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ABSTRACT 
Context: Bug triage aims to recommend appropriate developers 
for new bugs in order to reduce time and effort in bug resolution. 
Most previous approaches for bug triage are supervised. Before 
recommending developers, these approaches need to learn 
developers’ bug-fix preferences via building and training models 
using text-information of developers’ historical bug reports.  

Goal: In this paper, we empirically address three limitations of 
supervised bug triage approaches and propose FixerCache, an 
unsupervised approach for bug triage by caching developers 
based on their activeness in components of products. 

Method: In FixerCache, each component of a product has a 
dynamic developer cache which contains prioritized developers 
according to developers’ activeness scores. Given a new bug 
report, FixerCache recommends fixers with high activeness in 
developer cache to participate in fixing the new bug. 

Results: Results of experiments on four products from Eclipse 
and Mozilla show that FixerCache outperforms supervised bug 
triage approaches in both prediction accuracy and diversity. And 
it can achieve prediction accuracy up to 96.32% and diversity up 
to 91.67%, with top-10 recommendation list.  

Conclusions: FixerCache recommends fixers for new bugs based 
on developers’ activeness in components of products with high 
prediction accuracy and diversity. Moreover, since FixerCache 
does not need to learn developers’ bug-fix preferences through 
complex and time consuming processes, it could reduce bug 
triage time from hours of supervised approaches to seconds. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Measurement 

General Terms 
Performance, Reliability, Measurement, Human Factors 

Keywords 
Bug triage, developers’ activeness, developers’ preferences 

1. INTRODUCTION 
Bug triage is a widely known problem during software 
development and maintenance, which aims to recommend 
potential developers for new bugs [1]. Usually, a bug report is 
reported by a developer and recorded in a bug tracking system, 
e.g., Bugzilla and JIRA. Traditionally, a developer (also called 
triager) manually assigns new bug reports to potential developers 
[21-23]. In order to reduce time and labor for bug triage, many 
approaches have been proposed to semi-automatically 
recommend fixers for a new bug, e.g., using machine learning 
techniques [1,2,13], information retrieval [6,8,10,16], and 
network analysis [3,9,11,28,29]. These approaches collect 
historical software bug reports to build and train models, then 
produce a ranked list of recommended assignees. Since these bug 
triage approaches need to learn each individual developer’s bug-
fix preference via text-information-based expertise before 
triaging bugs, we refer to such approaches as supervised 
approaches. 

Although most of supervised approaches have been found to be 
highly accurate and most could achieve prediction accuracy 
range from 60% to 80%, they are not without any flaws. 
Obviously, some of these approaches consume hours even days [6] 
to collect and filter data, build and train models. Moreover, text 
information of bug reports is commonly noisy [17,18,20]. Further, 
through our pilot studies, we find more of their weaknesses. 

First, along with the development of a project, we reveal in our 
pilot study (see Section2.2) that the more bugs developers fix, 
the greater text-information-based similarities are among them. 
This fact affects the discriminative power of these supervised 
approaches which primarily leverage text-information-based 
expertise to represent a developer’s capacity in fixing bugs. 

Second, in order to collect sufficient text-information, most of 
these approaches [1,3-6,8-11,16,28,29] filtered less active 
developers (developers who fixed less than a certain number of 
bugs). Usually, only 10%-40% developers and about 40% fixed 
bug reports are kept after filtering. For instance, bug triage 
approaches proposed in [1,3-5,9,28,29] removed developers who 
had fixed less than 50 bugs, after filtering only 30% of all 
developers who fixed bugs and less than 40% of all fixed bug 
reports were kept. Our pilot study (see Section2.3) argues that 
filtering process dramatically lowers the diversity of developer 
recommendation of bug triage, because only developers who have 
fixed enough bugs could be recommended to fix bugs using these 
supervised bug triage approaches. 
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Third, similarity-based bug triage policy of these supervised bug 
triage approaches does not take developers’ actual bug-fix scope 
into account. In our pilot study (see Section2.4), we find that 
most developers only work on one or two components in a 
product. Moreover, about 95% of their bug-fix records are in 
preferred components. When supervised approaches recommend 
a developer to fix a new bug with high similarity of text-
information, they do not consider whether the developer has 
worked on the component of the bug in the past. 

The above weaknesses of supervised bug triage approaches make 
them less practical and inefficient. Inspired by results of our pilot 
study (see Section2.4) that “most developers work on only one or 
two components in a product”, in this paper, we propose 
FixerCache, a lightweight approach for bug triage by caching 
developers based on their activeness scores in components of 
products. We refer to FixerCache as an unsupervised bug triage 
approach, because different from existing supervised bug triage 
approaches, before recommending developers, FixerCache does 
not need to learn developers’ bug-fix preferences through time 
and labor consuming processes, i.e., extracting and filtering 
developers and their text information from historical bug reports, 
building and training model with developers’ text-information-
based expertise to obtain developers’ bug-fix preferences. 

Results of experiments on four products of Eclipse and Mozilla 
projects show that FixerCache can achieve prediction accuracy 
up to 96.32% and diversity up to 91.67% with top-10 
recommendation list. Moreover, FixerCache could reduce bug 
triage time from hours of supervised approaches to seconds. Our 
contributions can be summarized as follows: 

1. We empirically address three limitations of supervised bug 
triage approaches, which make them less practical and inefficient. 

2. We propose FixerCache, an unsupervised bug triage approach 
based on developers’ activeness in components of products, 
which is more efficient and accurate than existing state-of-the-art 
bug triage approaches. 

3. We propose to use both diversity and accuracy metrics for 
evaluating performance of bug triage. To our knowledge, we are 
the first to leverage these two metrics to evaluate the 
performance of a bug triage approach. 

The rest of this paper is organized as follows. Section 2 presents 
our pilot studies and motivation. Section 3 describes the 
methodology of our proposed FixerCache. Section 4 evaluates the 
effectiveness of our bug triage method. Section 5 discusses our 
approach. Section 6 states the threats. Section 7 presents the 
related work. Section 8 concludes this paper. 

2. PILOT STUDIES AND MOTIVATION 
This section reports our motivation and the results of pilot 
studies on the efficiency validation of supervised bug triage 
approaches. 

2.1 Motivation 
Our motivation derived from the results of our pilot studies. In 
our pilot studies, we address three limitations of supervised bug 
triage approaches through three RQs. Further, result of RQ3 that 
“most developers work on only one or two components in a 
product” inspires us to propose an unsupervised bug triage 

Table 1.  Details of eight active developers in Eclipse 
Project & Period Developer  # Fixed bugs 

 
Eclipse JDT 
(2002/01/01-
2009/01/01) 

Olivier_Thomann (DOT) 1242 
Jerome_Lanneluc (DJL) 996 
Frederic_Fusier (DFF) 663 
Philipe_Mulet (DPM) 998 

 
Eclipse Platform 

(2002/01/01-
2009/01/01) 

Felipe_Heidrich (DFH) 748 
Grant_Gayed (DGG) 717 
Silenio_Quarti (DSQ) 1138 

Steve_Northover (DSN) 880 
 

approach by caching developers based on their activeness in 
components of products.  

2.2 Text-information-based expertise of 
developers 
We first try to answer the following research question related to 
developers’ text-information-based expertise used in supervised 
bug triage approaches. 

RQ1: Does the text-information-based expertise discriminate 
developers efficiently?  

Motivation: Most previous bug triage approaches leverage text-
information-based expertise to represent a developer’s capacity 
in fixing a given bug and treat each developer as a label of bug 
triage classifiers. Usually they use machine learning methods, 
such as Support Vector Machine (SVM) and Naïve Bayes (NB) 
to triage a new bug based on the likelihood between the text-
information of the new bug and the text-information-based 
expertise of candidate developers. 

Using SVM or NB based bug triage approaches, for each 
developer d, one need to train a classifier Cd to distinguish bug 
reports that d has capacity to fix based on text information of bug 
reports that d has fixed. Thus, the greater the similarity between 
two classes of a classifier is, the less discriminative power the 
classifier achieves. We explore the similarity of text-information-
based expertise among active developers and examine whether it 
can efficiently distinguish developers or not. 

Approach: We collect fixed bug reports of eight top active 
developers from two large open source projects: Eclipse JDT and 
Eclipse Platform (for each project, we select four top active 
developers), the bugs were reported from 2002/01/01 to 
2009/01/01. All of the eight developers had fixed more than 600 
bug reports, and details of selected developers are presented in 
Table 1. Following the techniques described in [1,3-5], we 
employ tf [24], stop words, and stemming to extract string 
vectors from the summary and description of a bug report. For 
each developer, we leverage Vector Space Model (VSM) to 
represent his/her text-information-based expertise and use 
Cosine Similarity 1  to calculate the similarity between two 
developers. 

Given two developers dx and dy, we denote Sim(X,Y) as the 
similarity between them, X and Y are the string vectors of 
developer dx and dy, respectively. Sim(X,Y) is calculated as 
follows in equation 1. 
                                                             
1 http://en.wikipedia.org/wiki/Cosine_similarity 



Table 2. Similarity between two developers (%) 

 DJL DFF DPM DFH DGG DSQ DSN 
DOT 45.52 49.53 52.53 29.21 27.64 30.22 28.23 
DJL - 49.29 46.80 29.00 29.30 31.08 29.44 
DFF  - 46.09 28.72 28.74 28.62 28.23 
DPM   - 26.33 26.32 29.45 26.57 
DFH    - 50.02 53.81 53.72 
DGG     - 54.37 53.13 
DSQ      - 57.23 

 

 
Figure 1. Average similarity among developers  
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Results: Table 2 shows the results of our experiment. We find 
that the similarity among each pair of the eight developers is 
above 26.00%, and the maximum similarity is up to 57.23%, 
which between developer Silenio_Quarti and developer 
Steve_Northover. Moreover, similarity between two developers 
from the same project is bigger than two developers from 
different projects, e.g., developers Felipe_Heidrich, 
Grant_Gayed, Silenio_Quarti and Steve_Northover mainly fix 
bugs in product Platform and the similarity between any pair of 
them ranges from 50% to 57.23%. In Table 2, data in the dashed 
box show the similarity between two developers from different 
projects and all are bigger than 26%, which are also significant. 
We further examine the tendency of average similarity between 
each pair of the eight developers from Jan. 2002 to Jan. 2009. 
Results are shown in Figure 1. As we can see that the average 
similarity among developers is increasing along with the number 
of bugs developers fixed. 

The texts used to characterize developers’ fixing preferences are 
very similar to each other. Their similarities increase along with 
the number of bugs developers fixed. This lowers the 
discriminative power of supervised bug triage approaches.  

2.3 Filtering developers who fixed less bugs 
We further explore the following research question about the 
influence of filtering developers on performance of supervised 
bug triage approaches. 

RQ2: To what extend does filtering process influence the 
diversity of developer recommendation of bug triage? 

Motivation: Filtering less active developers (developers who 
fixed a small number of bug reports) is a widely used process in 
supervised bug triage approaches for collecting sufficient text-
information-based expertise to build a classifier with high 
discriminative power. For example, existing approaches [1,3-6,9] 
removed developers who fixed bug reports less than 50 in their 
experiments; existing approaches [8] only selected about 10%-
40% of all the developers who had fixed bugs. While in real 

world bug fixing practices, many of filtered developers have 
actual bug-fix activities, and using supervised bug triage 
approaches about 60% developers would never be recommended 
to fix bugs. 

Diversity is a widely used metric in recommender system 
[15,27,34], to recommend more different individuals or avoid 
monotonous recommendation. The diversity of a bug triage 
approach represents its capacity of modelling real bug fixing 
practice during software development. A low diversity bug triage 
approach might recommend a small part of developers who have 
fixed a large number of bugs. For example, assuming ten 
developers work on a project, and developer d fixes more than 
50% bugs of the project, if we only recommend d for all bug 
reports in the test dataset, the accruacy would be no less than 
50%. However, this is not practical and does not accord with real 
bug resolution practices. In real open source software community, 
core developers (like developer d in the above example), and co-
developers (developers who fixed less bugs) [12,35] work 
together on software projects [28,29]. Assigning bugs only to 
core developers would mount their workloads and cause more 
tossing (core developers may reassign bugs to co-developers) [4], 
thus may reduce the efficiency of bug resolution. 

In this work, diversity is the ratio of recommended developers in 
all the unique developers who fixed bugs in a project, and 
calculated as follows in equation 2: 

#
#

recommended developersDiversity
all developers who have fixed bugs

=               (2) 

Filtering less active developers indeed can improve the 
prediction accuracy of recommendation [24]. However, it also 
lowers the diversity of developer recommendation [25,26]. Our 
focus is on exploring to what extend filtering process lowers the 
diversity of developer recommendation of bug triage. 

Approach: We collect all the developers who had fixed bug 
reports in project Eclipse Platform (238 developers and 32777 
bug reports) and project Eclipse JDT (97 developers and 17937 
bug reports) from 2002/01/01 to 2009/01/01. Then, we 
empirically study the influence of filtering process on the 
diversity of developer recommendation with a widely used 
machine learning based bug triage approach, i.e., SVM. In our 
experiment, we select x% of developers as the dataset, and vary x 
from 10 to 100. For each value of x, we build and run SVM-
based bug triage approach. Following existing work [6,13], we 
employ incremental learning to evaluate the result, we sort bug 
reports in chronological order and divide them into 11 folds and 
execute 10 rounds to calculate the average top-5 developer 
prediction accuracy and diversity. 

Results: Figure 2 shows the top-5 prediction accuracy and 
diversity for different values of x. As seen, the accuracy 
decreases with the increase of x, when x% > 60%, the average 
top-5 accuracy of SVM is less than 60%. Meanwhile the 
diversity increases along with the increase of x. However, even 
though x% = 100%, the average diversity of top-5 developer 
recommendation is only around 50%, which means about 50% 
developers will never be recommended as bug fixing candidates 
using a supervised bug triage approach, e.g., SVM in this work. 

Filtering less active developers in bug triage dramatically lowers 
the diversity of developer recommendation. 



   
(a) Results of Eclipse Platform            (b) Results of Eclipse JDT 

Figure 2. Top-5 accuracy and diversity 
Table 3. Distribution of developers’ bug-fix activities 

(“comp” is the abbreviation of “component”) 
Developer #fixed bugs in the 

preferred comp 
#fixed bugs in 

other comp 
#comp 

DOT 1227 15 5 
DJL 994 2 3 
DFF 661 2 3 
DPM 996 2 3 
DFH 748 1 2 
DGG 716 1 2 
DSQ 1136 2 2 
DSN 878 2 3 

2.4 Developers’ fixing activities scope 
We are also interested in answering the following research 
question about the actual scope of developers’ bug-fix activities. 

RQ3: Does a developer has some obvious preferences on some 
components in a product when he/she fixes bugs? 

Motivation: Supervised bug triage approaches triage bug reports 
primarily based on the likelihood of text-information-based 
expertise between bug reports and developers, and do not take 
neither the distribution of bug reports nor developers’ bug-fix 
activities scope in a project into account, which means they 
assume that a developer might fix any bug report if it is likely 
within his/her expertise. Thus, whether developers have obvious 
preferences on components or not will influence the effectiveness 
of supervised bug triage approaches. 

Approach: Using the same dataset in RQ1, we look at whether 
the fixed bugs of each developer distributed equally on each 
component in a product by simply counting components of fixed 
bugs of a developer. If not, that means developers do have 
preferences on components in a project when they fix bugs. 

Results: Table 3 shows the distributions of bug-fix activities of 
the eight developers listed in Table 1. As we can see, for all 
developers, most of their bug-fix activities are only in one 

component, e.g., developer Olivier_Thomann has fixed 1242 
bugs in Eclipse JDT, among which 1227 bugs belong to 
component JDT Core. 

We further study the average number of components that a 
developer has worked on in Eclipse JDT and Platform, we refer 
to this number as ACnumber. Results show that in JDT from Jan. 
2002 to Jan. 2009, 97 developers had worked on it and the 
ACnumber is 1.44; in Platform there were 238 developers and 
the ACnumber is 1.81. This outcome means that usually a 
developer works on no more than two components of a project. 
Moreover, about 95% of most developers’ bug-fix activities are 
in preferred components.  

Most developers work on only one or two components in a 
product.  
Results of our pilot studies motivate us to look deeper in 
practicing automatic bug triage, and inspire us to propose an 
unsupervised bug triage approach which can achieve higher 
accuracy without hurting the diversity of developer 
recommendation. 

3. METHODOLOGY 
3.1 Overview 
Figure 3 shows the overview of our proposed bug triage approach. 
In FixerCache, each component of a product has a dynamic 
developer cache which contains prioritized developers according 
to developers’ activeness scores. Developer cache is dynamically 
updated after each verification and resolution of bug report. In 
FixerCache, bug triage is modeled as follows: given an incoming 
bug report, we find the developer(s) with high fixing probability 
using developer cache of the component of this bug report. That 
is, if a developer has a higher activeness score in a component, 
he/she is supposed to take part in handling incoming bugs in the 
component. 

Different from existing supervised approaches, FixerCache does 
not need time and space cost for filtering developers and 
extracting text-information from historical bugs for learning 
developers’ bug-fix preferences. It does not need complex 
computation for recommending candidate developers, either. 
Thus, FixerCache possesses the following benefits. 
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Figure 3. An overview of proposed FixerCache



1. Easy to implement, FixerCache does not need any complex 
computation. And it can be implemented simply by an 
instance of class “java.util.Map”, which caches developers’ 
activeness scores in a component. Obviously, FixerCache is 
more practical and efficient as well as time and space saving. 
Algorithm 1 illustrates how to implement proposed 
FixerCache. 

2. FixerCache achieves higher prediction accuracy especially 
with top-10 recommendation list, which is up to 96.32%. 

3. FixerCache achieves higher diversity, it does not filter any 
less active developers, and appropriate developers would 
have opportunities to fix bugs using FixerCache. 

Algorithm 1. FixerCache 
Input: a period of developers’ fixing records H, a new bug report R 
Output:  list L (recommended developers) 
1. CacheInitial(H); 
2. DeveloperRecommendation(H, R, R.component); 
3. Procedure CacheInitial(H) 
4.   DeveloperCache<component, develoeprCacheList>;// instance of Map 
5.      for entity d in H do 
6.         calcualteActivenessScore; 
7.         insert d to DeveloperCache; 
8.       end for; 
9. Procedure DeveloperRecommendation(DeveloperCache, R, R.component) 
10.      CandidateList = NULL; 
11.      for entity e in DeveloperCache do 
12.        if(e.component == R.component) 
13.         CandidateList = e. develoeprCacheList.getTopNDevelopers; 
14.      end if; 
15.    end for; 
16.    return CandidateList; 

3.2 Terminologies 
Before we illustrate how FixerCache works, we introduce two 
important definitions used in this work. 

DEFINITION1: Cache Period. In order to recommend 
developers for fixing bugs in a component, FixerCache needs to 
cache developers’ component-level fixing activities in the last N 
days, we refer to this period as Cache Period. 

Cache Period varies for different projects, because developers’ 
behavior patterns [28], team structures [31], bug-fix patterns [14], 
and experiences [29] are different in different projects. It’s hasty 
to say the longer Cache Period the better, developers may leave a 
community or move to other projects of the same community, 
which might cause extra space and time to maintain these 
developers’ activities in the developer cache of a component and 
affect the performance of developer recommendation. We further 
study how to set Cache Period in Section4.2. 

DEFINITION2: Activeness Score. Given a developer d, the 
activeness score on component comp ( )compScore d   is calculated 
based on the number of fixed bugs of d on component comp, time 
span between the time of the last fixing activity of d and the time 
of the latest fixed bugs add to component comp: 

( )2 1
30( ) ( , ) e

t t

comp CperiodScore d FixNum d comp
−

=        (3) 

In the formula, ( , )CperiodFixNum d comp   denotes the number of 
bugs developer d fixed in Cache Period, which is denoted as 
Cperiod (Cperiod >=0) in equation 3, t1 is the timestamp of the  

Table 4. Datasets of four projects in Eclipse and Mozilla 
(from 2002/01/01 to 2009/01/01) 

Project #Component #Developer #Bug  
Eclipse JDT 6 97 32777 
Eclipse  Platform 20 238 17937 
Mozilla Firefox 26 466 69195 
Mozilla SeaMonkey 31 428 51038 
 

last bug-fix activity of developer d, t2 is the timestamp of the 
latest fixed bugs added to component comp, and both t1 and t2 are 
calculated by day. Obviously, the activeness score of a developer 
decays along with time if he/she does not fix bugs. 

3.3 Developer Cache and Its update 
In FixerCache, after each fixed bug added to a component, the 
activeness scores of all developers will be recalculated in the 
component, and then developer cache of the component will be 
updated according to developers’ new activeness scores. 

3.4 Developer Recommendation 
FixerCache recommends the most capable developers for a given 
incoming bug report b by the following two simple steps: First, it 
identifies the component of b from the attribute “component” of 
bug report b. Then, FixerCache recommends the top-N 
developers in the developer cache of component of bug report b. 

4. EMPIRICAL EVALUATION 
We evaluated FixerCache on four products of two large open 
source projects, i.e., Eclipse and Mozilla, which are widely used 
in bug triage methods [1-6,8-11,16,28,29]. The datasets are listed 
in Table 4. We evaluated FixerCache with various parameters for 
Cache Period and compared it with two machine learning-based 
bug triage approaches, i.e., SVM and NB, which adopted as 
benchmarks in almost all existing bug triage approaches. 

Note that we did not compare FixerCache with other bug triage 
approaches which convinced could achieve high accuracy (bigger 
than 80% on average) in [5,6,9,10] or our previous work [29], 
because all these approaches need a refined selection of 
developers (usually only select 10% developers as their 
experiment datasets), as presented in our pilot study (see Section 
2.3), their diversity values are up to 40%, while in FixerCache 
we do not filter any developer. Thus, we argue that it is not 
appropriate to compare FixerCache with these approaches. We 
ran all the experiments on a PC with a 2.8GHz CPU and an 8GB 
RAM. 

4.1 Evaluation Measures 
We use two metrics to evaluate the performance of bug triage 
approaches, i.e., accuracy and diversity. 

Accuracy: We evaluate the results of bug triage with the 
accuracy of top 1, top 5 and top 10 developer recommendation. 
The accuracy is defined as 

#
#

correctly predicted bug reportsAccuracy
all the bug reports

=  based on the 

recommendation list. 

Diversity: We propose to use this metric to measure the capacity 
of modelling real bug triage practice of a bug triage approach. 

The main data 
structure of 
FixerCache 



And diversity is calculated by the ratio of recommended 
developers in all the unique developers who fixed bugs in a 
project (see Section 2.3). 

4.2 Cache Period Setting 
FixerCache allows to cache developers’ activities in a period. For 
setting an appropriate Cache Period, we tuned different values 
for Cache Period and explored their influence on performance of 
FixerCache via prediction accuracy and diversity. Using datasets 
listed in Table 4, we ran FixerCache with various values of 
Cache Period, from 0.5 months to 6 months (increased by 0.5 
months). For each value, we examine the performance of 
predicting fixers of bugs in the next 1 month by measuring both 
the average accuracy and diversity.  

We present the results of top-1, top-5 and top-10 prediction 
accuracy and diversity with different values of Cache Period in 
Figures 4 to 6. As seen, the performance of FixerCache on four 
projects varies with different values of Cache Period, and the 
prediction accuracy and diversity peak at some values of Cache 
Period. This implies that setting a suitable value of Cache Period 
is important for better practicing FixerCache. For example, in 
Eclipse Platform, when Cache Period is equal to 1 month, top-10 
accuracy of FixerCache is 96.32% and diversity is 76.07%. 
However, top-10 accuracy is 89.02% and top-10 diversity is only 
57.88% when Cache Period is equal to 6 months. 

We suggest that for better practicing FixerCache, before triaging 
bugs, setting a suitable Cache Period value should be done. 
From empirical studies on the four projects used in our 
experiments, we find that usually a suitable value for Cache 
Period ranges from 1 month to 3 months. Thus, in order to 
practice FixerCache efficiently, a developer group/software 
community should have at least 1 month’s bug fixing records for 
caching developers’ activeness.  

4.3 Performance Comparison 
For comparison, we used Weka [7] to implement SVM and NB 
based bug triage approaches in [1], which are widely adopted as 
benchmarks in bug triage approaches [2,6,8-11,16,28,29]. In 
order to make these two approaches comparable with FixerCache, 
we did not filter any developers in the datasets. 

As described in our pilot study (see, Section 2.3), we employ 
incremental learning to evaluate the result of bug triage, we sort 
bug reports in chronological order and divide them into 11 folds, 
and execute 10 rounds to investigate accuracies of all the folds. 
In each round, we calculate both prediction accuracy and 
diversity with top-1, top-5 and top-10 recommendation list. The 
average accuracy and diversity of SVM and NB and their 
comparison with FixerCache are shown in Table 5. For the 
Cache Period we use the recommended values in Section 4.2. 

As seen, FixerCache outperforms SVM and NB based bug triage 
approaches both in accuracy and diversity, especially with top-
10 recommendation list. FixerCache improves the SVM and NB 
by about 20% in accuracy on average, and 15% in diversity on 
average.  

We further explore the time cost of SVM and NB based bug 
triage approaches and FixerCache. We measure the time of data 
processing, model building and training and developer 
recommending of these bug triage approaches. Results are shown 

in Table 6, for SVM and NB, they need extra time for some 
natural language processes, i.e., removing stop words, stemming 
and extracting string vectors from the summaries and 
descriptions of bug reports. Since FixerCache does not need 
these processes, there is no time cost on data processing. As for 
developer recommending, FixerCache does not need complicated 
computation, results in Table 6 show that it reduces bug triage 
time from hours of supervised approaches to seconds. 

 
(a) Top-1 developer recommendation accuracy  

 
(b) Top-1 developer recommendation diversity 

Figure 4. Performance of top-1 developer recommendation 
with various Cache Period values 

 
(a) Top-5 developer recommendation accuracy  

 
(b) Top-5 developer recommendation diversity 

Figure 5. Performance of top-5 developer recommendation 
with various Cache Period values 



Table 5. Top-1, Top-5 and Top-10 Prediction Accuracy (%) and Diversity (%) 

Project Metric Top1 Top5 Top10 
SVM NB FixerCache SVM NB FixerCache SVM NB FixerCache 

Eclipse 
JDT 

Accuracy 23.92 23.95 54.32 55.12 54.61 88.56 69.41 69.68 96.32 
Diversity 30.00 30.67 28.91 57.14 66.19 66.73 59.52 70.95 86.02 

Eclipse 
Platform 

Accuracy 21.63 22.73 53.78 43.58 47.67 84.45 55.95 57.38 93.02 
Diversity 30.48 42.76 34.92 54.26 60.21 62.91 60.64 72.34 73.72 

Mozilla 
Firefox 

Accuracy 18.62 16.67 45.92 37.76 46.09 55.56 51.85 57.41 61.65 
Diversity 8.20 30.07 30.35 16.39 42.62 61.21 22.95 54.92 84.16 

Mozilla 
SeaMonkey 

Accuracy 12.62 15.02 44.38 40.10 36.58 54.63 47.61 47.28 62.50 
Diversity 18.18 29.85 37.89 27.27 40.90 71.66 30.30 46.96 91.67 

 

Table 6. Comparison of Processing Time (s: seconds, m: minutes, h: hours) 

Project Data processing Model building and training Developer recommending 
SVM NB FixerCache SVM NB FixerCache SVM NB FixerCache 

Eclipse JDT 30m N/A 3h 4.5h 0.1s 3m 4m 0.05s 
Eclipse Platform 25m N/A 2.7h 3.8h 0.09s 3m 3.8m 0.03s 
Mozilla Firefox 37m N/A 3.5h 5h 0.13s 3.2m 4.3m 0.07s 

Mozilla SeaMonkey 33m N/A 3.4h 4.6h 0.12s 3.2m 4.2m 0.1s 
 

 
(a) Top-10 developer recommendation accuracy  

 
(b) Top-10 developer recommendation diversity 

Figure 6. Performance of top-10 developer recommendation 
with various Cache Period values 

5. DISCUSSION 
In FixerCache, the developer cache of a component is 
dynamically updated after each verification and resolution of a 
bug report in this component. In theory, the less time span 
between the last update of developer cache and an incoming bug, 
the higher discriminative power FixerCache achieves. However 
in real practice of bug resolution, fixing bugs usually take days 
even months. Thus, time span between the last update of 
developer cache and an incoming bug varies. We refer to this 
time span as Prediction Range shown in Figure 7. 

 

Last update of 
developer cache 

Cached bugs 

Prediction Range 

Incoming bugs Assigned and un-cached bugs 
 

 

Figure 7. Prediction Range in FixerCache 

We simply divide bug reports into three different catalogs based 
on their statuses. We refer to bugs which are resolved and cached 
as “Cached bugs”, bugs which are in process of resolution as 
“Assigned and un-cached bugs”, bugs which are just submitted to 
bug repositories and have not been handled as “Incoming bugs”. 
The developer cache of a component will be dynamically updated 
after the resolution of each bug. 

For better understanding the influence of Prediction Range on 
the performance of FixerCache, using datasets shown in Table 4, 
we examine the efficiency of FixerCache via average prediction 
accuracy and diversity with different size of Prediction Range. 
Note that, we only examine the performance with top-10 
recommendation list, since the experiments in Section 4.3 show 
FixerCache can achieve impressive high accuracy and diversity 
with top-10 recommendation list. In our experiments, the size of 
Prediction Range varies from 0.5 months to 6 months and 
increases by 0.5 months. We use recommended values in Section 
4.2 to set Cache Period for the four projects used in our 
experiments.  

Figures 8 and 9 show the results. As seen, prediction accuracy 
and diversity of four projects have the same behavior. With the 
increasing of Prediction Range, both accuracy and diversity 
decrease. This outcome is especially obvious in Mozilla Firefox. 
When the Prediction Range increases from 0.5 months to 6 
months, its diversity decreases from 83.90% to 23.45%, one 
possible reason for this fact is that developer teams evolved 
quickly in Mozilla [31], many new developers came and left, this 
fact may lower the performance of FixerCache. 



 

Figure 8. Diversity of FixerCache with different Prediction 
Range 

 

Figure 9. Accuracy of FixerCache with different Prediction 
Range 

Tendencies of prediction accuracy and diversity in Figures 8 and 
9 show that when Prediction Range ranges from 0.5 months to 
2.5 months the decreasing of both accuracy and diversity in four 
projects is slight. This result suggests that the Prediction Range 
should not be bigger than 2.5 months for efficient practicing 
FixerCache. 
 

6. THREATS TO VALIDITY 
In this section we present some of the threats to the validity of 
this study. 

6.1 External Validity 
In this work, we investigate the performance of proposed 
FixerCache on four products of two large open source software 
projects, i.e., Eclipse and Mozilla. However, it is possible that 
our approach may not work well on some closed-source software 
(e.g., commercial software) or small scale open source software 
projects, where developers’ behaviors may be different with that 
of Eclipse and Mozilla. Whether our proposed approach is 
feasible for these software projects should be further investigated. 

6.2 Internal Validity 
In this paper, we assume that the activeness score of a developer 
has an exponential relationship with the number of his/her 
already fixed bugs, the interval between the timestamp of his/her 
last fixing activities and the timestamp of the latest fixed bug 
added to related component. This is hard to validity. In the future, 
we plan to further study the influence of different activeness 

score functions, e.g., social influence-based method in [32], 
dynamic activeness model in [33], on the efficiency of 
FixerCache. 

For different projects, Cache Period is a significant factor that 
affects the performance of FixerCache, e.g., in Eclipse the best 
value of Cache Period is 1 month, while in Mozilla the value is 
2-3.5 months. Thus, further questions may be raised, e.g., what 
causes the different suitable Cache Period among projects? How 
to set an appropriate Cache Period for different products? 
Further studies should be done for answering these questions. 

7. RELATED WORK 
There exists machine learning (ML), information retrieval (IR) 
and hybrid (e.g., social network analysis + ML/IR) supervised 
bug triage approaches leverage text-information-based expertise 
of developers for semi-automatic bug triage. 

ML based approaches: Čubranić and Murphy [2] first modeled 
bug triage as a text classification problem. They extracted the 
title, description, and keywords from bug reports to build a Naïve 
Bayes classifier to recommend developers for bug fixing. In their 
work, no developers were filtered and the prediction accuracy 
was around 30% on Eclipse bug repositories from Jan to Sep-
2002. Anvik et al. [1] improved the above work with filtering out 
unfixed bug reports and less active developers (developers who 
fixed less than 50 bugs). They used three different ML classifiers, 
i.e., SVM, Naïve Bayes, and C4.5. And the accuracy of bug 
triage was increased up to 64%. Lin et al. [13] explored bug 
triage problem with proprietary software project in a Chinese 
software company using ML with SVM and C4.5 classifiers on 
both Chinese text and the other non-text information (e.g., bug 
type, bug class, phase ID, submitter, model id, bug priority). 
Their experiments involved 2,576 bug reports, and achieved the 
prediction accuracy of up to 77.64% (ignoring model ID) and 
63% (considering model ID). 

IR based approaches: Matter et al. [16] used Vector Space 
Model (VSM) to model a developer’s expertise using a vector of 
frequent terms extracted from their source code contributions. 
For bug triage, they compared the vector of a new bug with 
vectors of developers’ expertise. They used eight years of Eclipse 
development bug data as a case study including 130,769 bug 
reports. They achieved the prediction accuracy up to 71.0% with 
top-10 recommendation list. Tamrawi et al. [6] leveraged fuzzy 
sets (vectors of selected terms extracted from fixed bugs of 
developers) to represent the capable developers of fixing bugs 
related to a technique issue. They compared the vector of terms 
of a new bug with fuzzy sets of technique aspects to recommend 
developers. They evaluated their methods with 10%-40% active 
developers (filtered less active developers) on 6 projects, results 
showed that their method achieved the accuracy up to 83% with 
top-5 recommendation list. Shokripour et al. [8] proposed a 
location-based approach for bug triage based on noun terms 
extracted from source codes. Their approach achieved an 
accuracy of 89.41% on well filtered Eclipse data set (only 
contains 9 active developers) and 59.76% on Mozilla data set 
(only contains 57 active developers).  Xuan et al. [19] proposed a 
semi-supervised text classification approach for bug triage 
combined Naïve Bayes classifier and expectation-maximization, 
and their approach could achieve the accuracy up to 48%. Xie et 
al. [10] used topic models to represent developers’ interest and 



expertise on bug resolving activities based on their historical bug 
resolving records. Experimental results shown their method can 
achieve recall up to 82% on Eclipse dataset with top-5 
recommendation list and 50% on Mozilla Firefox with top-7 
recommendation list. Xia et al. [30] improved the above work by 
combining ML-KNN and topic model. 

Hybrid approaches: Jeong et al. [4] first introduced the idea of 
bug tossing graphs based on Markov chains. Their Markov-based 
model derived from the patterns of bug tossing during the fixing 
process of bugs. Based on the tossing graphs they re-ranked 
recommendation results of machine learning classifiers, i.e., 
Naïve Bayes and Bayesian Network. Results of experiments on 
Eclipse and Mozilla datasets shown that their ML+tossing graphs 
methods achieved the accuracy up to 72% with top-5 
recommendation list. Bhattacharya and Neamtiu [5] improved the 
above work with refined classification using additional attributes, 
intra-fold updates during training and well selected datasets 
(developers who fixed more than 50 bugs), Their techniques can 
achieve up to 83.62% prediction accuracy in bug triaging with 
top-5 recommendation list. Xuan et al. [3] leveraged social 
network analysis techniques to prioritize developers, and they 
used priority of developers to re-rank recommendation results of 
machine learning classifiers, i.e., Naïve Bayes and SVM. Their 
approach achieved the accuracy up to 67.61% with top-5 
recommendation list on Eclipse and Mozilla data. Naguib et al. 
[9] proposed a bug triage method leveraged developers’ activities 
in bug tracking repository and LDA-SVM-based developers’ 
expertise characterized by text-information to triage bugs. Their 
method achieved an average accuracy of 88% with top-10 
recommendation list on well selected 753 bug reports from three 
open source projects. Our previous work [28,29] explored 
developers’ collaboration and contribution with heterogeneous 
network analysis of bug repositories. Then we leveraged such 
collaboration and contribution to improve bug triage by re-
ranking recommendation results of machine learning classifiers, 
i.e., Naïve Bayes and SVM. Results of experiments on Eclipse 
and Mozilla data (we filtered developers who had fixed less than 
50 bugs) shown that our methods could achieve an accuracy up 
to 89.39% with top-5 recommendation list. 

Compared with the above bug triage approaches, FixerCache has 
three obvious advantages. First, FixerCache achieves higher 
accuracy especially with top-10 recommendation list which 
achieves up to 96.32%. Second, FixerCache achieves higher 
diversity, since it does not filter any less active developers. It’s a 
win-win solution in balancing the diversity and accuracy of 
developer recommendation in bug triage. Third, FixerCache 
spends less time and space in data collecting, model building and 
training, and recommending developers, since FixerCache only 
maintains a dynamic developer list according to developers’ 
activeness scores for each component, this also makes it more 
practical and efficient as well as time and space saving. 

8. CONCLUSION 
In this paper, we empirically address three limitations of 
supervised bug triage approaches. The first one is that the 
increasing similarities of text-information-based developers’ 
expertise lower the discriminative power of supervised bug triage 
approaches. The second one is that filtering developers with less 
bug-fix activities lowers the diversity of developer 

recommendation. The third one is that triaging bugs primarily 
based on expertise characterized by text-information does not 
take developers’ activities scope in the project into account. To 
address the three limitations of text-information-based 
supervised bug triage approaches, we propose FixerCache, an 
unsupervised bug triage approach based on developers’ 
activeness scores in components of products.  

For better evaluating bug triage approaches, we propose to use 
not only accuracy but also diversity to measure their 
performances. Evaluation on four projects of Eclipse and Mozilla 
datasets shows that FixerCache achieves higher accuracy and 
diversity than existing bug triage approaches. Moreover, since 
FixerCache does not need to learn developers’ text-information-
based bug-fix preferences, it could reduce bug triage time from 
hours of supervised approaches to seconds. 

The datasets and codes of our work are available here: 
http://itechs.iscas.ac.cn/cn/material/wangsong/fixercache.zip. 
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