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Abstract—Context: Software source code is frequently changed 

for fixing revealed bugs. These bug-fixing changes might introduce 

unintended system behaviors, which are inconsistent with scenarios 

of existing regression test cases, and consequently break regression 

testing. For validating the quality of changes, regression testing is a 

required process before submitting changes during the development 

of software projects. Our pilot study shows that 48.7% bug-fixing 

changes might break regression testing at first run, which means 

developers have to run regression testing at least a couple of times for 

48.7% changes. Such process can be tedious and time consuming. 

Thus, before running regression test suite, finding these changes and 

corresponding regression test cases could be helpful for developers to 

quickly fix these changes and improve the efficiency of regression 

testing. Goal: This paper proposes bug-fixing change impact 

prediction (BFCP), for predicting whether a bug-fixing change will 

break regression testing or not before running regression test cases, 

by mining software change histories. Method: Our approach 

employs the machine learning algorithms and static call graph 

analysis technique. Given a bug-fixing change, BFCP first predicts 

whether it will break existing regression test cases; second, if the 

change is predicted to break regression test cases, BFCP can further 

identify the might-be-broken test cases. Results: Results of 

experiments on 552 real bug-fixing changes from four large open 

source projects show that BFCP could achieve prediction precision 

up to 83.3%， recall up to 92.3%， and F-score up to 81.4%. For 

identifying the might-be-broken test cases, BFCP could achieve 100% 

recall.  

Keywords—source code change impact analysis; regression 

testing; static program analysis. 

I. INTRODUCTION 

Software source code is frequently changed for fixing 
revealed bugs, which is called bug-fixing change. Previous 
studies [1, 5, 17, 19, 39] have shown that these bug-fixing 
changes might introduce unintended system behaviors, which 
are inconsistent with scenarios of existing regression test cases, 
and consequently break regression testing. However, it is 
difficult for developers to identify such changes manually. 
Especially, semantics changes [6, 19], which might introduce 
unintended system behaviors. To identify such changes, 
developers often perform regression testing, which is a key 
process during software development. It could help examine 
the quality of source code changes by checking whether they 
introduce unintended system behaviors which break existing 
regression test cases [3].  Running system regression test cases 

to check whether new source code changes break regression 
test cases is a required process before submitting source code 
changes during the development of many software projects. 
Unfortunately, for most software projects, such process can be 
tedious and time consuming. 

First, as a software project evolves, its test suite grows in 
size. Given limited test resource and time, running regression 
test cases for all bug-fixing changes might be infeasible for 
many software projects, especially for large projects, e.g., 
Hadoop1 has more than 1,500 regression test cases. Executing 
the whole test suite would cost several hours. Intuitively, a tool 
that can predict whether a bug-fixing change will break 
regression testing or not should be helpful for developers, since 
it provides early evaluation about the quality of the change. 

Second, not all bug-fixing changes pass regression testing 
at first run. Our pilot study (Section II) shows that about 48.7% 
bug-fixing source code changes might break regression testing 
at the first run because of the inconsistency between changes 
and regression test cases, developers have to fix these changes 
after first run and re-run regression test suite until all regression 
test cases are passed. Thus, before running regression test suite 
finding these changes and corresponding regression test cases 
could be helpful for developers to quickly fixing these changes 
and improve the efficiency of regression testing. 

Thus, a tool for evaluating bug-fixing changes with respect 
to whether they will break existing regression test cases would 
provide developers early feedback about the quality of bug-
fixing changes, narrow down their code review work space [2, 
19], and further improve developers’ productivity.  

In this paper, we propose bug-fixing change impact 
prediction (BFCP), for predicting whether a bug-fixing source 
code change will break regression testing before running 
regression test cases, by mining software source code change 
histories. Specifically, given a bug-fixing source code change, 
without executing regression test suite, BFCP performs the 
following prediction tasks: 

1) BFCP first predicts whether this bug-fixing change will 
break regression testing or not;  

                                                           
1 https://hadoop.apache.org 



2) If the change is predicted that have a big possibility to 
break regression testing, BFCP can further identify these 
might-be-broken test cases.  

We examine BFCP on 552 real bug-fixing changes from 18 
release versions of four large open source projects. Results 
show that BFCP could achieve prediction precision up to 83.3% 
and recall up to 92.3%. For identifying the might-be-broken 
test cases, BFCP could achieve 100% recall, with an average 
number of identified test cases  less than 20.  

The main contributions of this work include: 

1) We provide a list of 18 unique metrics for predicting the 
impact of bug-fixing changes on regression testing.  

2) We propose BFCP to predict whether a bug-fixing 
change will break regression testing and identify bug-fixing 
changes that might break regression testing, before running 
regression test cases.  

3) We evaluate the performance of BFCP on four large-
scale open source projects. Results show that BFCP could 
provide efficient results. 

4) To the best of our knowledge, this is the first work to 
predict the impact of bug-fixing source code changes on 
regression testing. 

In the remainder of this paper, Section II presents our pilot 
study and motivation; Section III shows the overview of 
proposed approach; Section IV explains our experiment 
settings; Section V presents our analysis of experiments results; 
Section VI discusses our approach; Section VII is our related 
work; Section VIII presents the threats to this work; Section IX 
summarizes this work. 

II. PILOT STUDY AND MOTIVATION 

This section reports our motivation and the result of our 
pilot study on evaluating the impact of bug-fixing source code 
changes on regression testing. 

Goal: In order to provide developers early information 
about the quality of bug-fixing changes, we try to predict 
whether a specific bug-fixing source code change might break 
regression testing or not. Intuitively, one important question 
against our study is: “what’s the percentage of bug-fixing 
source code changes that might break regression testing?”  

The answer to this question directly impacts the feasibility 
of our study, that is whether it worth to predict the impact of a 
specific bug-fixing source code change on corresponding 
regression test suite. If the percentage is quite significant for 
example, among all bug-fixing source code changes of a 
project, 30% changes might break regression testing, which 
means about 30% changes have to run regression test suite at 
least twice (the first  run might break regression test cases and 
then developers might resolve this and rerun again to make 
sure no regression errors are triggered). 

 

TABLE I.  Details of bug-fixing changes. Bug-to-changes are the valid bug-
fixing source code changes. Buggy changes are the changes that can break 

regression testing. 

Project Version 
Regression test 

suite size 

#Fixed 

bugs 

#Bug-to-

change 

#Buggy 

change 

Ant 
1.8.2 223 27 23   5 

1.8.4 230 25 21   5 

Lucene 
4.4.0 518 23 22 16 

4.5.0 526 16 16 14 

 

Thus, if we can predict these bug-fixing changes before 
submitting the changes, by prediction models and identify 
these might-be-broken test cases, we would provide developers 
early information about the quality of bug-fixing source code 
changes and narrow down their code review work space, 
further improve their productivity. On the contrary, if only less 
than 1% bug fixing changes might break regression test cases,  
which means such change is trivial and rare, thus predicting the 
impact for every bug-fixing source code change is trivial. 

The goal of our pilot study is to evaluate the feasibility and 
cost-effect of predicting whether a specific bug-fixing source 
code change might break regression testing or not. 

Approach: We manually collect bug-fixing source code 
changes and corresponding regression test suite set from four 
randomly selected versions of open source projects: Ant and 
Lucene as sample data set for our pilot study. First, we collect 
the fixed bugs of each version from their release notes; second, 
we collect corresponding source code changes by analyzing 
patches of each reported bugs in their bug repository, both Ant 
and Lucene used Bugzilla2 to track and maintain their reported 
bugs. Note that, not all bug-fixing source code changes are 
patched in corresponding bug reports maintained in Bugzilla. 
We use a heuristics link recovering method [21] to find links 
between bugs and change logs maintained in change repository, 
i.e., searching for specific keywords and bug IDs in change 
logs; then, we collect corresponding regression test suite before 
the submission of each bug-fixing source code change.  

After collecting sample data, we manually examine the 
impact of each bug-fixing source code change on regression 
test suite by running the version of regression test suite just 
before the change was committed. The number of bug-to-
changes is less than that of fixed bugs, because not all fixed 
bugs are related to source code. Changes which break 
regression testing are labelled as Buggy, changes that will not 
break regression testing are labelled as Clean. The details are 

shown in Table Ⅰ.  

Results: As shown in Table Ⅰ , using heuristics link 

recovering method, we could find corresponding source code 
changes for over 84% bugs in each version. The average 
proportion of bug-fixing source code changes that might break 
regression testing in Ant is 22.7%, and the ratio for Lucene is 
78.9%. Overall, the average percentage of bug-fixing source  
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Figure. 1. Overview of BFCP. 

code changes that might break regression testing is 48.7% on 
our sample data set.  

The results indicate that about half of bug-fixing source 
code changes would break regression test suite and developers 
have to run regression testing at least twice, in theory a prefect 
prediction tool could save a lot of time by providing early and 
accurate information about the quality of a specific bug-fixing 
change. 

 Results of our pilot study motivate us to dig deeper in 
predicting the impact of bug-fixing source code changes on 
regression testing. In this work, we propose BFCP to identify 
bug-fixing source code changes that might break regression 
testing and if the change is predicted with a big possibility to 
break regression test cases, BFCP can further identify the 
might-be-broken test cases.  

III. METHODOLOGY 

Figure 1 shows that BFCP consists of four main processes: 
(1) extracting metrics from source code change histories 
(Section III A); (2) evaluating performance of extracted metrics 
(Section III B); (3) building models based on extracted metrics 
(Section III C); (4) using our prediction models to predict 
whether a bug-fixing source code change might break 
regression testing or not, and if a change is predicted that have 
a big possibility to break regression testing, our approach can 
further identify these might-be-broken test cases for this 
change (Section III D). 

A. Metric Extraction 

To build and train classification models for predicting the 
impact of bug-fixing source code changes on regression test 
suite of a project, this step presents how we extract metrics. 
First, for each change, we manually extracted 18 unique 
metrics from bug-fixing change histories. These metrics are 
widely used in change impact analysis [1, 3, 4, 30, 31, 38, 40, 
41]. In order to make sure all metrics are correctly collected, 
we use the same manual extraction method proposed in a 
previous study [35]. Specifically, the first author collected all 
18 metrics for each change, and then the second author re-
collected metrics for each change, after that we merged the 
results from first and second authors, if there had conflicts, 
each conflict finally got resolved by a joint pair-inspection of 
all authors. For labelling each source code change, using the 
same approach in our pilot study, we examine the impact of 
each bug-fixing source code change on regression test suite by 
running the version of regression test suite just before the 

change wa committed. Changes which break regression testing 
are labelled as Buggy, changes that will not break regression 
testing are labelled as Clean.  

In this work, these 18 metrics are grouped into three 
categories derived from the bug-fixing source code change 
histories, which are: Size metrics, Atomic Change metrics, and 
Semantic Change metrics. We describe each of these three 
categories of metrics as follows:   

Size Metrics:  This type of metrics are used for represent 
statistical source code changes, and have been widely used in 
software defect prediction [30, 31, 38], and source code change 
impact analysis [1, 3, 4]. Intuitively, a large change has a 
higher chance of introducing new bugs or changing existing 
semantics, thus results in regression test cases failed. In this 
study, we also use size metrics to measure the impact of a bug-
fixing change on regression test suite.  Overall, five unique 
factors cover the statistical information of involved classes, 
methods of bug-fixing source code changes are considered, the 

detail of each type of size metric is shown in Table Ⅱ. 

Atomic Change Metrics: This type of metrics were first 
introduced by Ryder et al. [39] to analyze the impact of source 
code changes and predict whether software source code 
changes would introduce bugs to programs. Along this line, 
many source code change impact analysis related studies [3, 4, 
40, 41] have employed these metrics to predict the impact of 
source code changes on software quality. In our study, 
although our goal is not to predict whether a source code 
change might introduce latent bugs or not, we still believe 
these metrics would be helpful to measure the impact of a bug-
fixing source code changes on regression test suite, e.g., given 
a bug-fixing source code change, if the value of metric DM 
(whether this bug-fixing source code change has deleted 
method)  is true, which means at least one method is deleted 
from source code in this change, so if this method has 
corresponding test cases, when running regression test suite 
these test cases would be failed without any modification. The 

details of these metrics are presented in TableⅡ. 

Semantic Change Metrics: To capture the impact of bug-
fixing source code changes on regression test suite, we have 
further explored metrics to represent semantic changes. 
Existing work [6, 19] shown that semantic changes are easily 
introduced to program and difficult to manually find for 
developers. However, regression test cases usually are 
designed for particular logic or semantic of corresponding 
source code. 



 

TABLE II.  Details of metrics used in BFCP. 

Metric category Metric name Type Definition 

Size 

LA Numeric lines of code added 

LD Numeric lines of code deleted 

LF Numeric number of files changed 

NC Numeric number of changed class 

NM Numeric number of changed method 

Atomic Change 

AC Boolean has added classes 

DC Boolean has deleted classes 

AM Boolean has added methods 

DM Boolean has deleted methods 

CM Boolean has changed methods body 

MR Boolean has renamed methods 

PC Boolean has changed parameters of methods 

Semantic Change 

CC Numeric number of changed dependencies 

DD Numeric number of  deleted dependencies 

AD Numeric number of  added dependencies 

A/RF Boolean has added/removed for blocks 

A/RW Boolean has added/removed while blocks 

A/RI Boolean has added/removed if blocks 

 

If semantic information of source code is changed, these test 
cases have a big possibility to be broken, when running 
regression test suite.  

For obtaining representative semantic change metrics, we 
randomly selected 88 bug-fixing source code changes from our 
pilot study, and manually examined these changes to explore 
the common semantic changes that might break regression 
testing. In total, we found that 40 of the 88 bug-fixing source 
code changes would break regression test cases. Specifically, 
among the 40 changes, we found that 15 changes were 
involved with control flow, i.e., for block, while block, and if 
block, so A/RF, A/RW, and A/RI metrics which measure the 
changes of control flow were added to our metrics list. 
Additionally, we found that eight changes involved 
dependency changes, so CC, DD, and AD were added to our 

metrics list. In Table Ⅱ we presented the details of Semantic 

Change metrics. 

B. Metric Evaluation 

Since for most of these metrics are not designed for 
predicting the impact of bug-fixing changes on software 
regression testing. After we collected all 18 metrics, we 
evaluated their performance in the two ways: first, we 
evaluated whether all metrics are relevant for our prediction 
task; second, we further examined the performance of proposed 
three different categories of metrics. The details of our metrics 
evaluation are presented in Section V RQ1 and RQ2. 

C. Model Building  

We build our prediction model based on the 552 bug-fixing 
source code changes. In this work, predicting the impact of 
bug-fixing source code changes on regression testing is 
modeled as a binary classification problem. To find a better 
model, we try different machine learning algorithms: Support 
Vector Machine (SVM), Naive Bayes (NB), Alternating 
Decision Tree (ADTree), Logistic Regression (Logistic). These 
algorithms are widely used to solve classification and 
prediction problems in software engineering [30, 31, 36]. We 
use Weka [37] to re-implement all these algorithms. 

D. Prediction and Test Case Identification 

We try to leverage built models to predict the impact of 
bug-fixing source code changes on regression test suite. 
Specifically, we sort bug-fixing changes in chronological order 
in that the earlier changes have an impact on the following 
ones. We divide them into 4 folds, each fold has the same 
number of Buggy changes, then we use data from the first three 
folds to train our models, and test the models on the data from 
the last fold. 

The last step of BFCP is to identify the might-be-broken 
test cases, when a bug-fixing source code change is predicted 
that might break regression testing. For finding these might-be-
broken test cases we employ static call graph analysis 
technique, which is widely used in existing program analysis 
work [12, 13, 14, 15, 16]. In this work, when a bug-fixing 
source code change is predicted to break regression testing, we 
then identify these might-be-broken test cases. Specifically, 
two kinds of test cases will be recommended to developers: the 
first type is test cases that directly test classes, methods 
involved in the bug-fixing source code change; the second type 
is test cases that test other classes, methods that call the classes, 
methods involved in the bug-fixing source code change. We 
use the example program in Figure 2 to illustrate how BFCP 
identifies might-be-broken test cases.  

Figure 2 (a) shows two versions of a small example project, 
which contains three classes: A, B, and C. Class B is extended 
from class A, and class C calls function f1() of class A. Here, 
the original version of the program consists of all program 
statements except the if block shown in dash boxes. The 
edited (for fixing bugs) version is generated by adding all the 
boxed code statements. As shown in Figure 2 (b), associated 
with the source code of example program is are three Junit 
regression test classes: TestA, TestB, and TestC. In class 
TestA, test case test1() is designed to test a regression error 
in function f1() of class A, and test2() in calss TestB, 
test3() in class TestC are designed to test regression bugs 
in f2() of class B and f3() of class C, respectively. In this 



example program, these regression test cases will be used with 
both the original and edited versions of the program. 

We assume that, the edited version fixes a revealed bug by 
adding an if block. Using our prediction model, if these 
changes in edited version are predicted as Buggy, in other 
words, these changes will break regression testing.   

To identifying these might-be-broken test cases, two kinds 
of static call graphs are generated from the original version of 
example program. As shown in Figure 2 (c), we first generate 
static call graphs based on the relation between test code and 
source code to find test cases that directly test the changed 
program statements. In this example, by analyzing this static 
call graph, we could identify that test cases test1() in 
TestA is directly test function f1() in class A. 

The other kind of static call graph we generated is between 
source code and source code. As shown in the left dash box in 
Figure 2 (c), function f1() of class A is called by function f2() 
in class B and function f3() in class C. The reason why we 
consider this kind of call graph is that, when a change is made 
in class A, since class B and class C also call class A, if the 
semantic of class A is changed, the semantic of class B and C 
can also be changed ,so test cases that test functions in class B 
and C could also be broken when running regression test cases. 

With the two kinds of static call graphs, we can leverage 
Algorithm 1: TestCaseIdentification to identify these might-be 
broken test cases. In the example program, for function f1()in 
edited version of class A, the might-be-broken test cases are 
test1() in class TestA, test2() in class TestB, and 
test3() in class TestC. 

IV. EXPERIMENT SETUP 

A. Data Collection 

 In order to evaluate our approach, we collected data from 
four open source projects, i.e., Ant, Log4j, Lucene, and 
Hadoop. We randomly selected five versions data for Ant and 
Log4j, and six versions data for Lucene. For Hadoop, we 
selected two versions data. In total, in our experiment we 
examined 552 bugs, among which we can find 448 valide bug-
fixing source code changes. Also, for each change, we 
collected the regression test suite just before the change was 
submitted. Note that, in a bug-fixing source code change, some 
resource or configuration files can also be changed, in this 
work, we did not explore the impact of these changes on 
regression test suite. We only focus on source code changes. 
This is why the number of bug-to-changes is less than that of 

fixed bugs. Details of our dataset are shown in Table Ⅲ. 

 Algorithm 1 TestCaseIdentification(C, CG, R, RCG) 

Input: changed class C and its corresponding call graph CG, 

regression test suite R, call graph set of regression test cases 

RCG. 

Output: A set of might-be-broken test cases T. 

1 T = NULL;  

2 for test t in R do 

3      if C in RCG.getCalledClass(t) then 

4          T.add(t); 

5      endif 

6      for class c in CG.getCalledClass(C) do 

7           CG= generateCG(c); // generate call graph for c 

8           TestCaseIdentification (c, CG, R, RCG); 

9      end for; 

10 end for; 

11 return T; 
 

 

Class A{ 

public f1(){ 

+if(){1111111111111 

+ ...   

+ } 

} 

} 

 

Class B extends A{ 

pubic f1(){} 

} 

 

Class C{ 

public f2(){ 

A a = new A(); 

a.f1(); 

  } 

} 

 

Class TestA{ 

public test1(){ 

A a = new A(); 

a.f1(); 

Assert.assertTure(expression); 

} 

} 

Class TestB{ 

public test2(){ 

B b = new B(); 

b.f1(); 

Assert.assertTure(expression); 

} 

} 

Class TestC{ 

public test3(){ 

C c = new C(); 

c.f2(); 

Assert.assertTure(expression); 

} 

} 

         

  

 

(a)  (b)  (c)  

Figure. 2. (a) Original and edited versions of example project. The edited version is generated by adding all boxed code statements. (b) Test cases associated with the 
example project. (c) Static call graphs based on the relation between source code and source code and the relation between test code and source code. 

A.f1() 

B.f1() 

C.f2() 

TestA.test1 

A.A() A.f1() 

TestB.test2 

B.B() B.f1() 

TestC.test3 

C.C() C.f2() 



TABLE III.  Details of our data used in our work. LOC is line of code. Bug-to-changes are the valid bug-fixing source code changes. Buggy changes are Buggy 
changes are the changes which can break regression testing. 

Project Version 
Avg. 

LOC 

#fixed 

bugs 

#bug-to-

changes 

#clean 

changes 

#buggy 

changes 

Avg. regression test 

suite size 

Ant 1.8.0RC1, 1.8.2, 1.8.4, 1.9.0, 1.9.2 230K 68 59 43 16 225 

Log4j 1.2.13, 1.2.14, 1.2.15, 1.2.16, 1.2.17 110K 173 145 91 52 390 

Lucene 4.4.0, 4.5.0, 4.6.1, 4.7.0, 4.7.1, 4.8.0 293K 89 88 16 72 524 

Hadoop 2.1.1, 2.4.1 596K 222 156 48 108 1,518 

B. Experiment Context 

We ran all the experiments on a PC with a 2.8GHz CPU 
and an 8GB RAM. As described in Section III D, in our 
experiemnt, we sort bug-fixing changes in chronological order 
and divide them into four folds, each fold has the same number 
of Buggy changes, then we use data from the first three folds to 
train our models, and test the models on the data from the last 
fold. For obtaining better prediction performace, we employ 
Support Vector Machine (SVM), Naive Bayes (NB), 
Alternating Decision Tree (ADTree), and Logistic Regression 
(Logistic). 

C. Evaluation Measures 

In this work, the performance of predicting the impact of 
changes on regression test suite is measured in terms of 
Precision, Recall and F-measure, which are widely used to 
evaluate the performance of information retrieval approaches 
[37]. Our experiments can lead to four kinds of results: a 
change that we identified is true breaking regression testing 
(TP), a change we identified is not true breaking regression 
testing (FP), a change we predicted will not break regression 
testing is actual a ture change that can break regression testing 
(FN), and a change we predicted will break regression testing 
is actual a change that can not break regression testing (TN). 
The definitions of these metrics are as follows:  

Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F-Measure: The harmonic mean of precision and recall, 
i.e., 2 × Precision × Recall (Precision +  Recall)⁄ . 

To measure the performance of our proposed test cases 
identification approach, we only focus on Recall, because the 
purpose of identifying might-be-broken test cases in our 
approach is to help developers to find out all might-be-broken 
test cases and reduce the number of test cases might be further 
examined when a bug-fixing source code change break 
regression testing. Thus, a high prediction recall is crucial for 
the adoption of BFCP in practice. The recall for measure our 
might-be-broken test cases identification approach is calculated  

as follows:                    

Recall: 
#test cases we identify is true that will be broken

#ground truth test cases that will be broken
 

V. RESULTS AND ANALYSIS 

This section presents the experimental results. We focus on 
discussing the performance of our proposed approach and 
answering the following research questions (RQ): 

 

A. RQ1: Is there any irrelevant metric among the 18 metrics 

we proposed? 

To build an efficient prediction model, we collected all 18 
metrics, however most of these metrics are not designed for 
predicting the impact of bug-fixing changes on software 
regression testing.  

For answering RQ2, we employed BestFirst feature 
selection algorithm which built in Weka [37] and also we 
conducted the following experiments. As we presented in 
Section III D, for each of the four larger projects, we divided 
data into four folds and each fold has the same number of 
Buggy changes. We try to build prediction model using data of 
one fold and test it on the next fold of data. So for each project, 
we conducted three prediction experiments, that is: trained on 
Fold1 and tested on Fold2, trained on Fold2 and tested on 
Fold3, trained on Fold3 and tested on Fold4. In total, we have 
12 different experiments. 

For each of the prediction experiments, we conducted 
BestFirst feature selection algorithm to find the set of metrics 
that achieve the best performance. If there has any metrics that 
is selected zero time, then we can say that this metric is 
irrelevant of our models. The results are shown in Figure 3. 

From Figure 3, we see that all 18 metrics are selected at 
least once in all projects. A metric that is not selected for one 
fold may be selected for another fold. Furthermore, a metric 
such as metric f3 (LF) that is less important in one project, 
such as Ant, may be more important in another project, such as 
Lucene. Therefore, the answer to RQ1 is all metrics appear to 
be relevant for the prediction model.  

B. RQ2: Among the three categories of metrics, which 

category performs best? 

As we presented in RQ1, all proposed 18 metrics are 
relevant for the prediction model. However, a further fine-
grained question about the performace of our proposed metrics 
is: among the three categories of metrics, which performs best?  

 

Figure. 3.  Feature selection histogram. 
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Figure. 4.  Comparison of different metrics for Ant. 

 

Figure. 5.  Comparison of different metrics for Log4j. 

For predicting the impact of bug-fixing source code 
changes on regression test suite, 18 unique metrics from three 
types are used. In this RQ, we try to further explore the 
performances different combinations among these three types 
of metrics. Specifically, we conducted seven groups of 
experiments with different metrics: Size, Atomic, Semantic, 
and Size + Atomic, Size + Semantic, Atomic + Semantic, and 
Size + Atomic + Semantic. We used data from the four open 

source projects shown in Table Ⅲ. Since we are not to find the 

best machine learning classifier in this RQ, we only use Naïve 
Bayes and Logistic to build prediction models, which are 
reported had good performance in change impact analysis 
studies [3]. For comparing the performance, we use F-Measure. 

Figures 4, 5, 6, and 7 present the comparison results. To 
answer RQ2, in all of the four projects, Atomic and Semantic 
metrics outperform metrics of Size. This is reasonable since 
metrics of Size can only capture statistical information of 
changes, and metrics of Atomic and Semantic can obtain 
semantic information, which is more likely to reveal the root 
causes that why the changes break regression test cases. 
Further, from Figures 4 to 7, we can also find that our 
prediction models will achieve their best performance, when all 
three categories of metrics are used.  

C. RQ3: What prediction performance can BFCP achieve? 

In our RQ1 and RQ2, we shown that all proposed 18 
metrics are relevant with our proposed prediction models, and  
 

 

 

Figure. 6.  Comparison of different metrics for Lucene. 

 

Figure. 7.  Comparison of different metrics for Hadoop. 

the combination of all these 18 metrics might achieve the best 
performance. In this RQ, we further examined the classification 
performance of our proposed approach. 

We examined the four types of machine learning classifiers 

described in Section IV B. Results are shown in Table Ⅳ. 

As we can see from Table Ⅳ, among the four classifiers, 

Logistic regression outperforms the other three on at least one 
measure in Precision, Recall, F-Measure. BFCP could achieve 
prediction precision up to 83.3% and recall up to 92.3%.  

D. RQ4:What test case identification performance can BFCP 

achieve? 

We further examined the performance of our test cases 
identification approach, note that, as presented in Section IV C, 
we only use recall to measure our test cases identification 
approach to help developers to find might-be-broken test cases. 

For test cases identification, BFCP can achieve 100% recall, 
which means we could find all might-be-broken test cases. 

Further, in Table Ⅳ , we presented the average number of 

identified might-be-broken test cases, for all the four projects, 
the average number of identified test cases are less than 20, 
regard to the the size of corresponding test cases, BFCP could 
reduce the total nubmer of needed reviewed test cases from 
hundreds to less than 20, which are needed to be further 
reviewed. 
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TABLE IV.  Prediction results. P represents for Precision, R represent for 
Recall, and F1 represents for F1-measure. TCI is represent for test cases 

Identification. 

Project Algorithm 

Changes prediction 

(%) R of TCI 

(%) 

#Avg. 

TCI 

 P R F1 

Ant 

SVM 75.0 12.5 21.4 

100 10.3 
Naive Bayes 46.7 70.0 56.0 

ADTree 55.6 20.8 30.3 

Logistic 83.3 50.0 62.5 

Log4j 

SVM 60.0 22.1 32.1 

100 15.5 
Naive Bayes 54.5 28.6 37.5 

ADTree 41.2 33.3 36.8 

Logistic 66.7 38.1 48.5 

Lucene 

SVM 73.3 84.6 78.6 

100 18.2 
Naive Bayes 78.6 42.3 55.0 

ADTree 71.4 75.0 73.2 

Logistic 72.7 92.3 81.4 

Hadoop 

SVM 69.2 85.9 71.9 

100 19.5 
Naive Bayes 94.4 48.6 64.2 

ADTree 91.3 60.0 72.4 

Logistic 74.3 74.3 74.3 

TABLE V.  Time consuming of BFCP (s: second). 

Project 
Model building and 

Prediction time (avg) 

Test case identification 

time (avg) 

Ant < 0.06s 15.8s 

Log4j < 0.05s 28.0s 

Lucene < 0.1s 40.2s 

Hadoop < 0.2s 98.6s 

VI. DISCUSSION  

As presented in our work, given a new source code change, 
BFCP will perform two tasks to provide early information 
before they actually run the time-consuming regression testing. 
However, the time cost of BFCP will be a concern for applying 
it into practice. In order to evaluate the time cost of BFCP, we 
collected the time cost for building prediction model and 
identifying might-be-broken test cases for the four projects, 

and the average time is shown in Table Ⅴ. 

From Table Ⅴ, we can see that the model building and 

predicting time varies from less than 0.06 seconds to about 0.2 
seconds. The results suggest that the tool is efficient enough to 
be used in software practice. Moreover, most of the time is 
consumed on identifying might-be-broken test cases. As the 
project size increases, this time increases approximately 
linearly, thus BFCP should scale to large projects.  

VII. RELATED WORK 

A. Change impact analysis 

Change impact analysis which aims to predict the ripple 
effects and prevent side effects of a source code change has 
been widely studied. Kim et al. [1] proposed a technique for 
predicting latent bugs in software source code changes using 
machine learning classifiers based on features from software 

project change history. Wloka et al. [3] presented an analysis-
based technique for determining changes that can be 
committed without compromising the integrity of the 
repository. Stoerzer et al. [4] explored how change 
classification can focus programmer attention on failure-
inducing changes by automatically labeling changes Red, 
Yellow, or Green, indicating the likelihood that they have 
contributed to a test failure. Sukkerd et al. [8] conducted 
empirical studies to understand regression failures by exploring 
test-passing and test-failing code changes. Torchiano et al. [10] 
used the information available in software repositories, in 
particular code comments and version control logs to study 
impact analysis. Ahsan et al. [11] used resolved software 
change requests to predict the files that have to be changed. 
Jiang et al. [31] and Tan et al. [30] leveraged machine learning 
approaches to predict whether a change is buggy at the time of 
the commit. Orso et al. [34] presented an empirical comparison 
of dynamic impact analysis techniques. 

B. Software code co-change   

Zaidman et al. [33] investigated whether software source 
code and the accompanying tests co-evolved by mining 
projects’ version system. Their results show that co-evolution 
between software source code and test code is sometimes not 
optimal for many projects. Zimmermann et al. [26] build an 
annotation graph based upon the identification of lines across 
several versions of a file to identify co-changing lines. Wu et al. 
[27] visualized the co-evolution of software source code using 
spectrographs. Fluri et al. [28] examined whether source code 
and associated comments are changed together alongside the 
evolutionary history of a software system. Godfrey et al. [29] 
used source code metrics to characterize the evolution of 
software projects to investigate whether open source software 
and commercial software have different change patterns. Shane 
et al. [32] mined the source and test code changes that required 
accompanying build changes to better understand the co-
change relationship. Tao et al. [19] conducted an empirical 
study to explore how developers understand code changes. 
Pinto et al. [7] presented an extensive empirical study of how 
test suite evolve. Tian et al. [9] proposed an automated 
approach to infer commits that represent bug fixing patches. 

Wloka et al. [18], and Hurdugaci  et al. [20] developed 
tools that help developers to identify the unit tests that need to 
be altered and executed after a source code change using test 
cases coverage information. In this work, when a bug-fixing 
source code change is predicted that might break regression 
testing, we also further identify these might-be-broken test 
cases. Different with their work, we use static call graph 
analysis technique. The key advantage of our approach is that 
our approach finds not only test cases that directly test the 
changes, but also test cases that test other functions, classes 
that call the functions, and the classes in the changes. 

C. Regression test case prioritization 

Regression test case prioritization techniques aim to 
rearrange the execution order of test cases to maximize specific 

objectives. Many test case prioritization algorithms have been 
proposed and well-studied, such as coverage based algorithms 
[22, 24], which assign higher priorities to a test case that 
executes more statements in a program; fault-exposing 



potential based test case prioritization algorithms [23, 25], 
which aim to sort test cases so that the rate of failure detection 
of the prioritized test cases can be maximized. Yoo et al. [42] 
surveyed regression testing minimization, selection and 

prioritization.  

In this work, different from test case prioritization, we do 
not intend to sort all regression test cases, when a bug-fixing 
source code change is predicted that might break regression 

testing, we further identify these might-be-broken test cases. 

VIII. THREATS TO VALIDITY 

A. External Validity 

In this work we investigate the performance of proposed 
BFCP on bug-fixing source code changes of 4 large scale open 
source projects. However, it is possible that our approach may 

not work well on some closed-source software (e.g., 
commercial software) or small scale open source software 
projects. Whether our proposed approach is feasible for these 
software projects should be further investigated. 

The purpose of this work is to study the impact of bug-
fixing source code changes on regression test suite, however, 
not all projects maintain valid regression test suite. Our 
approach is not suitable for these projects without regression 
test cases.  

B. Internal Validity  

In this paper, we study the impact of bug-fixing source 
code changes on corresponding regression test suite. A list of 
18 metrics that cover a wide range of change characteristics 

that would induce impact of bug-fixing source code changes 
are used. However, other metrics that we have overlooked may 
also improve the performance of our classifiers. 

Our proposed approach could predict whether a bug-fixing 
source code change will break corresponding regression test 

cases. However, we cannot explain questions like: what causes 
the regression test cases broken? How to fix the broken test 
cases? Further studies should be done for answering these 
questions. 

IX.  CONCLUSION AND FUTURE WORK 

This paper proposed BFCP to predict the impact of a bug-
fixing source code change on corresponding regression testing 
before running regression test cases, by mining software source 

code change histories. Specifically, given a bug-fixing change, 
without executing regression test suite, our approach first 
predicts whether this bug-fixing change will break regression 
testing or not. Second, if the change is predicted not regression 
error free, BFCP can further identify the might-be-broken test 

cases.  

We evaluate BFCP on 552 real bug-fixing source code 
changes from 18 release versions of 4 large open source 
projects. Results of experiments show that BFCP could achieve 

prediction precision up to 83.3% and recall up to 92.3%; for 
test case identification, BFCP could achieve 100% recall, and 
the average number of identified test cases are less than 20. 

We plan to extend our work from the following two aspects: 
first we plan to generate explainable prediction results, i.e., 
automatically finding root reason that why a bug-fixing source 
code change will break regression testing. Second, after 
identifying might-be-broken test cases, we plan to 
automatically generate fix patchs for fixing buggy changes.   
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