
Will This Bug-fixing Change

 Break Regression Testing?

Xinye Tang

State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences

tangxinye@nfs.iscas.ac.cn

Song Wang

Electrical and Computer Engineering

University of Waterloo, Canada

song.wang@uwaterloo.ca

Ke Mao

CREST Centre

University College London, UK

k.mao@cs.ucl.ac.uk

Abstract—Context: Software source code is frequently changed

for fixing revealed bugs. These bug-fixing changes might introduce

unintended system behaviors, which are inconsistent with scenarios

of existing regression test cases, and consequently break regression

testing. For validating the quality of changes, regression testing is a

required process before submitting changes during the development

of software projects. Our pilot study shows that 48.7% bug-fixing

changes might break regression testing at first run, which means

developers have to run regression testing at least a couple of times for

48.7% changes. Such process can be tedious and time consuming.

Thus, before running regression test suite, finding these changes and

corresponding regression test cases could be helpful for developers to

quickly fix these changes and improve the efficiency of regression

testing. Goal: This paper proposes bug-fixing change impact

prediction (BFCP), for predicting whether a bug-fixing change will

break regression testing or not before running regression test cases,

by mining software change histories. Method: Our approach

employs the machine learning algorithms and static call graph

analysis technique. Given a bug-fixing change, BFCP first predicts

whether it will break existing regression test cases; second, if the

change is predicted to break regression test cases, BFCP can further

identify the might-be-broken test cases. Results: Results of

experiments on 552 real bug-fixing changes from four large open

source projects show that BFCP could achieve prediction precision

up to 83.3%， recall up to 92.3%， and F-score up to 81.4%. For

identifying the might-be-broken test cases, BFCP could achieve 100%

recall.

Keywords—source code change impact analysis; regression

testing; static program analysis.

I. INTRODUCTION

Software source code is frequently changed for fixing
revealed bugs, which is called bug-fixing change. Previous
studies [1, 5, 17, 19, 39] have shown that these bug-fixing
changes might introduce unintended system behaviors, which
are inconsistent with scenarios of existing regression test cases,
and consequently break regression testing. However, it is
difficult for developers to identify such changes manually.
Especially, semantics changes [6, 19], which might introduce
unintended system behaviors. To identify such changes,
developers often perform regression testing, which is a key
process during software development. It could help examine
the quality of source code changes by checking whether they
introduce unintended system behaviors which break existing
regression test cases [3]. Running system regression test cases

to check whether new source code changes break regression
test cases is a required process before submitting source code
changes during the development of many software projects.
Unfortunately, for most software projects, such process can be
tedious and time consuming.

First, as a software project evolves, its test suite grows in
size. Given limited test resource and time, running regression
test cases for all bug-fixing changes might be infeasible for
many software projects, especially for large projects, e.g.,
Hadoop1 has more than 1,500 regression test cases. Executing
the whole test suite would cost several hours. Intuitively, a tool
that can predict whether a bug-fixing change will break
regression testing or not should be helpful for developers, since
it provides early evaluation about the quality of the change.

Second, not all bug-fixing changes pass regression testing
at first run. Our pilot study (Section II) shows that about 48.7%
bug-fixing source code changes might break regression testing
at the first run because of the inconsistency between changes
and regression test cases, developers have to fix these changes
after first run and re-run regression test suite until all regression
test cases are passed. Thus, before running regression test suite
finding these changes and corresponding regression test cases
could be helpful for developers to quickly fixing these changes
and improve the efficiency of regression testing.

Thus, a tool for evaluating bug-fixing changes with respect
to whether they will break existing regression test cases would
provide developers early feedback about the quality of bug-
fixing changes, narrow down their code review work space [2,
19], and further improve developers’ productivity.

In this paper, we propose bug-fixing change impact
prediction (BFCP), for predicting whether a bug-fixing source
code change will break regression testing before running
regression test cases, by mining software source code change
histories. Specifically, given a bug-fixing source code change,
without executing regression test suite, BFCP performs the
following prediction tasks:

1) BFCP first predicts whether this bug-fixing change will
break regression testing or not;

1 https://hadoop.apache.org

2) If the change is predicted that have a big possibility to
break regression testing, BFCP can further identify these
might-be-broken test cases.

We examine BFCP on 552 real bug-fixing changes from 18
release versions of four large open source projects. Results
show that BFCP could achieve prediction precision up to 83.3%
and recall up to 92.3%. For identifying the might-be-broken
test cases, BFCP could achieve 100% recall, with an average
number of identified test cases less than 20.

The main contributions of this work include:

1) We provide a list of 18 unique metrics for predicting the
impact of bug-fixing changes on regression testing.

2) We propose BFCP to predict whether a bug-fixing
change will break regression testing and identify bug-fixing
changes that might break regression testing, before running
regression test cases.

3) We evaluate the performance of BFCP on four large-
scale open source projects. Results show that BFCP could
provide efficient results.

4) To the best of our knowledge, this is the first work to
predict the impact of bug-fixing source code changes on
regression testing.

In the remainder of this paper, Section II presents our pilot
study and motivation; Section III shows the overview of
proposed approach; Section IV explains our experiment
settings; Section V presents our analysis of experiments results;
Section VI discusses our approach; Section VII is our related
work; Section VIII presents the threats to this work; Section IX
summarizes this work.

II. PILOT STUDY AND MOTIVATION

This section reports our motivation and the result of our
pilot study on evaluating the impact of bug-fixing source code
changes on regression testing.

Goal: In order to provide developers early information
about the quality of bug-fixing changes, we try to predict
whether a specific bug-fixing source code change might break
regression testing or not. Intuitively, one important question
against our study is: “what’s the percentage of bug-fixing
source code changes that might break regression testing?”

The answer to this question directly impacts the feasibility
of our study, that is whether it worth to predict the impact of a
specific bug-fixing source code change on corresponding
regression test suite. If the percentage is quite significant for
example, among all bug-fixing source code changes of a
project, 30% changes might break regression testing, which
means about 30% changes have to run regression test suite at
least twice (the first run might break regression test cases and
then developers might resolve this and rerun again to make
sure no regression errors are triggered).

TABLE I. Details of bug-fixing changes. Bug-to-changes are the valid bug-
fixing source code changes. Buggy changes are the changes that can break

regression testing.

Project Version
Regression test

suite size

#Fixed

bugs

#Bug-to-

change

#Buggy

change

Ant
1.8.2 223 27 23 5

1.8.4 230 25 21 5

Lucene
4.4.0 518 23 22 16

4.5.0 526 16 16 14

Thus, if we can predict these bug-fixing changes before
submitting the changes, by prediction models and identify
these might-be-broken test cases, we would provide developers
early information about the quality of bug-fixing source code
changes and narrow down their code review work space,
further improve their productivity. On the contrary, if only less
than 1% bug fixing changes might break regression test cases,
which means such change is trivial and rare, thus predicting the
impact for every bug-fixing source code change is trivial.

The goal of our pilot study is to evaluate the feasibility and
cost-effect of predicting whether a specific bug-fixing source
code change might break regression testing or not.

Approach: We manually collect bug-fixing source code
changes and corresponding regression test suite set from four
randomly selected versions of open source projects: Ant and
Lucene as sample data set for our pilot study. First, we collect
the fixed bugs of each version from their release notes; second,
we collect corresponding source code changes by analyzing
patches of each reported bugs in their bug repository, both Ant
and Lucene used Bugzilla2 to track and maintain their reported
bugs. Note that, not all bug-fixing source code changes are
patched in corresponding bug reports maintained in Bugzilla.
We use a heuristics link recovering method [21] to find links
between bugs and change logs maintained in change repository,
i.e., searching for specific keywords and bug IDs in change
logs; then, we collect corresponding regression test suite before
the submission of each bug-fixing source code change.

After collecting sample data, we manually examine the
impact of each bug-fixing source code change on regression
test suite by running the version of regression test suite just
before the change was committed. The number of bug-to-
changes is less than that of fixed bugs, because not all fixed
bugs are related to source code. Changes which break
regression testing are labelled as Buggy, changes that will not
break regression testing are labelled as Clean. The details are

shown in Table Ⅰ.

Results: As shown in Table Ⅰ , using heuristics link

recovering method, we could find corresponding source code
changes for over 84% bugs in each version. The average
proportion of bug-fixing source code changes that might break
regression testing in Ant is 22.7%, and the ratio for Lucene is
78.9%. Overall, the average percentage of bug-fixing source

2 https://www.bugzilla.org/

Figure. 1. Overview of BFCP.

code changes that might break regression testing is 48.7% on
our sample data set.

The results indicate that about half of bug-fixing source
code changes would break regression test suite and developers
have to run regression testing at least twice, in theory a prefect
prediction tool could save a lot of time by providing early and
accurate information about the quality of a specific bug-fixing
change.

 Results of our pilot study motivate us to dig deeper in
predicting the impact of bug-fixing source code changes on
regression testing. In this work, we propose BFCP to identify
bug-fixing source code changes that might break regression
testing and if the change is predicted with a big possibility to
break regression test cases, BFCP can further identify the
might-be-broken test cases.

III. METHODOLOGY

Figure 1 shows that BFCP consists of four main processes:
(1) extracting metrics from source code change histories
(Section III A); (2) evaluating performance of extracted metrics
(Section III B); (3) building models based on extracted metrics
(Section III C); (4) using our prediction models to predict
whether a bug-fixing source code change might break
regression testing or not, and if a change is predicted that have
a big possibility to break regression testing, our approach can
further identify these might-be-broken test cases for this
change (Section III D).

A. Metric Extraction

To build and train classification models for predicting the
impact of bug-fixing source code changes on regression test
suite of a project, this step presents how we extract metrics.
First, for each change, we manually extracted 18 unique
metrics from bug-fixing change histories. These metrics are
widely used in change impact analysis [1, 3, 4, 30, 31, 38, 40,
41]. In order to make sure all metrics are correctly collected,
we use the same manual extraction method proposed in a
previous study [35]. Specifically, the first author collected all
18 metrics for each change, and then the second author re-
collected metrics for each change, after that we merged the
results from first and second authors, if there had conflicts,
each conflict finally got resolved by a joint pair-inspection of
all authors. For labelling each source code change, using the
same approach in our pilot study, we examine the impact of
each bug-fixing source code change on regression test suite by
running the version of regression test suite just before the

change wa committed. Changes which break regression testing
are labelled as Buggy, changes that will not break regression
testing are labelled as Clean.

In this work, these 18 metrics are grouped into three
categories derived from the bug-fixing source code change
histories, which are: Size metrics, Atomic Change metrics, and
Semantic Change metrics. We describe each of these three
categories of metrics as follows:

Size Metrics: This type of metrics are used for represent
statistical source code changes, and have been widely used in
software defect prediction [30, 31, 38], and source code change
impact analysis [1, 3, 4]. Intuitively, a large change has a
higher chance of introducing new bugs or changing existing
semantics, thus results in regression test cases failed. In this
study, we also use size metrics to measure the impact of a bug-
fixing change on regression test suite. Overall, five unique
factors cover the statistical information of involved classes,
methods of bug-fixing source code changes are considered, the

detail of each type of size metric is shown in Table Ⅱ.

Atomic Change Metrics: This type of metrics were first
introduced by Ryder et al. [39] to analyze the impact of source
code changes and predict whether software source code
changes would introduce bugs to programs. Along this line,
many source code change impact analysis related studies [3, 4,
40, 41] have employed these metrics to predict the impact of
source code changes on software quality. In our study,
although our goal is not to predict whether a source code
change might introduce latent bugs or not, we still believe
these metrics would be helpful to measure the impact of a bug-
fixing source code changes on regression test suite, e.g., given
a bug-fixing source code change, if the value of metric DM
(whether this bug-fixing source code change has deleted
method) is true, which means at least one method is deleted
from source code in this change, so if this method has
corresponding test cases, when running regression test suite
these test cases would be failed without any modification. The

details of these metrics are presented in TableⅡ.

Semantic Change Metrics: To capture the impact of bug-
fixing source code changes on regression test suite, we have
further explored metrics to represent semantic changes.
Existing work [6, 19] shown that semantic changes are easily
introduced to program and difficult to manually find for
developers. However, regression test cases usually are
designed for particular logic or semantic of corresponding
source code.

TABLE II. Details of metrics used in BFCP.

Metric category Metric name Type Definition

Size

LA Numeric lines of code added

LD Numeric lines of code deleted

LF Numeric number of files changed

NC Numeric number of changed class

NM Numeric number of changed method

Atomic Change

AC Boolean has added classes

DC Boolean has deleted classes

AM Boolean has added methods

DM Boolean has deleted methods

CM Boolean has changed methods body

MR Boolean has renamed methods

PC Boolean has changed parameters of methods

Semantic Change

CC Numeric number of changed dependencies

DD Numeric number of deleted dependencies

AD Numeric number of added dependencies

A/RF Boolean has added/removed for blocks

A/RW Boolean has added/removed while blocks

A/RI Boolean has added/removed if blocks

If semantic information of source code is changed, these test
cases have a big possibility to be broken, when running
regression test suite.

For obtaining representative semantic change metrics, we
randomly selected 88 bug-fixing source code changes from our
pilot study, and manually examined these changes to explore
the common semantic changes that might break regression
testing. In total, we found that 40 of the 88 bug-fixing source
code changes would break regression test cases. Specifically,
among the 40 changes, we found that 15 changes were
involved with control flow, i.e., for block, while block, and if
block, so A/RF, A/RW, and A/RI metrics which measure the
changes of control flow were added to our metrics list.
Additionally, we found that eight changes involved
dependency changes, so CC, DD, and AD were added to our

metrics list. In Table Ⅱ we presented the details of Semantic

Change metrics.

B. Metric Evaluation

Since for most of these metrics are not designed for
predicting the impact of bug-fixing changes on software
regression testing. After we collected all 18 metrics, we
evaluated their performance in the two ways: first, we
evaluated whether all metrics are relevant for our prediction
task; second, we further examined the performance of proposed
three different categories of metrics. The details of our metrics
evaluation are presented in Section V RQ1 and RQ2.

C. Model Building

We build our prediction model based on the 552 bug-fixing
source code changes. In this work, predicting the impact of
bug-fixing source code changes on regression testing is
modeled as a binary classification problem. To find a better
model, we try different machine learning algorithms: Support
Vector Machine (SVM), Naive Bayes (NB), Alternating
Decision Tree (ADTree), Logistic Regression (Logistic). These
algorithms are widely used to solve classification and
prediction problems in software engineering [30, 31, 36]. We
use Weka [37] to re-implement all these algorithms.

D. Prediction and Test Case Identification

We try to leverage built models to predict the impact of
bug-fixing source code changes on regression test suite.
Specifically, we sort bug-fixing changes in chronological order
in that the earlier changes have an impact on the following
ones. We divide them into 4 folds, each fold has the same
number of Buggy changes, then we use data from the first three
folds to train our models, and test the models on the data from
the last fold.

The last step of BFCP is to identify the might-be-broken
test cases, when a bug-fixing source code change is predicted
that might break regression testing. For finding these might-be-
broken test cases we employ static call graph analysis
technique, which is widely used in existing program analysis
work [12, 13, 14, 15, 16]. In this work, when a bug-fixing
source code change is predicted to break regression testing, we
then identify these might-be-broken test cases. Specifically,
two kinds of test cases will be recommended to developers: the
first type is test cases that directly test classes, methods
involved in the bug-fixing source code change; the second type
is test cases that test other classes, methods that call the classes,
methods involved in the bug-fixing source code change. We
use the example program in Figure 2 to illustrate how BFCP
identifies might-be-broken test cases.

Figure 2 (a) shows two versions of a small example project,
which contains three classes: A, B, and C. Class B is extended
from class A, and class C calls function f1() of class A. Here,
the original version of the program consists of all program
statements except the if block shown in dash boxes. The
edited (for fixing bugs) version is generated by adding all the
boxed code statements. As shown in Figure 2 (b), associated
with the source code of example program is are three Junit
regression test classes: TestA, TestB, and TestC. In class
TestA, test case test1() is designed to test a regression error
in function f1() of class A, and test2() in calss TestB,
test3() in class TestC are designed to test regression bugs
in f2() of class B and f3() of class C, respectively. In this

example program, these regression test cases will be used with
both the original and edited versions of the program.

We assume that, the edited version fixes a revealed bug by
adding an if block. Using our prediction model, if these
changes in edited version are predicted as Buggy, in other
words, these changes will break regression testing.

To identifying these might-be-broken test cases, two kinds
of static call graphs are generated from the original version of
example program. As shown in Figure 2 (c), we first generate
static call graphs based on the relation between test code and
source code to find test cases that directly test the changed
program statements. In this example, by analyzing this static
call graph, we could identify that test cases test1() in
TestA is directly test function f1() in class A.

The other kind of static call graph we generated is between
source code and source code. As shown in the left dash box in
Figure 2 (c), function f1() of class A is called by function f2()
in class B and function f3() in class C. The reason why we
consider this kind of call graph is that, when a change is made
in class A, since class B and class C also call class A, if the
semantic of class A is changed, the semantic of class B and C
can also be changed ,so test cases that test functions in class B
and C could also be broken when running regression test cases.

With the two kinds of static call graphs, we can leverage
Algorithm 1: TestCaseIdentification to identify these might-be
broken test cases. In the example program, for function f1()in
edited version of class A, the might-be-broken test cases are
test1() in class TestA, test2() in class TestB, and
test3() in class TestC.

IV. EXPERIMENT SETUP

A. Data Collection

 In order to evaluate our approach, we collected data from
four open source projects, i.e., Ant, Log4j, Lucene, and
Hadoop. We randomly selected five versions data for Ant and
Log4j, and six versions data for Lucene. For Hadoop, we
selected two versions data. In total, in our experiment we
examined 552 bugs, among which we can find 448 valide bug-
fixing source code changes. Also, for each change, we
collected the regression test suite just before the change was
submitted. Note that, in a bug-fixing source code change, some
resource or configuration files can also be changed, in this
work, we did not explore the impact of these changes on
regression test suite. We only focus on source code changes.
This is why the number of bug-to-changes is less than that of

fixed bugs. Details of our dataset are shown in Table Ⅲ.

 Algorithm 1 TestCaseIdentification(C, CG, R, RCG)

Input: changed class C and its corresponding call graph CG,

regression test suite R, call graph set of regression test cases

RCG.

Output: A set of might-be-broken test cases T.

1 T = NULL;

2 for test t in R do

3 if C in RCG.getCalledClass(t) then

4 T.add(t);

5 endif

6 for class c in CG.getCalledClass(C) do

7 CG= generateCG(c); // generate call graph for c

8 TestCaseIdentification (c, CG, R, RCG);

9 end for;

10 end for;

11 return T;

Class A{

public f1(){

+if(){1111111111111

+ ...

+ }

}

}

Class B extends A{

pubic f1(){}

}

Class C{

public f2(){

A a = new A();

a.f1();

 }

}

Class TestA{

public test1(){

A a = new A();

a.f1();

Assert.assertTure(expression);

}

}

Class TestB{

public test2(){

B b = new B();

b.f1();

Assert.assertTure(expression);

}

}

Class TestC{

public test3(){

C c = new C();

c.f2();

Assert.assertTure(expression);

}

}

(a) (b) (c)

Figure. 2. (a) Original and edited versions of example project. The edited version is generated by adding all boxed code statements. (b) Test cases associated with the
example project. (c) Static call graphs based on the relation between source code and source code and the relation between test code and source code.

A.f1()

B.f1()

C.f2()

TestA.test1

A.A() A.f1()

TestB.test2

B.B() B.f1()

TestC.test3

C.C() C.f2()

TABLE III. Details of our data used in our work. LOC is line of code. Bug-to-changes are the valid bug-fixing source code changes. Buggy changes are Buggy
changes are the changes which can break regression testing.

Project Version
Avg.

LOC

#fixed

bugs

#bug-to-

changes

#clean

changes

#buggy

changes

Avg. regression test

suite size

Ant 1.8.0RC1, 1.8.2, 1.8.4, 1.9.0, 1.9.2 230K 68 59 43 16 225

Log4j 1.2.13, 1.2.14, 1.2.15, 1.2.16, 1.2.17 110K 173 145 91 52 390

Lucene 4.4.0, 4.5.0, 4.6.1, 4.7.0, 4.7.1, 4.8.0 293K 89 88 16 72 524

Hadoop 2.1.1, 2.4.1 596K 222 156 48 108 1,518

B. Experiment Context

We ran all the experiments on a PC with a 2.8GHz CPU
and an 8GB RAM. As described in Section III D, in our
experiemnt, we sort bug-fixing changes in chronological order
and divide them into four folds, each fold has the same number
of Buggy changes, then we use data from the first three folds to
train our models, and test the models on the data from the last
fold. For obtaining better prediction performace, we employ
Support Vector Machine (SVM), Naive Bayes (NB),
Alternating Decision Tree (ADTree), and Logistic Regression
(Logistic).

C. Evaluation Measures

In this work, the performance of predicting the impact of
changes on regression test suite is measured in terms of
Precision, Recall and F-measure, which are widely used to
evaluate the performance of information retrieval approaches
[37]. Our experiments can lead to four kinds of results: a
change that we identified is true breaking regression testing
(TP), a change we identified is not true breaking regression
testing (FP), a change we predicted will not break regression
testing is actual a ture change that can break regression testing
(FN), and a change we predicted will break regression testing
is actual a change that can not break regression testing (TN).
The definitions of these metrics are as follows:

Precision:
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall:
𝑇𝑃

𝑇𝑃+𝐹𝑁

F-Measure: The harmonic mean of precision and recall,
i.e., 2 × Precision × Recall (Precision + Recall)⁄ .

To measure the performance of our proposed test cases
identification approach, we only focus on Recall, because the
purpose of identifying might-be-broken test cases in our
approach is to help developers to find out all might-be-broken
test cases and reduce the number of test cases might be further
examined when a bug-fixing source code change break
regression testing. Thus, a high prediction recall is crucial for
the adoption of BFCP in practice. The recall for measure our
might-be-broken test cases identification approach is calculated

as follows:

Recall:
#test cases we identify is true that will be broken

#ground truth test cases that will be broken

V. RESULTS AND ANALYSIS

This section presents the experimental results. We focus on
discussing the performance of our proposed approach and
answering the following research questions (RQ):

A. RQ1: Is there any irrelevant metric among the 18 metrics

we proposed?

To build an efficient prediction model, we collected all 18
metrics, however most of these metrics are not designed for
predicting the impact of bug-fixing changes on software
regression testing.

For answering RQ2, we employed BestFirst feature
selection algorithm which built in Weka [37] and also we
conducted the following experiments. As we presented in
Section III D, for each of the four larger projects, we divided
data into four folds and each fold has the same number of
Buggy changes. We try to build prediction model using data of
one fold and test it on the next fold of data. So for each project,
we conducted three prediction experiments, that is: trained on
Fold1 and tested on Fold2, trained on Fold2 and tested on
Fold3, trained on Fold3 and tested on Fold4. In total, we have
12 different experiments.

For each of the prediction experiments, we conducted
BestFirst feature selection algorithm to find the set of metrics
that achieve the best performance. If there has any metrics that
is selected zero time, then we can say that this metric is
irrelevant of our models. The results are shown in Figure 3.

From Figure 3, we see that all 18 metrics are selected at
least once in all projects. A metric that is not selected for one
fold may be selected for another fold. Furthermore, a metric
such as metric f3 (LF) that is less important in one project,
such as Ant, may be more important in another project, such as
Lucene. Therefore, the answer to RQ1 is all metrics appear to
be relevant for the prediction model.

B. RQ2: Among the three categories of metrics, which

category performs best?

As we presented in RQ1, all proposed 18 metrics are
relevant for the prediction model. However, a further fine-
grained question about the performace of our proposed metrics
is: among the three categories of metrics, which performs best?

Figure. 3. Feature selection histogram.

0

2

4

6

8

10

12

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18

Figure. 4. Comparison of different metrics for Ant.

Figure. 5. Comparison of different metrics for Log4j.

For predicting the impact of bug-fixing source code
changes on regression test suite, 18 unique metrics from three
types are used. In this RQ, we try to further explore the
performances different combinations among these three types
of metrics. Specifically, we conducted seven groups of
experiments with different metrics: Size, Atomic, Semantic,
and Size + Atomic, Size + Semantic, Atomic + Semantic, and
Size + Atomic + Semantic. We used data from the four open

source projects shown in Table Ⅲ. Since we are not to find the

best machine learning classifier in this RQ, we only use Naïve
Bayes and Logistic to build prediction models, which are
reported had good performance in change impact analysis
studies [3]. For comparing the performance, we use F-Measure.

Figures 4, 5, 6, and 7 present the comparison results. To
answer RQ2, in all of the four projects, Atomic and Semantic
metrics outperform metrics of Size. This is reasonable since
metrics of Size can only capture statistical information of
changes, and metrics of Atomic and Semantic can obtain
semantic information, which is more likely to reveal the root
causes that why the changes break regression test cases.
Further, from Figures 4 to 7, we can also find that our
prediction models will achieve their best performance, when all
three categories of metrics are used.

C. RQ3: What prediction performance can BFCP achieve?

In our RQ1 and RQ2, we shown that all proposed 18
metrics are relevant with our proposed prediction models, and

Figure. 6. Comparison of different metrics for Lucene.

Figure. 7. Comparison of different metrics for Hadoop.

the combination of all these 18 metrics might achieve the best
performance. In this RQ, we further examined the classification
performance of our proposed approach.

We examined the four types of machine learning classifiers

described in Section IV B. Results are shown in Table Ⅳ.

As we can see from Table Ⅳ, among the four classifiers,

Logistic regression outperforms the other three on at least one
measure in Precision, Recall, F-Measure. BFCP could achieve
prediction precision up to 83.3% and recall up to 92.3%.

D. RQ4:What test case identification performance can BFCP

achieve?

We further examined the performance of our test cases
identification approach, note that, as presented in Section IV C,
we only use recall to measure our test cases identification
approach to help developers to find might-be-broken test cases.

For test cases identification, BFCP can achieve 100% recall,
which means we could find all might-be-broken test cases.

Further, in Table Ⅳ , we presented the average number of

identified might-be-broken test cases, for all the four projects,
the average number of identified test cases are less than 20,
regard to the the size of corresponding test cases, BFCP could
reduce the total nubmer of needed reviewed test cases from
hundreds to less than 20, which are needed to be further
reviewed.

Size Atomic Semantic
Size+Ato

mic

Size+Sem

antic

Atomic+S

emantic

Size+Ato

mic+Sem

antic

NB 38.1 47.1 50.5 47.4 50.9 54.8 56

Logistic 33.3 50 52.2 51.8 55 57.6 62.5

30

35

40

45

50

55

60

65

F
-M

e
a
su

r
e
(%

)

Size Atomic Semantic
Size+Ato

mic

Size+Sem

antic

Atomic+

Semantic

Size+Ato

mic+Sem

antic

NB 26.6 26.8 25.2 32.2 30.8 34.1 35.5

Logistic 31.1 36.9 40.6 42 42.2 46.3 48.5

25

30

35

40

45

50

F
-M

e
a
su

r
e
(%

)

Size Atomic Semantic
Size+Ato

mic

Size+Sem

antic

Atomic+

Semantic

Size+Ato

mic+Sem

antic

NB 33.3 50.1 46.2 50.5 48.2 53.7 55

Logistic 73.4 76.8 77 77.5 79.2 80.8 81.4

30

40

50

60

70

80

90

F
-M

ea
su

re
(%

)
Size Atomic Semantic

Size+Ato

mic

Size+Sem

antic

Atomic+

Semantic

Size+Ato

mic+Sem

antic

NB 50.4 54.2 52.1 55.9 58.4 62.1 64.2

Logistic 55.3 63.5 64.8 68.5 68.3 72.4 74.3

25

35

45

55

65

75

85

F
-M

e
a
su

r
e
(%

)

TABLE IV. Prediction results. P represents for Precision, R represent for
Recall, and F1 represents for F1-measure. TCI is represent for test cases

Identification.

Project Algorithm

Changes prediction

(%) R of TCI

(%)

#Avg.

TCI

 P R F1

Ant

SVM 75.0 12.5 21.4

100 10.3
Naive Bayes 46.7 70.0 56.0

ADTree 55.6 20.8 30.3

Logistic 83.3 50.0 62.5

Log4j

SVM 60.0 22.1 32.1

100 15.5
Naive Bayes 54.5 28.6 37.5

ADTree 41.2 33.3 36.8

Logistic 66.7 38.1 48.5

Lucene

SVM 73.3 84.6 78.6

100 18.2
Naive Bayes 78.6 42.3 55.0

ADTree 71.4 75.0 73.2

Logistic 72.7 92.3 81.4

Hadoop

SVM 69.2 85.9 71.9

100 19.5
Naive Bayes 94.4 48.6 64.2

ADTree 91.3 60.0 72.4

Logistic 74.3 74.3 74.3

TABLE V. Time consuming of BFCP (s: second).

Project
Model building and

Prediction time (avg)

Test case identification

time (avg)

Ant < 0.06s 15.8s

Log4j < 0.05s 28.0s

Lucene < 0.1s 40.2s

Hadoop < 0.2s 98.6s

VI. DISCUSSION

As presented in our work, given a new source code change,
BFCP will perform two tasks to provide early information
before they actually run the time-consuming regression testing.
However, the time cost of BFCP will be a concern for applying
it into practice. In order to evaluate the time cost of BFCP, we
collected the time cost for building prediction model and
identifying might-be-broken test cases for the four projects,

and the average time is shown in Table Ⅴ.

From Table Ⅴ, we can see that the model building and

predicting time varies from less than 0.06 seconds to about 0.2
seconds. The results suggest that the tool is efficient enough to
be used in software practice. Moreover, most of the time is
consumed on identifying might-be-broken test cases. As the
project size increases, this time increases approximately
linearly, thus BFCP should scale to large projects.

VII. RELATED WORK

A. Change impact analysis

Change impact analysis which aims to predict the ripple
effects and prevent side effects of a source code change has
been widely studied. Kim et al. [1] proposed a technique for
predicting latent bugs in software source code changes using
machine learning classifiers based on features from software

project change history. Wloka et al. [3] presented an analysis-
based technique for determining changes that can be
committed without compromising the integrity of the
repository. Stoerzer et al. [4] explored how change
classification can focus programmer attention on failure-
inducing changes by automatically labeling changes Red,
Yellow, or Green, indicating the likelihood that they have
contributed to a test failure. Sukkerd et al. [8] conducted
empirical studies to understand regression failures by exploring
test-passing and test-failing code changes. Torchiano et al. [10]
used the information available in software repositories, in
particular code comments and version control logs to study
impact analysis. Ahsan et al. [11] used resolved software
change requests to predict the files that have to be changed.
Jiang et al. [31] and Tan et al. [30] leveraged machine learning
approaches to predict whether a change is buggy at the time of
the commit. Orso et al. [34] presented an empirical comparison
of dynamic impact analysis techniques.

B. Software code co-change

Zaidman et al. [33] investigated whether software source
code and the accompanying tests co-evolved by mining
projects’ version system. Their results show that co-evolution
between software source code and test code is sometimes not
optimal for many projects. Zimmermann et al. [26] build an
annotation graph based upon the identification of lines across
several versions of a file to identify co-changing lines. Wu et al.
[27] visualized the co-evolution of software source code using
spectrographs. Fluri et al. [28] examined whether source code
and associated comments are changed together alongside the
evolutionary history of a software system. Godfrey et al. [29]
used source code metrics to characterize the evolution of
software projects to investigate whether open source software
and commercial software have different change patterns. Shane
et al. [32] mined the source and test code changes that required
accompanying build changes to better understand the co-
change relationship. Tao et al. [19] conducted an empirical
study to explore how developers understand code changes.
Pinto et al. [7] presented an extensive empirical study of how
test suite evolve. Tian et al. [9] proposed an automated
approach to infer commits that represent bug fixing patches.

Wloka et al. [18], and Hurdugaci et al. [20] developed
tools that help developers to identify the unit tests that need to
be altered and executed after a source code change using test
cases coverage information. In this work, when a bug-fixing
source code change is predicted that might break regression
testing, we also further identify these might-be-broken test
cases. Different with their work, we use static call graph
analysis technique. The key advantage of our approach is that
our approach finds not only test cases that directly test the
changes, but also test cases that test other functions, classes
that call the functions, and the classes in the changes.

C. Regression test case prioritization

Regression test case prioritization techniques aim to
rearrange the execution order of test cases to maximize specific

objectives. Many test case prioritization algorithms have been
proposed and well-studied, such as coverage based algorithms
[22, 24], which assign higher priorities to a test case that
executes more statements in a program; fault-exposing

potential based test case prioritization algorithms [23, 25],
which aim to sort test cases so that the rate of failure detection
of the prioritized test cases can be maximized. Yoo et al. [42]
surveyed regression testing minimization, selection and

prioritization.

In this work, different from test case prioritization, we do
not intend to sort all regression test cases, when a bug-fixing
source code change is predicted that might break regression

testing, we further identify these might-be-broken test cases.

VIII. THREATS TO VALIDITY

A. External Validity

In this work we investigate the performance of proposed
BFCP on bug-fixing source code changes of 4 large scale open
source projects. However, it is possible that our approach may

not work well on some closed-source software (e.g.,
commercial software) or small scale open source software
projects. Whether our proposed approach is feasible for these
software projects should be further investigated.

The purpose of this work is to study the impact of bug-
fixing source code changes on regression test suite, however,
not all projects maintain valid regression test suite. Our
approach is not suitable for these projects without regression
test cases.

B. Internal Validity

In this paper, we study the impact of bug-fixing source
code changes on corresponding regression test suite. A list of
18 metrics that cover a wide range of change characteristics

that would induce impact of bug-fixing source code changes
are used. However, other metrics that we have overlooked may
also improve the performance of our classifiers.

Our proposed approach could predict whether a bug-fixing
source code change will break corresponding regression test

cases. However, we cannot explain questions like: what causes
the regression test cases broken? How to fix the broken test
cases? Further studies should be done for answering these
questions.

IX. CONCLUSION AND FUTURE WORK

This paper proposed BFCP to predict the impact of a bug-
fixing source code change on corresponding regression testing
before running regression test cases, by mining software source

code change histories. Specifically, given a bug-fixing change,
without executing regression test suite, our approach first
predicts whether this bug-fixing change will break regression
testing or not. Second, if the change is predicted not regression
error free, BFCP can further identify the might-be-broken test

cases.

We evaluate BFCP on 552 real bug-fixing source code
changes from 18 release versions of 4 large open source
projects. Results of experiments show that BFCP could achieve

prediction precision up to 83.3% and recall up to 92.3%; for
test case identification, BFCP could achieve 100% recall, and
the average number of identified test cases are less than 20.

We plan to extend our work from the following two aspects:
first we plan to generate explainable prediction results, i.e.,
automatically finding root reason that why a bug-fixing source
code change will break regression testing. Second, after
identifying might-be-broken test cases, we plan to
automatically generate fix patchs for fixing buggy changes.

ACKNOWLEDGMENT

This research was supported in part by National Natural
Science Foundation of China under Grant Nos. 91218302,
91318301, 71101138, and 61303163.

REFERENCES

[1] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. 2008. Classifying Software
Changes: Clean or Buggy? IEEE Transactions on Software

Engineering. 34, 2, 181-196.

[2] B. Amiangshu and J. C. Carver. Impact of peer code review on peer
impression formation: A survey. In Empirical Software Engineering and

Measurement (ESEM ‘13), 2013 ACM/IEEE International Symposium

on, pp. 133-142. IEEE, 2013.

[3] J. Wloka, B. Ryder, F. Tip, and X. Ren. 2009. Safe-commit analysis to

facilitate team software development. In Proceedings of the 31st
International Conference on Software Engineering (ICSE’ 09), USA,

507-517.

[4] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. 2006. Finding failure-

inducing changes in java programs using change classification.

In Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering (SIGSOFT '06/FSE-14). ACM,

NY, USA, 57-68.

[5] D. Yuan, Y. Luo, X. Zhuang, G. Renna R., X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm. 2014. Simple testing can prevent most critical

failures: an analysis of production failures in distributed data-intensive

systems. In Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation (OSDI'14). USA, 249-265.

[6] W. R. Harris, G. Jin, S. Lu, and S. Jha. 2013. Validating library usage
interactively. In Proceedings of the 25th international conference on

Computer Aided Verification (CAV'13), Natasha Sharygina and Helmut

Veith (Eds.). Springer-Verlag, Berlin, Heidelberg, 796-812.

[7] L. S. Pinto, S. Sinha, and A. Orso. 2012. Understanding myths and

realities of test-suite evolution. In Proc. of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software
Engineering (FSE '12). ACM, Article 33, 11 pages.

[8] R. Sukkerd, I. Beschastnikh, J. Wuttke, S. Zhang, and Y. Brun. 2013.
Understanding regression failures through test-passing and test-failing

code changes. In Proceedings of the 2013 International Conference on

Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ, USA,
1177-1180.

[9] Y. Tian, J. Lawall, and D. Lo. 2012. Identifying Linux bug fixing
patches. InProceedings of the 34th International Conference on

Software Engineering (ICSE '12). IEEE Press, Piscataway, NJ, USA,

386-396.

[10] M. Torchiano and F. Ricca. 2010. Impact analysis by means of

unstructured knowledge in the context of bug repositories.

In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM '10). ACM,

New York, USA, Article 47, 4 pages.

[11] S. N. Ahsan and F. Wotawa. 2010. Impact analysis of SCRs using single

and multi-label machine learning classification. In Proceedings of the

2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM '10). ACM, New York, NY,

USA, Article 51, 4 pages.

[12] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. 2004. Chianti: a

tool for change impact analysis of java programs. In Proceedings of the

19th annual ACM SIGPLAN conference on Object-oriented

 programming, systems, languages, and applications (OOPSLA '04).
ACM, New York, USA, 432-448.

[13] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Trans. on Programming Language and Systems,

23(6):685–746, 2001.

[14] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java
using annotated inclusion constraints. In Proc. of the ACM SIGPLAN

Conf. on Object Oriented Programming Languages and Systems, pages

43–55, October 2001.

[15] G. Shu, B. Sun, T. A.D. Henderson, A. Podgurski. JavaPDG: A New

Platform for Program Dependence Analysis. In Proceedings of the 6th
IEEE International Conference on Software Testing, Verification and

Validation, Testing Tools Track, Luxembourg, March18-22, 2013.

[16] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu. 2010.
Matching dependence-related queries in the system dependence graph.

In Proceedings of the IEEE/ACM international conference on
Automated Software engineering (ASE '10). ACM, New York, NY,

USA, 457-466.

[17] S. Lee; S. Kang; S. Kim; Staats, M. The Impact of View Histories on

Edit Recommendations. Software Engineering, IEEE Transactions on,

vol.41, no.3, pp.314,330, March 1 2015.

[18] J. Wloka, B. G. Ryder, and F. Tip. 2009. JUnitMX - A change-aware

unit testing tool. In Proceedings of the 31st International Conference on

Software Engineering (ICSE '09). IEEE Computer Society, Washington,
DC, USA, 567-570.

[19] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. 2012. How do software

engineers understand code changes?: an exploratory study in industry.
In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering (FSE '12). ACM, NY, USA,

Article 51, 11 pages.

[20] V. Hurdugaci and A. Zaidman. "Aiding software developers to maintain

developer tests." In Software Maintenance and Reengineering (CSMR),
2012 16th European Conference on, pp. 11-20. IEEE, 2012.

[21] R. Wu, H. Zhang, S. Kim, and S. Cheung. 2011. ReLink: recovering

links between bugs and changes. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on

Foundations of software engineering (ESEC/FSE '11). ACM, New York,

NY, USA, 15-25.

[22] R. Gregg and M. J. Harrold. Analyzing regression test selection

techniques. Software Engineering, IEEE Transactions on 22, no. 8
(1996): 529-551.

[23] G. Rothermel, R.H. Untch, and M. J. Harrold. Prioritizing Test Cases
For Regression Testing. IEEE Trans. Software Engineering, Oct 2001,

v27, n10, pp.929-948.

[24] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. 2009. Adaptive Random
Test Case Prioritization. In Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering (ASE '09).

Washington, DC, USA, 233-244.

[25] S. Yoo and M. Harman, “Regression testing minimization, selection and

prioritization: a survey,” Software Testing, Verification & Reliability

2012, 22(2), 67-120.

[26] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr.. 2006.

Mining version archives for co-changed lines. In Proceedings of the
2006 international workshop on Mining software repositories (MSR '06).

ACM, USA, 72-75.

[27] J. Wu, H. R.C., H. A.E., Exploring software evolution using

spectrographs. Reverse Engineering, 2004. Proceedings. 11th Working

Conference on, vol., no., pp.80, 89, 8-12.

[28] B. Fluri, M. Wursch, H.C. Gall. Do Code and Comments Co-Evolve?
On the Relation between Source Code and Comment Changes. Reverse

Engineering, 2007. WCRE 2007. 14th Working Conference on, pp.70-79,

28-31.

[29] M. Godfrey and Q. Tu. Evolution in open source software: A case study.

In Proc. of the Int’l Conf. on Software Maintenance (ICSM '00), pages

131–142. IEEE, 2000.

[30] M. Tan, L. Tan, S. Dara, C. Mayeux. Online Defect Prediction for

Imbalanced Data In Proceedings of the 2015 International Conference
on Software Engineering (ICSE '15).

[31] T. Jiang, L. Tan, S. Kim. Personalized defect prediction. Automated

Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pp.279-289, Nov. 2013.

[32] M. Shane, B. Adams, M. Nagappan, and A. E. Hassan. Mining Co-
Change Information to Understand when Build Changes are Necessary.

In Software Maintenance and Evolution (ICSME), IEEE International

Conference on, pp. 241-250. IEEE, 2014.

[33] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. V. Deursen Mining

software repositories to study co-evolution of production & test code. In
Software Testing, Verification, and Validation (ICST), on, pp. 220-229.

IEEE, 2008.

[34] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold.
An empirical comparison of dynamic impact analysis algorithms. In

Proceedings of the 26th International Conference on Software

Engineering, ser. ICSE ’04, pp. 491–500.

[35] K. Herzig, S. Just, and A. Zeller. 2013. It's not a bug, it's a feature: how

misclassification impacts bug prediction. In Proceedings of the 2013
International Conference on Software Engineering (ICSE '13). IEEE

Press, USA, 392-401.

[36] S. Wang, W. Zhang, Y. Yang, and Q. Wang. DevNet: Exploring
Developer Collaboration in Heterogeneous Networks of Bug

Repositories. Empirical Software Engineering and Measurement. ACM /

IEEE International Symposium on, Oct. 2013.

[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The WEKA data mining software: An update. SIGKDD’09, vol.
11, no. 1, pp. 10–18.

[38] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener.

Defect prediction from static code features: current results, limitations,
new approaches. Automated Software Engg. 17, 4 (December 2010),

375-407.

[39] B. G. Ryder and F. Tip. Change impact analysis for object-oriented

programs. In Proc of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering (PASTE '01).
ACM, USA, 46-53.

[40] M. Acharya and B. Robinson. Practical change impact analysis based on
static program slicing for industrial software systems. In Proceedings of

the 33rd International Conference on Software Engineering (ICSE '11).

ACM, NY, USA, 746-755.

[41] W. Le and S. D. Pattison. Patch verification via multiversion

interprocedural control flow graphs. In Proceedings of the 36th

International Conference on Software Engineering (ICSE 2014). ACM,
NY, USA, 1047-1058.

[42] Yoo, Shin and Mark Harman. “Regression testing minimization,
selection and prioritization: a survey.” Software Testing, Verification

and Reliability 22.2 (2012): 67-120.

