, especially for recall. We will in-
vestigate the influence of training data size on model perfor-

(a) NB (b) J48

(c) SVM (d) Logistic

Figure 3: Classification performance for RQ1&RQ2

Table 4: Statistics of performance using NB for each fold

Min Max Mean Median

Precision

2nd fold 0.64 0.89 0.81 0.83
3rd fold 0.70 0.99 0.90 0.95
4th fold 0.72 0.96 0.88 0.94
5th fold 0.91 0.99 0.96 0.98
all 0.64 0.99 0.89 0.92

Recall

2nd fold 0.93 1.00 0.97 0.98
3rd fold 0.94 0.99 0.97 0.98
4th fold 0.92 1.00 0.96 0.97
5th fold 0.96 1.00 0.97 0.97
all 0.92 1.00 0.97 0.97

F-Measure

2nd fold 0.78 0.94 0.89 0.90
3rd fold 0.84 0.99 0.94 0.96
4th fold 0.84 0.97 0.92 0.94
5th fold 0.94 0.99 0.96 0.97
all 0.78 0.99 0.93 0.95

mance in more detail, and try to recommend the minimum
volume of training data for effective classification.

5.2 Addressing RQ2
RQ2: Which classification algorithm works better?

Figure 3 shows that classification models built using Naive
Bayes produce highest precision and recall, followed by SVM
and Logistic Regression, with Decision Tree producing low-
est performance values. Besides, results produced by SVM
are more unstable than others. Similar with prior machine
learning researches [7], our results imply that the choice of
classification techniques has an impact on the classification
performance. Therefore, given the ease of access to such
techniques nowadays in the machine learning toolboxes (
e.g., Weka and R), exploring various techniques is encour-
aged. In following section, we will only present results of

Naive Bayes for space limit, as the performance accords with
the observation presented here.

5.3 Addressing RQ3
RQ3: What is the impact of cluster number on model per-
formance?

Due to limited space, we only present classification per-
formance under certain representative K values in Figure 4.
Note that, best in Figure 4 denotes the optimal K value de-
termined by element silhouette. Best are respectively 58,
95, 122, 146 for 2nd to 5th fold in our context. By demon-
strating classification performance under K values of best-60,
best-40, best-20, best, best+20, best+40, best+60, we want to
illustrate the trend of performance values with different clus-
ter number. Note that, for the 2nd fold, as best-60 falls to
negative number, we substitute it with 1.

We can find that the optimal K values suggested by our
approach can produce best and most stable performance re-
sults. Too small or large number of clusters will lower the
performance in both precision and recall. This may because
small number of clusters can not separate different topics
of crowdsouced reports thoroughly, while too many clusters
would result in the overfitting of the classification models.

We further conduct experiment for models under K val-
ues between best-20 and best+20. For each experimental
project, we compare the F-Measure value between models
under best and experimental K. Figure 5 gives an overview
of results, where Win indicates that performance under best
K is better than experimental K (F-Measure is bigger), Tie
means no difference observed (absolute difference of F-measure
is smaller than 0.05), and Loss means experimental K is bet-

Figure 4: Classification performance for RQ3

Figure 5: Comparison of model performance for RQ3

ter.
Results reveal that models under nearby K values demon-

strate similar performance, denoting with high tie number.
Models under the optimal K values suggested by our ap-
proach can produce relatively best performance, with 32 tie,
2 win and 1 loss under worse condition.

5.4 Addressing RQ4
RQ4: What is the effect of each dimension of features on
model performance, used in isolation and in combination?

Figure 6 illustrates the performance values under different
feature dimensions. Note that, because of the quite low
performance values and space limit, we do not present the
performance of these models built with features of sentiment
and crowd worker experience, alone or combined.

Intuitively, models built on features combining all three
dimensions achieve the highest precision and recall. The
difference among other combinations can not be observed
easily. Hence, we employ Mann-Whitney U test to compare
the performance of different combination of feature dimen-
sions. Table 5 gives an overview of the significance level.

Compared with models building solely on textual features,
adding one dimension of features (Text vs. TextExp, Text
vs. TextSnt) can not help improve the classification perfor-
mance. Furthermore, for textual features, performance pro-
motion by adding each of the other two feature dimensions
(TextExp vs. TextSnt) exert no significant difference. How-
ever, combining all three dimensions of features together can
significantly improve the performance (Text vs. All, TextExp
vs. All, TextSnt vs. All, except recall value for TextExp vs.
All).

That is to say, text related features almost act as the dom-
inate role in report classification. This is in accordance with
the observation in previous researches [12][18]. From cost
efficiency point of view, as there are only little differences

Figure 6: Classification performance for RQ4

between performance of Text and All (0.90 vs. 0.93 in F-
measure), one can utilize textual features alone to conduct
the classification.

Table 5: Significance level of MannWhitney U test for classifica-
tion performance of different combination of feature dimensions

Feature dimension Precision Recall F-Measure
Text vs. TextExp 0.747 0.091 0.865
Text vs. TextSnt 0.930 0.846 0.883
Text vs. All 0.008** 0.004** 0.001**
TextExp vs. TextSnt 0.869 0.137 0.778
TextExp vs. All 0.005** 0.100 0.001**
TextSnt vs. All 0.008** 0.005** 0.005**

Note: Significance level at 0.01 (p value <0.01) are marked by **

6. DISCUSSION

6.1 Local Phenomenon
The local phenomenon has been investigated by Menzies

et al. [14][15] in defect prediction and effort estimation.
They investigated the local treatment (apply local data in
the adjacent cluster for modeling) versus global treatment
(apply all global data for modeling). Experimental results
revealed that the treatments from local regions were differ-
ent and superior to the global treatment. They then sug-
gested a general framework to overcome the local dilemma:
1) ignore any existing local divisions into multiple sources,
2) cluster across all available data, 3) then learn from the
cluster that are nearest to the test data. They believed this
conclusion can translate to other software engineering tasks
and encouraged researchers to conduct exploration.

This paper reveals the local phenomenon in crowdsourced
testing context experimentally. We further propose a cluster-
based approach to overcome the local problem. Our ap-
proach extends and refines their framework in three ways.
First, they adopted FASTMAP as clustering algorithm, which
did not work well in our high dimension text classification
context. So we apply K-means to conduct clustering. Sec-
ond, they did not explicitly present how to determine the
cluster number, which is crucial as it can influence model
performance. Instead our approach includes the algorithm
to decide the optimal cluster number and experimentally
proves its efficiency. Third, their work only chose the near-
est cluster to conduct prediction, while our classification is
based on several most similar clusters with ensemble method.
This can effectively reduce the prediction bias caused by
each individual model.

6.2 Threats to Validity
The external threats concern the generality of this study.

First, our experiment data consists of 35 projects covering 8
categories collected from Chinese largest crowdsourced test-
ing platform. We can not assume a priori that the results of
our study could generalize beyond this environment in which
it was conducted. However, the various categories and size
of data relatively reduce this risk. Second, all crowdsourced
reports investigated in this study are written in Chinese,
and we cannot assure that similar results can be observed
on crowdsourced projects in other language. But this is al-
leviated as we did not conduct semantic comprehension, but
rather simply tokenize sentence and use word as token for
learning.

Regarding internal threats, we do not tune parameters of
para C, para F, thres sim, thres vot in an experimental way,
which may influence our results. But we have conducted
experiment with several different values for each parameter.
For example, if the number of clusters for bagging (para C)
is set as 2, the classification would often fall into local re-
gions so as to influence its performance. While para C is set
10, the classification requires more computational resources,
while its outcomes remain unchanged. Nonetheless, there
is need to conduct more carefully designed controlled ex-
periment to investigate the influence of these parameters on
model performance. In addition, we do not adopt feature
selection process and use all the features to build classi-
fier. This maybe the reason for the unstable performance of
some baseline experiments with SVM. But the performance
achieved by our approach is satisfying. Anyhow, we will con-
duct feature selection and investigate its influence on model
performance.

Construct validity of this study mainly questions the data
processing method. We rely on the judgement attribute of
crowdsourced reports stored in repository to construct the
ground truth. However, this is addressed to some extent due
to the fact that testers in the company have no knowledge
that this study will be performed for them to artificially
modify their labeling. Besides, we have verified its validity
through random sampling and relabeling.

7. RELATED WORK

7.1 Crowdsourced Testing
Crowdsoucing is the activity of taking a job traditionally

performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of peo-
ple in the form of an open call [20]. Chen and Kim [4] applied
crowdsourced testing to test case generation. They investi-
gated object mutation and constraint solving issues under-
lying existing test generation tools, and presented a puzzle-
based automatic testing environment. Musson et al. [17]
proposed an approach, in which the crowd was used to mea-
sure real-world performance of software products. The work
was presented with a case study of the Lync communication
tool at Microsoft. Gomide et al. [9] proposed an approach
that employed a deterministic automata to help usability
testing. The idea is to capture crowd worker’s biofeedback
from mouse movements and a skin sensor, for revealing their
hesitation behaviors. Adams et al. [8] proposed MoTIF to
detect and reproduce context-related crashes in mobile apps
after their deployment in the wild. All the studies above use
crowdsouced testing to solve some problems in traditional

software testing activities. However, our approach is to solve
the new encountered problem in crowdsourced testing.

Feng et al. [5] proposed test report prioritization methods
for use in crowdsourced testing. They designed strategies to
dynamically select the most risky and diversified test report
for inspection in each iteration. There are two aspects distin-
guishing our work from theirs. On one hand, our approach
can work unsupervised, without manual intervention, which
can further reduce human effort. On the other hand, their
method was evaluated only on 3 projects with students act-
ing as crowd workers, while our evaluation is conducted in
35 projects from Chinese largest crowdsourced testing plat-
form.

7.2 Issue Report Classification
Issue reports are valuable resources during software main-

tenance activities. Automated support for issue report clas-
sification can facilitate understanding, resource allocation
and planning. Menzies and Marcus [16] proposed an auto-
mated severity assessment method by text mining and ma-
chine learning techniques. Tian et al. [22] propose DRONE,
a multi factor analysis technique to classify the priority of
bug reports. Wang et al. [25] proposed a technique com-
bining natural language and execution information to de-
tect duplicate failure reports. Zanetti et al. [26] proposed
a method to classify valid bug reports based on nine mea-
sures quantifying the social embeddedness of bug reporters
in the collaboration network. Zhou et al. [27] propose a
hybrid approach by combining both text mining and data
mining techniques of bug report data to automate the clas-
sification process. Wang et el. [24] proposed FixerCache, an
unsupervised approach for bug triage by caching developers
based on their activeness in components of products. Mao et
al. [13] proposed content-based developer recommendation
techniques for crowdsourcing tasks. Borg et al. [2] examined
the impact of networks on issue report classification.

This work is to classify test report in crowdsourced test-
ing, which is different from the aforementioned studies in two
ways. Firstly, crowdsourced reports are more noise than is-
sue reports, because they are submitted by non-specialized
crowd workers and often under financial incentives. In this
sense, classifying them is more valuable, yet possesses more
challenges. Secondly, previous studies evaluated their meth-
ods on open source dataset and did not explore the local
nature of dataset. However, this can not work well in our
industrial context. This is why we propose this cluster-based
approach.

There were researches to classify app reviews as bug re-
ports, feature requests, user experiences, and ratings [12], or
as feature request, problem discovery, information seeking
and information giving [10][18], which can help to deal with
the large amount of reviews. App reviews are often consid-
ered as issue reports by users, who behave unprofessionally
as crowd workers in our context. But these related methods
could not deal with the dataset with local bias, hence can
not work in our context. Moreover, the performances of our
cluster-based classification surpass theirs (F-measure is 0.72
on average in [18]) a lot.

8. CONCLUSIONS AND FUTURE WORK
This paper proposes a cluster-based classification approach

to classify true fault from the large amounts of crowdsourced
reports. This can potentially help to reduce the effort re-

quired for manually inspecting the reports and facilitate
project management in crowdsourced testing. Our approach
is designed to overcome the local bias of crowdsourced re-
ports, which is a common phenomenon and has been investi-
gated in other software engineering activities. Experiments
on 15,095 test reports from Chinese largest crowdsourced
testing platform are conducted and results prove its effec-
tiveness.

It should be pointed out, however, that the presented ma-
terial is just the starting point of the work in progress. We
are closely collaborating with Baidu crowdsourced platform
and planning to deploy the approach online. Returned re-
sults will further validate the effectiveness, as well as guide
us in improving our approach. Future work will also include
exploring transfer learning and other techniques to further
improve the model performance and stability.

9. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China under grant No.61432001, No.91318301,
and No.91218302. We would like to thank the testers in
Baidu for their great efforts in supporting this work.

10. REFERENCES
[1] A. Berson, S. Smith, and K. Thearling. An overview of

data mining techniques. Building Data Mining
Application for CRM, 2004.

[2] M. Borg, D. Pfahl, and P. Runeson. Analyzing
networks of issue reports. In CSMR 2013, pages 79–88.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] N. Chen and S. Kim. Puzzle-based automatic testing:
Bringing humans into the loop by solving puzzles. In
ASE 2012, pages 140–149.

[5] Y. Feng, Z. Chen, J. A. Jones, C. Fang, and B. Xu.
Test report prioritization to assist crowdsourced
testing. In ESEC/FSE 2015, pages 225–236.

[6] H. Finch. Comparison of distance measures in cluster
analysis with dichotomous data. Journal of Data
Science, 3:85–100, 2005.

[7] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting
the impact of classification techniques on the
performance of defect prediction models. In ICSE
2015, pages 789–800.

[8] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier.
Reproducing context-sensitive crashes of mobile apps
using crowdsourced monitoring. In Proceedings of the
2016 IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft).

[9] V. H. M. Gomide, P. A. Valle, J. O. Ferreira, J. R. G.
Barbosa, A. F. da Rocha, and T. M. G. d. A. Barbosa.
Affective crowdsourcing applied to usability testing.
International Journal of Computer Science and
Information Technologies, 5(1):575–579, 2014.

[10] E. Guzman, M. El-Halaby, and B. Bruegge. Ensemble
methods for app review classification: An approach for
software evolution. In ASE 2015, pages 771–776.

[11] S. Kotsiantis. Supervised machine learning: A review
of classification techniques. Informatica, 31:249–268,

2007.

[12] W. Maalej and H. Nabil. Bug report, feature request,

or simply praise? on automatically classifying app
reviews. In RE 2015, pages 116–125.

[13] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman.
Developer recommendation for crowdsourced software
development tasks. In SOSE 2015, pages 347–356.

[14] T. Menzies, A. Butcher, A. Marcus, D. Cok, F. Shull,
B. Turhan, and T. Zimmermann. Local versus global
lessons for defect prediction and effort estimation.
IEEE Transactions on software engineering,
39(6):822–834, 2013.

[15] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann,
and D. Cok. Local vs. global models for effort
estimation and defect prediction. In ASE 2011, pages
343–351.

[16] T. Menzies and A. Marcus. Automated severity
assessment of software defect reports. In ICSM 2012,
pages 346–353.

[17] R. Musson, J. Richards, D. Fisher, C. Bird,
B. Bussone, and S. Ganguly. Leveraging the crowd:
How 48,000 users helped improve lync performance.
IEEE Software, 30(4):38–45, 2013.

[18] S. Panichella, A. D. Sorbo, E. Guzman, C. A.Visaggio,
G. Canfora, and H. C. Gall. How can i improve my
app? classifying user reviews for software maintenance
and evolution. In ICSM 2015, pages 281–290.

[19] P. Rousseeuw. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20(1):53–65, 1987.

[20] K.-J. Stol and B. Fitzgerald. Two’s company, three’s a
crowd: A case study of crowdsourcing software
development. In ICSE 2014, pages 187–198.

[21] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and
A. Kappas. Sentiment strength detection in short
informal text. Journal of the American Society for
Information Science and Technology,
61(12):2544–2588, 2010.

[22] Y. Tian, D. Lo, and C. Sun. Drone: Predicting
priority of reported bugs by multi-factor analysis. In
ICSM 2013, pages 200–209.

[23] B. Turhan. On the dataset shift problem in software
engineering prediction models. Empirical Software
Engineering, 17(1–2):62–74, 2012.

[24] S. Wang, W. Zhang, and Q. Wang. Fixercache:
Unsupervised caching active developers for diverse bug
triage. In ESEM 2014, pages 25:1–25:10.

[25] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In ICSE
2008, pages 461–470.

[26] M. S. Zanetti, I. Scholtes, C. J. Tessone, and
F. Schweitzer. Categorizing bugs with social networks:
A case study on four open source software
communities. In ICSE 2013, pages 1032–1041.

[27] Y. Zhou, Y. Tong, R. Gu, and H. Gall. Combining
text mining and data mining for bug report
classification. In ICSM 2014, pages 311–320.

	Introduction
	Background
	Approach
	Extracting Features
	Clustering Reports
	Building Classifiers

	Experiment Setup
	Research Questions
	Data Collection
	Experimental Design with Baselines
	Classification Algorithms
	Evaluation Metrics

	Results and Analysis
	Addressing RQ1
	Addressing RQ2
	Addressing RQ3
	Addressing RQ4

	Discussion
	Local Phenomenon
	Threats to Validity

	Related Work
	Crowdsourced Testing
	Issue Report Classification

	Conclusions and Future Work
	Acknowledgments
	References

