
FixerCache: Unsupervised Caching Active Developers for
Diverse Bug Triage

Song Wangϕ, Wen Zhangϕǂѱ, Qing Wangϕѱ
ϕInstitute of Software, Chinese Academy of Sciences

ǂState Key Laboratory of Software Engineering of Wuhan University
ѱState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

{wangsong, zhangwen, wq}@nfs.iscas.ac.cn

ABSTRACT
Context: Bug triage aims to recommend appropriate developers
for new bugs in order to reduce time and effort in bug resolution.
Most previous approaches for bug triage are supervised. Before
recommending developers, these approaches need to learn
developers’ bug-fix preferences via building and training models
using text-information of developers’ historical bug reports.

Goal: In this paper, we empirically address three limitations of
supervised bug triage approaches and propose FixerCache, an
unsupervised approach for bug triage by caching developers
based on their activeness in components of products.

Method: In FixerCache, each component of a product has a
dynamic developer cache which contains prioritized developers
according to developers’ activeness scores. Given a new bug
report, FixerCache recommends fixers with high activeness in
developer cache to participate in fixing the new bug.

Results: Results of experiments on four products from Eclipse
and Mozilla show that FixerCache outperforms supervised bug
triage approaches in both prediction accuracy and diversity. And
it can achieve prediction accuracy up to 96.32% and diversity up
to 91.67%, with top-10 recommendation list.

Conclusions: FixerCache recommends fixers for new bugs based
on developers’ activeness in components of products with high
prediction accuracy and diversity. Moreover, since FixerCache
does not need to learn developers’ bug-fix preferences through
complex and time consuming processes, it could reduce bug
triage time from hours of supervised approaches to seconds.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Measurement

General Terms
Performance, Reliability, Measurement, Human Factors

Keywords
Bug triage, developers’ activeness, developers’ preferences

1. INTRODUCTION
Bug triage is a widely known problem during software
development and maintenance, which aims to recommend
potential developers for new bugs [1]. Usually, a bug report is
reported by a developer and recorded in a bug tracking system,
e.g., Bugzilla and JIRA. Traditionally, a developer (also called
triager) manually assigns new bug reports to potential developers
[21-23]. In order to reduce time and labor for bug triage, many
approaches have been proposed to semi-automatically
recommend fixers for a new bug, e.g., using machine learning
techniques [1,2,13], information retrieval [6,8,10,16], and
network analysis [3,9,11,28,29]. These approaches collect
historical software bug reports to build and train models, then
produce a ranked list of recommended assignees. Since these bug
triage approaches need to learn each individual developer’s bug-
fix preference via text-information-based expertise before
triaging bugs, we refer to such approaches as supervised
approaches.

Although most of supervised approaches have been found to be
highly accurate and most could achieve prediction accuracy
range from 60% to 80%, they are not without any flaws.
Obviously, some of these approaches consume hours even days [6]
to collect and filter data, build and train models. Moreover, text
information of bug reports is commonly noisy [17,18,20]. Further,
through our pilot studies, we find more of their weaknesses.

First, along with the development of a project, we reveal in our
pilot study (see Section2.2) that the more bugs developers fix,
the greater text-information-based similarities are among them.
This fact affects the discriminative power of these supervised
approaches which primarily leverage text-information-based
expertise to represent a developer’s capacity in fixing bugs.

Second, in order to collect sufficient text-information, most of
these approaches [1,3-6,8-11,16,28,29] filtered less active
developers (developers who fixed less than a certain number of
bugs). Usually, only 10%-40% developers and about 40% fixed
bug reports are kept after filtering. For instance, bug triage
approaches proposed in [1,3-5,9,28,29] removed developers who
had fixed less than 50 bugs, after filtering only 30% of all
developers who fixed bugs and less than 40% of all fixed bug
reports were kept. Our pilot study (see Section2.3) argues that
filtering process dramatically lowers the diversity of developer
recommendation of bug triage, because only developers who have
fixed enough bugs could be recommended to fix bugs using these
supervised bug triage approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’14, September 18–19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09 …$15.00.

Third, similarity-based bug triage policy of these supervised bug
triage approaches does not take developers’ actual bug-fix scope
into account. In our pilot study (see Section2.4), we find that
most developers only work on one or two components in a
product. Moreover, about 95% of their bug-fix records are in
preferred components. When supervised approaches recommend
a developer to fix a new bug with high similarity of text-
information, they do not consider whether the developer has
worked on the component of the bug in the past.

The above weaknesses of supervised bug triage approaches make
them less practical and inefficient. Inspired by results of our pilot
study (see Section2.4) that “most developers work on only one or
two components in a product”, in this paper, we propose
FixerCache, a lightweight approach for bug triage by caching
developers based on their activeness scores in components of
products. We refer to FixerCache as an unsupervised bug triage
approach, because different from existing supervised bug triage
approaches, before recommending developers, FixerCache does
not need to learn developers’ bug-fix preferences through time
and labor consuming processes, i.e., extracting and filtering
developers and their text information from historical bug reports,
building and training model with developers’ text-information-
based expertise to obtain developers’ bug-fix preferences.

Results of experiments on four products of Eclipse and Mozilla
projects show that FixerCache can achieve prediction accuracy
up to 96.32% and diversity up to 91.67% with top-10
recommendation list. Moreover, FixerCache could reduce bug
triage time from hours of supervised approaches to seconds. Our
contributions can be summarized as follows:

1. We empirically address three limitations of supervised bug
triage approaches, which make them less practical and inefficient.

2. We propose FixerCache, an unsupervised bug triage approach
based on developers’ activeness in components of products,
which is more efficient and accurate than existing state-of-the-art
bug triage approaches.

3. We propose to use both diversity and accuracy metrics for
evaluating performance of bug triage. To our knowledge, we are
the first to leverage these two metrics to evaluate the
performance of a bug triage approach.

The rest of this paper is organized as follows. Section 2 presents
our pilot studies and motivation. Section 3 describes the
methodology of our proposed FixerCache. Section 4 evaluates the
effectiveness of our bug triage method. Section 5 discusses our
approach. Section 6 states the threats. Section 7 presents the
related work. Section 8 concludes this paper.

2. PILOT STUDIES AND MOTIVATION
This section reports our motivation and the results of pilot
studies on the efficiency validation of supervised bug triage
approaches.

2.1 Motivation
Our motivation derived from the results of our pilot studies. In
our pilot studies, we address three limitations of supervised bug
triage approaches through three RQs. Further, result of RQ3 that
“most developers work on only one or two components in a
product” inspires us to propose an unsupervised bug triage

Table 1. Details of eight active developers in Eclipse
Project & Period Developer # Fixed bugs

Eclipse JDT
(2002/01/01-
2009/01/01)

Olivier_Thomann (DOT) 1242
Jerome_Lanneluc (DJL) 996
Frederic_Fusier (DFF) 663
Philipe_Mulet (DPM) 998

Eclipse Platform

(2002/01/01-
2009/01/01)

Felipe_Heidrich (DFH) 748
Grant_Gayed (DGG) 717
Silenio_Quarti (DSQ) 1138

Steve_Northover (DSN) 880

approach by caching developers based on their activeness in
components of products.

2.2 Text-information-based expertise of
developers
We first try to answer the following research question related to
developers’ text-information-based expertise used in supervised
bug triage approaches.

RQ1: Does the text-information-based expertise discriminate
developers efficiently?

Motivation: Most previous bug triage approaches leverage text-
information-based expertise to represent a developer’s capacity
in fixing a given bug and treat each developer as a label of bug
triage classifiers. Usually they use machine learning methods,
such as Support Vector Machine (SVM) and Naïve Bayes (NB)
to triage a new bug based on the likelihood between the text-
information of the new bug and the text-information-based
expertise of candidate developers.

Using SVM or NB based bug triage approaches, for each
developer d, one need to train a classifier Cd to distinguish bug
reports that d has capacity to fix based on text information of bug
reports that d has fixed. Thus, the greater the similarity between
two classes of a classifier is, the less discriminative power the
classifier achieves. We explore the similarity of text-information-
based expertise among active developers and examine whether it
can efficiently distinguish developers or not.

Approach: We collect fixed bug reports of eight top active
developers from two large open source projects: Eclipse JDT and
Eclipse Platform (for each project, we select four top active
developers), the bugs were reported from 2002/01/01 to
2009/01/01. All of the eight developers had fixed more than 600
bug reports, and details of selected developers are presented in
Table 1. Following the techniques described in [1,3-5], we
employ tf [24], stop words, and stemming to extract string
vectors from the summary and description of a bug report. For
each developer, we leverage Vector Space Model (VSM) to
represent his/her text-information-based expertise and use
Cosine Similarity 1 to calculate the similarity between two
developers.

Given two developers dx and dy, we denote Sim(X,Y) as the
similarity between them, X and Y are the string vectors of
developer dx and dy, respectively. Sim(X,Y) is calculated as
follows in equation 1.

1 http://en.wikipedia.org/wiki/Cosine_similarity

Table 2. Similarity between two developers (%)

 DJL DFF DPM DFH DGG DSQ DSN
DOT 45.52 49.53 52.53 29.21 27.64 30.22 28.23
DJL - 49.29 46.80 29.00 29.30 31.08 29.44
DFF - 46.09 28.72 28.74 28.62 28.23
DPM - 26.33 26.32 29.45 26.57
DFH - 50.02 53.81 53.72
DGG - 54.37 53.13
DSQ - 57.23

Figure 1. Average similarity among developers

 1

2 2
1 1

(X,Y)
(X) (Y)

n
i ii

n n
i ii i

X YX YSim
X Y

=

= =

×⋅
= =

×

∑
∑ ∑

 (1)

Results: Table 2 shows the results of our experiment. We find
that the similarity among each pair of the eight developers is
above 26.00%, and the maximum similarity is up to 57.23%,
which between developer Silenio_Quarti and developer
Steve_Northover. Moreover, similarity between two developers
from the same project is bigger than two developers from
different projects, e.g., developers Felipe_Heidrich,
Grant_Gayed, Silenio_Quarti and Steve_Northover mainly fix
bugs in product Platform and the similarity between any pair of
them ranges from 50% to 57.23%. In Table 2, data in the dashed
box show the similarity between two developers from different
projects and all are bigger than 26%, which are also significant.
We further examine the tendency of average similarity between
each pair of the eight developers from Jan. 2002 to Jan. 2009.
Results are shown in Figure 1. As we can see that the average
similarity among developers is increasing along with the number
of bugs developers fixed.

The texts used to characterize developers’ fixing preferences are
very similar to each other. Their similarities increase along with
the number of bugs developers fixed. This lowers the
discriminative power of supervised bug triage approaches.

2.3 Filtering developers who fixed less bugs
We further explore the following research question about the
influence of filtering developers on performance of supervised
bug triage approaches.

RQ2: To what extend does filtering process influence the
diversity of developer recommendation of bug triage?

Motivation: Filtering less active developers (developers who
fixed a small number of bug reports) is a widely used process in
supervised bug triage approaches for collecting sufficient text-
information-based expertise to build a classifier with high
discriminative power. For example, existing approaches [1,3-6,9]
removed developers who fixed bug reports less than 50 in their
experiments; existing approaches [8] only selected about 10%-
40% of all the developers who had fixed bugs. While in real

world bug fixing practices, many of filtered developers have
actual bug-fix activities, and using supervised bug triage
approaches about 60% developers would never be recommended
to fix bugs.

Diversity is a widely used metric in recommender system
[15,27,34], to recommend more different individuals or avoid
monotonous recommendation. The diversity of a bug triage
approach represents its capacity of modelling real bug fixing
practice during software development. A low diversity bug triage
approach might recommend a small part of developers who have
fixed a large number of bugs. For example, assuming ten
developers work on a project, and developer d fixes more than
50% bugs of the project, if we only recommend d for all bug
reports in the test dataset, the accruacy would be no less than
50%. However, this is not practical and does not accord with real
bug resolution practices. In real open source software community,
core developers (like developer d in the above example), and co-
developers (developers who fixed less bugs) [12,35] work
together on software projects [28,29]. Assigning bugs only to
core developers would mount their workloads and cause more
tossing (core developers may reassign bugs to co-developers) [4],
thus may reduce the efficiency of bug resolution.

In this work, diversity is the ratio of recommended developers in
all the unique developers who fixed bugs in a project, and
calculated as follows in equation 2:

#
#

recommended developersDiversity
all developers who have fixed bugs

= (2)

Filtering less active developers indeed can improve the
prediction accuracy of recommendation [24]. However, it also
lowers the diversity of developer recommendation [25,26]. Our
focus is on exploring to what extend filtering process lowers the
diversity of developer recommendation of bug triage.

Approach: We collect all the developers who had fixed bug
reports in project Eclipse Platform (238 developers and 32777
bug reports) and project Eclipse JDT (97 developers and 17937
bug reports) from 2002/01/01 to 2009/01/01. Then, we
empirically study the influence of filtering process on the
diversity of developer recommendation with a widely used
machine learning based bug triage approach, i.e., SVM. In our
experiment, we select x% of developers as the dataset, and vary x
from 10 to 100. For each value of x, we build and run SVM-
based bug triage approach. Following existing work [6,13], we
employ incremental learning to evaluate the result, we sort bug
reports in chronological order and divide them into 11 folds and
execute 10 rounds to calculate the average top-5 developer
prediction accuracy and diversity.

Results: Figure 2 shows the top-5 prediction accuracy and
diversity for different values of x. As seen, the accuracy
decreases with the increase of x, when x% > 60%, the average
top-5 accuracy of SVM is less than 60%. Meanwhile the
diversity increases along with the increase of x. However, even
though x% = 100%, the average diversity of top-5 developer
recommendation is only around 50%, which means about 50%
developers will never be recommended as bug fixing candidates
using a supervised bug triage approach, e.g., SVM in this work.

Filtering less active developers in bug triage dramatically lowers
the diversity of developer recommendation.

(a) Results of Eclipse Platform (b) Results of Eclipse JDT

Figure 2. Top-5 accuracy and diversity
Table 3. Distribution of developers’ bug-fix activities

(“comp” is the abbreviation of “component”)
Developer #fixed bugs in the

preferred comp
#fixed bugs in

other comp
#comp

DOT 1227 15 5
DJL 994 2 3
DFF 661 2 3
DPM 996 2 3
DFH 748 1 2
DGG 716 1 2
DSQ 1136 2 2
DSN 878 2 3

2.4 Developers’ fixing activities scope
We are also interested in answering the following research
question about the actual scope of developers’ bug-fix activities.

RQ3: Does a developer has some obvious preferences on some
components in a product when he/she fixes bugs?

Motivation: Supervised bug triage approaches triage bug reports
primarily based on the likelihood of text-information-based
expertise between bug reports and developers, and do not take
neither the distribution of bug reports nor developers’ bug-fix
activities scope in a project into account, which means they
assume that a developer might fix any bug report if it is likely
within his/her expertise. Thus, whether developers have obvious
preferences on components or not will influence the effectiveness
of supervised bug triage approaches.

Approach: Using the same dataset in RQ1, we look at whether
the fixed bugs of each developer distributed equally on each
component in a product by simply counting components of fixed
bugs of a developer. If not, that means developers do have
preferences on components in a project when they fix bugs.

Results: Table 3 shows the distributions of bug-fix activities of
the eight developers listed in Table 1. As we can see, for all
developers, most of their bug-fix activities are only in one

component, e.g., developer Olivier_Thomann has fixed 1242
bugs in Eclipse JDT, among which 1227 bugs belong to
component JDT Core.

We further study the average number of components that a
developer has worked on in Eclipse JDT and Platform, we refer
to this number as ACnumber. Results show that in JDT from Jan.
2002 to Jan. 2009, 97 developers had worked on it and the
ACnumber is 1.44; in Platform there were 238 developers and
the ACnumber is 1.81. This outcome means that usually a
developer works on no more than two components of a project.
Moreover, about 95% of most developers’ bug-fix activities are
in preferred components.

Most developers work on only one or two components in a
product.
Results of our pilot studies motivate us to look deeper in
practicing automatic bug triage, and inspire us to propose an
unsupervised bug triage approach which can achieve higher
accuracy without hurting the diversity of developer
recommendation.

3. METHODOLOGY
3.1 Overview
Figure 3 shows the overview of our proposed bug triage approach.
In FixerCache, each component of a product has a dynamic
developer cache which contains prioritized developers according
to developers’ activeness scores. Developer cache is dynamically
updated after each verification and resolution of bug report. In
FixerCache, bug triage is modeled as follows: given an incoming
bug report, we find the developer(s) with high fixing probability
using developer cache of the component of this bug report. That
is, if a developer has a higher activeness score in a component,
he/she is supposed to take part in handling incoming bugs in the
component.

Different from existing supervised approaches, FixerCache does
not need time and space cost for filtering developers and
extracting text-information from historical bugs for learning
developers’ bug-fix preferences. It does not need complex
computation for recommending candidate developers, either.
Thus, FixerCache possesses the following benefits.

Fix

Bug Repositories

New Bug Report User

Report

Recommended
Developers

Dynamic update

Bug Triage

…

D11, D12,…, D1i Comp1

Comp2 D21, D22,…, D2i

Compn Dn1, Dn2,…, Dni

Developer Cache

Figure 3. An overview of proposed FixerCache

1. Easy to implement, FixerCache does not need any complex
computation. And it can be implemented simply by an
instance of class “java.util.Map”, which caches developers’
activeness scores in a component. Obviously, FixerCache is
more practical and efficient as well as time and space saving.
Algorithm 1 illustrates how to implement proposed
FixerCache.

2. FixerCache achieves higher prediction accuracy especially
with top-10 recommendation list, which is up to 96.32%.

3. FixerCache achieves higher diversity, it does not filter any
less active developers, and appropriate developers would
have opportunities to fix bugs using FixerCache.

Algorithm 1. FixerCache
Input: a period of developers’ fixing records H, a new bug report R
Output: list L (recommended developers)
1. CacheInitial(H);
2. DeveloperRecommendation(H, R, R.component);
3. Procedure CacheInitial(H)
4. DeveloperCache<component, develoeprCacheList>;// instance of Map
5. for entity d in H do
6. calcualteActivenessScore;
7. insert d to DeveloperCache;
8. end for;
9. Procedure DeveloperRecommendation(DeveloperCache, R, R.component)
10. CandidateList = NULL;
11. for entity e in DeveloperCache do
12. if(e.component == R.component)
13. CandidateList = e. develoeprCacheList.getTopNDevelopers;
14. end if;
15. end for;
16. return CandidateList;

3.2 Terminologies
Before we illustrate how FixerCache works, we introduce two
important definitions used in this work.

DEFINITION1: Cache Period. In order to recommend
developers for fixing bugs in a component, FixerCache needs to
cache developers’ component-level fixing activities in the last N
days, we refer to this period as Cache Period.

Cache Period varies for different projects, because developers’
behavior patterns [28], team structures [31], bug-fix patterns [14],
and experiences [29] are different in different projects. It’s hasty
to say the longer Cache Period the better, developers may leave a
community or move to other projects of the same community,
which might cause extra space and time to maintain these
developers’ activities in the developer cache of a component and
affect the performance of developer recommendation. We further
study how to set Cache Period in Section4.2.

DEFINITION2: Activeness Score. Given a developer d, the
activeness score on component comp ()compScore d is calculated
based on the number of fixed bugs of d on component comp, time
span between the time of the last fixing activity of d and the time
of the latest fixed bugs add to component comp:

()2 1
30() (,) e

t t

comp CperiodScore d FixNum d comp
−

= (3)

In the formula, (,)CperiodFixNum d comp denotes the number of
bugs developer d fixed in Cache Period, which is denoted as
Cperiod (Cperiod >=0) in equation 3, t1 is the timestamp of the

Table 4. Datasets of four projects in Eclipse and Mozilla
(from 2002/01/01 to 2009/01/01)

Project #Component #Developer #Bug
Eclipse JDT 6 97 32777
Eclipse Platform 20 238 17937
Mozilla Firefox 26 466 69195
Mozilla SeaMonkey 31 428 51038

last bug-fix activity of developer d, t2 is the timestamp of the
latest fixed bugs added to component comp, and both t1 and t2 are
calculated by day. Obviously, the activeness score of a developer
decays along with time if he/she does not fix bugs.

3.3 Developer Cache and Its update
In FixerCache, after each fixed bug added to a component, the
activeness scores of all developers will be recalculated in the
component, and then developer cache of the component will be
updated according to developers’ new activeness scores.

3.4 Developer Recommendation
FixerCache recommends the most capable developers for a given
incoming bug report b by the following two simple steps: First, it
identifies the component of b from the attribute “component” of
bug report b. Then, FixerCache recommends the top-N
developers in the developer cache of component of bug report b.

4. EMPIRICAL EVALUATION
We evaluated FixerCache on four products of two large open
source projects, i.e., Eclipse and Mozilla, which are widely used
in bug triage methods [1-6,8-11,16,28,29]. The datasets are listed
in Table 4. We evaluated FixerCache with various parameters for
Cache Period and compared it with two machine learning-based
bug triage approaches, i.e., SVM and NB, which adopted as
benchmarks in almost all existing bug triage approaches.

Note that we did not compare FixerCache with other bug triage
approaches which convinced could achieve high accuracy (bigger
than 80% on average) in [5,6,9,10] or our previous work [29],
because all these approaches need a refined selection of
developers (usually only select 10% developers as their
experiment datasets), as presented in our pilot study (see Section
2.3), their diversity values are up to 40%, while in FixerCache
we do not filter any developer. Thus, we argue that it is not
appropriate to compare FixerCache with these approaches. We
ran all the experiments on a PC with a 2.8GHz CPU and an 8GB
RAM.

4.1 Evaluation Measures
We use two metrics to evaluate the performance of bug triage
approaches, i.e., accuracy and diversity.

Accuracy: We evaluate the results of bug triage with the
accuracy of top 1, top 5 and top 10 developer recommendation.
The accuracy is defined as

#
#

correctly predicted bug reportsAccuracy
all the bug reports

= based on the

recommendation list.

Diversity: We propose to use this metric to measure the capacity
of modelling real bug triage practice of a bug triage approach.

The main data
structure of
FixerCache

And diversity is calculated by the ratio of recommended
developers in all the unique developers who fixed bugs in a
project (see Section 2.3).

4.2 Cache Period Setting
FixerCache allows to cache developers’ activities in a period. For
setting an appropriate Cache Period, we tuned different values
for Cache Period and explored their influence on performance of
FixerCache via prediction accuracy and diversity. Using datasets
listed in Table 4, we ran FixerCache with various values of
Cache Period, from 0.5 months to 6 months (increased by 0.5
months). For each value, we examine the performance of
predicting fixers of bugs in the next 1 month by measuring both
the average accuracy and diversity.

We present the results of top-1, top-5 and top-10 prediction
accuracy and diversity with different values of Cache Period in
Figures 4 to 6. As seen, the performance of FixerCache on four
projects varies with different values of Cache Period, and the
prediction accuracy and diversity peak at some values of Cache
Period. This implies that setting a suitable value of Cache Period
is important for better practicing FixerCache. For example, in
Eclipse Platform, when Cache Period is equal to 1 month, top-10
accuracy of FixerCache is 96.32% and diversity is 76.07%.
However, top-10 accuracy is 89.02% and top-10 diversity is only
57.88% when Cache Period is equal to 6 months.

We suggest that for better practicing FixerCache, before triaging
bugs, setting a suitable Cache Period value should be done.
From empirical studies on the four projects used in our
experiments, we find that usually a suitable value for Cache
Period ranges from 1 month to 3 months. Thus, in order to
practice FixerCache efficiently, a developer group/software
community should have at least 1 month’s bug fixing records for
caching developers’ activeness.

4.3 Performance Comparison
For comparison, we used Weka [7] to implement SVM and NB
based bug triage approaches in [1], which are widely adopted as
benchmarks in bug triage approaches [2,6,8-11,16,28,29]. In
order to make these two approaches comparable with FixerCache,
we did not filter any developers in the datasets.

As described in our pilot study (see, Section 2.3), we employ
incremental learning to evaluate the result of bug triage, we sort
bug reports in chronological order and divide them into 11 folds,
and execute 10 rounds to investigate accuracies of all the folds.
In each round, we calculate both prediction accuracy and
diversity with top-1, top-5 and top-10 recommendation list. The
average accuracy and diversity of SVM and NB and their
comparison with FixerCache are shown in Table 5. For the
Cache Period we use the recommended values in Section 4.2.

As seen, FixerCache outperforms SVM and NB based bug triage
approaches both in accuracy and diversity, especially with top-
10 recommendation list. FixerCache improves the SVM and NB
by about 20% in accuracy on average, and 15% in diversity on
average.

We further explore the time cost of SVM and NB based bug
triage approaches and FixerCache. We measure the time of data
processing, model building and training and developer
recommending of these bug triage approaches. Results are shown

in Table 6, for SVM and NB, they need extra time for some
natural language processes, i.e., removing stop words, stemming
and extracting string vectors from the summaries and
descriptions of bug reports. Since FixerCache does not need
these processes, there is no time cost on data processing. As for
developer recommending, FixerCache does not need complicated
computation, results in Table 6 show that it reduces bug triage
time from hours of supervised approaches to seconds.

(a) Top-1 developer recommendation accuracy

(b) Top-1 developer recommendation diversity

Figure 4. Performance of top-1 developer recommendation
with various Cache Period values

(a) Top-5 developer recommendation accuracy

(b) Top-5 developer recommendation diversity

Figure 5. Performance of top-5 developer recommendation
with various Cache Period values

Table 5. Top-1, Top-5 and Top-10 Prediction Accuracy (%) and Diversity (%)

Project Metric Top1 Top5 Top10
SVM NB FixerCache SVM NB FixerCache SVM NB FixerCache

Eclipse
JDT

Accuracy 23.92 23.95 54.32 55.12 54.61 88.56 69.41 69.68 96.32
Diversity 30.00 30.67 28.91 57.14 66.19 66.73 59.52 70.95 86.02

Eclipse
Platform

Accuracy 21.63 22.73 53.78 43.58 47.67 84.45 55.95 57.38 93.02
Diversity 30.48 42.76 34.92 54.26 60.21 62.91 60.64 72.34 73.72

Mozilla
Firefox

Accuracy 18.62 16.67 45.92 37.76 46.09 55.56 51.85 57.41 61.65
Diversity 8.20 30.07 30.35 16.39 42.62 61.21 22.95 54.92 84.16

Mozilla
SeaMonkey

Accuracy 12.62 15.02 44.38 40.10 36.58 54.63 47.61 47.28 62.50
Diversity 18.18 29.85 37.89 27.27 40.90 71.66 30.30 46.96 91.67

Table 6. Comparison of Processing Time (s: seconds, m: minutes, h: hours)

Project Data processing Model building and training Developer recommending
SVM NB FixerCache SVM NB FixerCache SVM NB FixerCache

Eclipse JDT 30m N/A 3h 4.5h 0.1s 3m 4m 0.05s
Eclipse Platform 25m N/A 2.7h 3.8h 0.09s 3m 3.8m 0.03s
Mozilla Firefox 37m N/A 3.5h 5h 0.13s 3.2m 4.3m 0.07s

Mozilla SeaMonkey 33m N/A 3.4h 4.6h 0.12s 3.2m 4.2m 0.1s

(a) Top-10 developer recommendation accuracy

(b) Top-10 developer recommendation diversity

Figure 6. Performance of top-10 developer recommendation
with various Cache Period values

5. DISCUSSION
In FixerCache, the developer cache of a component is
dynamically updated after each verification and resolution of a
bug report in this component. In theory, the less time span
between the last update of developer cache and an incoming bug,
the higher discriminative power FixerCache achieves. However
in real practice of bug resolution, fixing bugs usually take days
even months. Thus, time span between the last update of
developer cache and an incoming bug varies. We refer to this
time span as Prediction Range shown in Figure 7.

Last update of
developer cache

Cached bugs

Prediction Range

Incoming bugs Assigned and un-cached bugs

Figure 7. Prediction Range in FixerCache

We simply divide bug reports into three different catalogs based
on their statuses. We refer to bugs which are resolved and cached
as “Cached bugs”, bugs which are in process of resolution as
“Assigned and un-cached bugs”, bugs which are just submitted to
bug repositories and have not been handled as “Incoming bugs”.
The developer cache of a component will be dynamically updated
after the resolution of each bug.

For better understanding the influence of Prediction Range on
the performance of FixerCache, using datasets shown in Table 4,
we examine the efficiency of FixerCache via average prediction
accuracy and diversity with different size of Prediction Range.
Note that, we only examine the performance with top-10
recommendation list, since the experiments in Section 4.3 show
FixerCache can achieve impressive high accuracy and diversity
with top-10 recommendation list. In our experiments, the size of
Prediction Range varies from 0.5 months to 6 months and
increases by 0.5 months. We use recommended values in Section
4.2 to set Cache Period for the four projects used in our
experiments.

Figures 8 and 9 show the results. As seen, prediction accuracy
and diversity of four projects have the same behavior. With the
increasing of Prediction Range, both accuracy and diversity
decrease. This outcome is especially obvious in Mozilla Firefox.
When the Prediction Range increases from 0.5 months to 6
months, its diversity decreases from 83.90% to 23.45%, one
possible reason for this fact is that developer teams evolved
quickly in Mozilla [31], many new developers came and left, this
fact may lower the performance of FixerCache.

Figure 8. Diversity of FixerCache with different Prediction
Range

Figure 9. Accuracy of FixerCache with different Prediction
Range

Tendencies of prediction accuracy and diversity in Figures 8 and
9 show that when Prediction Range ranges from 0.5 months to
2.5 months the decreasing of both accuracy and diversity in four
projects is slight. This result suggests that the Prediction Range
should not be bigger than 2.5 months for efficient practicing
FixerCache.

6. THREATS TO VALIDITY
In this section we present some of the threats to the validity of
this study.

6.1 External Validity
In this work, we investigate the performance of proposed
FixerCache on four products of two large open source software
projects, i.e., Eclipse and Mozilla. However, it is possible that
our approach may not work well on some closed-source software
(e.g., commercial software) or small scale open source software
projects, where developers’ behaviors may be different with that
of Eclipse and Mozilla. Whether our proposed approach is
feasible for these software projects should be further investigated.

6.2 Internal Validity
In this paper, we assume that the activeness score of a developer
has an exponential relationship with the number of his/her
already fixed bugs, the interval between the timestamp of his/her
last fixing activities and the timestamp of the latest fixed bug
added to related component. This is hard to validity. In the future,
we plan to further study the influence of different activeness

score functions, e.g., social influence-based method in [32],
dynamic activeness model in [33], on the efficiency of
FixerCache.

For different projects, Cache Period is a significant factor that
affects the performance of FixerCache, e.g., in Eclipse the best
value of Cache Period is 1 month, while in Mozilla the value is
2-3.5 months. Thus, further questions may be raised, e.g., what
causes the different suitable Cache Period among projects? How
to set an appropriate Cache Period for different products?
Further studies should be done for answering these questions.

7. RELATED WORK
There exists machine learning (ML), information retrieval (IR)
and hybrid (e.g., social network analysis + ML/IR) supervised
bug triage approaches leverage text-information-based expertise
of developers for semi-automatic bug triage.

ML based approaches: Čubranić and Murphy [2] first modeled
bug triage as a text classification problem. They extracted the
title, description, and keywords from bug reports to build a Naïve
Bayes classifier to recommend developers for bug fixing. In their
work, no developers were filtered and the prediction accuracy
was around 30% on Eclipse bug repositories from Jan to Sep-
2002. Anvik et al. [1] improved the above work with filtering out
unfixed bug reports and less active developers (developers who
fixed less than 50 bugs). They used three different ML classifiers,
i.e., SVM, Naïve Bayes, and C4.5. And the accuracy of bug
triage was increased up to 64%. Lin et al. [13] explored bug
triage problem with proprietary software project in a Chinese
software company using ML with SVM and C4.5 classifiers on
both Chinese text and the other non-text information (e.g., bug
type, bug class, phase ID, submitter, model id, bug priority).
Their experiments involved 2,576 bug reports, and achieved the
prediction accuracy of up to 77.64% (ignoring model ID) and
63% (considering model ID).

IR based approaches: Matter et al. [16] used Vector Space
Model (VSM) to model a developer’s expertise using a vector of
frequent terms extracted from their source code contributions.
For bug triage, they compared the vector of a new bug with
vectors of developers’ expertise. They used eight years of Eclipse
development bug data as a case study including 130,769 bug
reports. They achieved the prediction accuracy up to 71.0% with
top-10 recommendation list. Tamrawi et al. [6] leveraged fuzzy
sets (vectors of selected terms extracted from fixed bugs of
developers) to represent the capable developers of fixing bugs
related to a technique issue. They compared the vector of terms
of a new bug with fuzzy sets of technique aspects to recommend
developers. They evaluated their methods with 10%-40% active
developers (filtered less active developers) on 6 projects, results
showed that their method achieved the accuracy up to 83% with
top-5 recommendation list. Shokripour et al. [8] proposed a
location-based approach for bug triage based on noun terms
extracted from source codes. Their approach achieved an
accuracy of 89.41% on well filtered Eclipse data set (only
contains 9 active developers) and 59.76% on Mozilla data set
(only contains 57 active developers). Xuan et al. [19] proposed a
semi-supervised text classification approach for bug triage
combined Naïve Bayes classifier and expectation-maximization,
and their approach could achieve the accuracy up to 48%. Xie et
al. [10] used topic models to represent developers’ interest and

expertise on bug resolving activities based on their historical bug
resolving records. Experimental results shown their method can
achieve recall up to 82% on Eclipse dataset with top-5
recommendation list and 50% on Mozilla Firefox with top-7
recommendation list. Xia et al. [30] improved the above work by
combining ML-KNN and topic model.

Hybrid approaches: Jeong et al. [4] first introduced the idea of
bug tossing graphs based on Markov chains. Their Markov-based
model derived from the patterns of bug tossing during the fixing
process of bugs. Based on the tossing graphs they re-ranked
recommendation results of machine learning classifiers, i.e.,
Naïve Bayes and Bayesian Network. Results of experiments on
Eclipse and Mozilla datasets shown that their ML+tossing graphs
methods achieved the accuracy up to 72% with top-5
recommendation list. Bhattacharya and Neamtiu [5] improved the
above work with refined classification using additional attributes,
intra-fold updates during training and well selected datasets
(developers who fixed more than 50 bugs), Their techniques can
achieve up to 83.62% prediction accuracy in bug triaging with
top-5 recommendation list. Xuan et al. [3] leveraged social
network analysis techniques to prioritize developers, and they
used priority of developers to re-rank recommendation results of
machine learning classifiers, i.e., Naïve Bayes and SVM. Their
approach achieved the accuracy up to 67.61% with top-5
recommendation list on Eclipse and Mozilla data. Naguib et al.
[9] proposed a bug triage method leveraged developers’ activities
in bug tracking repository and LDA-SVM-based developers’
expertise characterized by text-information to triage bugs. Their
method achieved an average accuracy of 88% with top-10
recommendation list on well selected 753 bug reports from three
open source projects. Our previous work [28,29] explored
developers’ collaboration and contribution with heterogeneous
network analysis of bug repositories. Then we leveraged such
collaboration and contribution to improve bug triage by re-
ranking recommendation results of machine learning classifiers,
i.e., Naïve Bayes and SVM. Results of experiments on Eclipse
and Mozilla data (we filtered developers who had fixed less than
50 bugs) shown that our methods could achieve an accuracy up
to 89.39% with top-5 recommendation list.

Compared with the above bug triage approaches, FixerCache has
three obvious advantages. First, FixerCache achieves higher
accuracy especially with top-10 recommendation list which
achieves up to 96.32%. Second, FixerCache achieves higher
diversity, since it does not filter any less active developers. It’s a
win-win solution in balancing the diversity and accuracy of
developer recommendation in bug triage. Third, FixerCache
spends less time and space in data collecting, model building and
training, and recommending developers, since FixerCache only
maintains a dynamic developer list according to developers’
activeness scores for each component, this also makes it more
practical and efficient as well as time and space saving.

8. CONCLUSION
In this paper, we empirically address three limitations of
supervised bug triage approaches. The first one is that the
increasing similarities of text-information-based developers’
expertise lower the discriminative power of supervised bug triage
approaches. The second one is that filtering developers with less
bug-fix activities lowers the diversity of developer

recommendation. The third one is that triaging bugs primarily
based on expertise characterized by text-information does not
take developers’ activities scope in the project into account. To
address the three limitations of text-information-based
supervised bug triage approaches, we propose FixerCache, an
unsupervised bug triage approach based on developers’
activeness scores in components of products.

For better evaluating bug triage approaches, we propose to use
not only accuracy but also diversity to measure their
performances. Evaluation on four projects of Eclipse and Mozilla
datasets shows that FixerCache achieves higher accuracy and
diversity than existing bug triage approaches. Moreover, since
FixerCache does not need to learn developers’ text-information-
based bug-fix preferences, it could reduce bug triage time from
hours of supervised approaches to seconds.

The datasets and codes of our work are available here:
http://itechs.iscas.ac.cn/cn/material/wangsong/fixercache.zip.

9. ACKNOWLEDGMENTS
This research was supported in part by National Natural Science
Foundation of China under Grant Nos. 91218302, 61073044,
91318301, 71101138, and 61303163; National Science and
Technology Major Project under Grant Nos. 2012ZX01039-004;
Beijing Natural Science Fund under Grant No.4122087; State
863 High Technology R & D Project No. 2012AA011206.

10. REFERENCES
[1] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This

Bug?,” Proc. 28th Intl. Conf. Software Engineering
(ICSE ’06), May 2006, pp. 361-370.

[2] D. Čubranić and G.C. Murphy, “Automatic Bug Triage
Using Text Categorization,” Proc. 16th Intl. Conf. Software
Engineering & Knowledge Engineering (SEKE ’04), Jun.
2004, pp. 92-97.

[3] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer
Prioritization in Bug Repositories,” Proc. 34st Intl. Conf.
Software Engineering (ICSE ’12), June.2012, pp. 25-35.

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug
Triage with Tossing Graphs,” Proc. 17th ACM SIGSOFT
Symp. Foundations of Software Engineering (FSE’09), Aug.
2009, pp. 111-120.

[5] P. Bhattacharya and I. Neamtiu, “Fine-Grained Incremental
Learning and Multi-Feature Tossing Graphs to Improve Bug
Triaging,” Proc. 26th IEEE Intl. Conf. Software
Maintenance (ICSM ’10), Sept. 2010, pp. 1-10.

[6] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and T.N.
Nguyen, “Fuzzy Set and Cache-Based Approach for Bug
Triaging,” Proc. 19th ACM SIGSOFT Symp. Foundations of
Software Engineering (FSE ’11), Sept. 2011, pp. 365-375.

[7] I.H. Witten, E. Frank, and M.A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques, 3rd ed.
Morgan Kaufmann, Burlington, MA, 2011.

[8] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani,
“Why So Complicated? Simple Term Filtering and
Weighting for Location-Based Bug Report Assignment
Recommendation,” Proc. 10th IEEE Working Con. on

Mining Software Repositories (MSR’ 13), May. 2013, pp.2-
11.

[9] H. Naguib, N. Narayan, B. Brugge, and D. Helal, “Bug
Report Assignment Recommendation using Activity
Profiles,” Proc. 10th IEEE Working Con. on Mining
Software Repositories(MSR’13), May. 2013, pp.22-30.

[10] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom:
developer recommendation based on topic models for bug
resoluton,” Proc. 8th International Conferenece on
Predictive Models in Software Engineering (PROMISE’12),
Mar. 2012, pp. 19-28.

[11] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “Drex:
Developer recommendation with k-nearest-neighbor search
and expertise ranking,” in 18th Asia Pacific Software
Engineering Conference (APSEC’11), Dec. 2011, pp. 389-
396.

[12] W. Zhang, Y. Yang, and Q. Wang, “An empirical study on
identifying core developers using network analysis,” Proc.
2nd Intl. Workshop on Evidential Assessment of Software
Technologies (EAST’12), Sep. 2012, pp. 43-48.

[13] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. “An
empirical study on bug assignment automation using
Chinese bug data,” Proc. 3th ACM/IEEE Intl. Symp.
Empirical Software Engineering and Measurement
(ESEM’09), Oct. 2009, pp 451-455.

[14] E. Murphy, T. Zimmermann, C. Bird, and N. Nagappan,
“The design of bug fixes,” Proc. 35th Intl. Conf. Software
Engineering (ICSE ’13) May. 2013, pp.332-341.

[15] A. Gunawardana and G. Shani, “A Survey of Accuracy
Evaluation Metrics of Recommendation Tasks,” Journal of
Machine Learning Research, Vol. 10, Dec. 2009, pp.2935-
2962.

[16] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning Bug
Reports using a Vocabulary-based Expertise Model of
Developers,” Proc. 6th IEEE Working Con. on Mining
Software Repositories (MSR’ 09), May. 2009, pp 131-140.

[17] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Permraj,
and T. Zimmermann, “What Makes a Good Bug Report,”
Proc. 16th ACM SIGSOFT Symp. Foundations of Software
Engineering (FSE’08), Nov. 2008, pp. 308-318.

[18] K. Herzig, S. Just, and A. Zeller, “It's not a bug, it's a
feature: how misclassification impacts bug prediction,” Proc.
35th Intl. Conf. Software Engineering (ICSE’13), May.
2013, pp.392-401.

[19] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Lou, “Automatic
Bug Triage Using Semi-Supervised Text Classification,”
Proc. 22th. Intl. Conf. Software Engineering & Knowledge
Engineering (SEKE’ 10), Jul. 2010, pp.209-214.

[20] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Permraj,
and T. Zimmermann, “Quality of bug reports in Eclipse,”
Proc. OOPSLA workshop on eclipse technology eXchange
(eclipse’07), Oct. 2007, pp. 21-25.

[21] J. Xie, M. Zhou, and A. Mockus, “Impact of Triage: A
Study of Mozilla and Gnome,” Proc. 7th ACM / IEEE Intl.

Symp. Empirical Software Engineering and Measurement
(ESEM’13), Oct. 2013, pp. 247-250.

[22] “The gnome bugsquad,” https://live.gnome.org/Bugsquad,
2012.

[23] “Mozilla triage guide – harnessing the flood of community,”
https://wiki.mozilla.org/QA/Triage, 2010.

[24] J. Han and M. Kamber, Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, USA

[25] J. R. Sean M. McNee and J. A. Konstan, “Accurate is not
always good: How accuracy metrics have hurt recommender
systems,” In extended abstracts on Human factors in
computing systems (CHI'06), 2006, pp 1097-1101.

[26] M. Zhang and N. Hurley, “Avoiding monotony: Improving
the diversity of recommendation lists,” Proc. 2nd ACM
International Conf. Recommender Systems (RecSys’08),
Oct.2008, pp. 123-130.

[27] C. Yu, L. Lakshmanan, and S. A. Yahia, “It takes variety to
make a world: diversification in recommender systems,”
Proc. 12th Intl. Conf. Extending Dtabase Technology:
Advances in Database Technology (EDBT’09), Mar. 2009,
pp.368-378.

[28] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “DevNet:
Exploring Developer Collaboration in Heterogeneous
Network of Bug Repositories,” Proc. 7th ACM / IEEE Intl.
Symp. Empirical Software Engineering and Measurement
(ESEM’13), Oct. 2013, pp 193-202.

[29] W. Zhang, S. Wang, Y. Yang, and Q. Wang “Heterogeneous
Network Analysis of Developer Contribution in Bug
Repositories,” International Conference on Cloud and
Service Computing (CSC’13), Nov. 2013, pp 98-105.

[30] X. Xia, D. Lo, X. Wang, and B. Zhou “Accurate developer
recommendation for bug resolution,” 20th Working Conf.
Reverse Engineering (WCRE’13), Oct. 2013, pp.72-81.

[31] Q. Hong, S. Kim, S.C. Cheung, and C. Bird,
“Understanding a Developer Social Network and its
Evolution,” Proc. 27th IEEE Intl. Conf. Software
Maintenance (ICSM ’11), Sept. 2011, pp. 323-332.

[32] Z. Wen and C. Y. Lin, “On the Quality of Inferring Interests
From Social Neighbors,” Proc. 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining (KDD’10), Jul. 2010, pp. 373-382.

[33] S. Lin, X. Kong, and P. S. Yu, “Predicting trends in social
networks via dynamic activeness model,” Proc. 22nd ACM
Intl. Conf. on Information & Knowledge Management
(CIKM’13), Oct. 2013, pp. 1661-1666.

[34] M. Ge, C. D. Battenfeld, and D. Jannach, “Beyond accuracy:
evaluating recommender systems by coverage and
serendipity” Proc. 4nd ACM Intl. Conf. Recommender
Systems (RecSys’10), Sep.2010, pp. 257-260.

[35] J. Xu, Y. Gao, S. Christley, and G. Madey, “A Topological
Analysis of the Open Source Software Development
Community,” Proc. 38th Annual Hawaii Intl. Conf. on
System Sciences (HICSS’05), Jan. 2005, Vol. 7.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 800
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1600 1600]
 /PageSize [612.000 792.000]
>> setpagedevice

