
DevNet: Exploring Developer Collaboration in Heterogeneous Networks of Bug

Repositories

Song Wang1, Wen Zhang1, 3, Ye Yang1, 2, Qing Wang1, 2

1Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences
2State Key Laboratory of Computer Science, ISCAS

3State Key Laboratory of Software Engineering of Wuhan University

{wangsong,zhangwen,yangye,wq}@nfs.iscas.ac.cn

Abstract—During open source software development and

maintenance, bug fixing is a result of developer collaboration.

Understanding the structure of developer collaboration could

be helpful for effective and efficient bug fixing. Most prior

work on exploring developer collaboration in bug repositories

only considers a particular form of developer collaboration.

However, in real software bug repositories, developers

collaborate with each other via multiple ways, e.g.,

commenting bugs, tossing bugs, and assigning bugs. In this

paper, we present DevNet, a framework for representing and

analyzing developer collaboration in bug repositories based on

heterogeneous developer networks. Moreover, we illustrate

that such developer collaboration can assist bug triage through

a case study on the bug repositories of Eclipse and Mozilla

involving over 800,000 bug reports. Experiment results show

that our approach can improve the state-of-the-art bug triage

methods by 5-15% in accuracy. We believe that the proposed

approach provides new insights for analyzing software
repositories through heterogeneous networks.

Keywords- developer collaboration; software bug repositories;

heterogeneous developer network; bug triage

I. INTRODUCTION

A bug repository that handles and tracks a large number

of bugs is widely used during the development and

maintenance of many open source software projects. With a

bug repository, developers collaborate with each other to

improve the quality of software projects by posting

problems that they have encountered, making suggestions
for resolving bugs, and commenting on existing bugs [1].

In a bug repository, fixing bugs is a team effort, many
developers work together to solve problems and during this
process they form implicit collaborative developer network
[5]. Thus, understanding the structure of developer
collaboration in bug repositories could be helpful for
building successful software. Along this line, many
developer network-related analyses have been proposed in
software repositories to deal with problems in real
development such as failure prediction [10], [11], developer
prioritization [6], bug triage [13], [17] and social structure
investigation [5], [7], [8]. Each of these studies applies ideas
from social network to construct developer network based on
a particular form of developer collaboration (e.g.,
co-comment bugs between two developers). These developer
networks are homogeneous, which has merely one type of
node (developers) and one type of link (a particular form of
developer collaboration). However, in real usage of software

bug repositories, developers collaborate with each other to
fix bugs via multiple ways, i.e., developers can discuss how
to fix bugs with each other (comment-based collaboration),
developers may toss a bug to other developer who can
handle this bug well (tossing-based collaboration) [17], and
developers may assign new coming bugs to others
(assigning-based collaboration). Since a typical social
network-based approach cannot deal with multi-relations
among nodes [3], in many of existing studies, developer
collaboration is simply considered based on one type of the
above developer collaboration. Thus, employing social
network (in a social network, nodes are entities of the same
type, e.g., person; links are relations from the same relation,
e.g., friendship) to investigate multiple developer
collaboration in bug repositories is not appropriate.

In this paper, we exploit recent advances in
heterogeneous network-based analysis of multi-relation to
investigate multiple types of developer collaboration among
developers in bug repositories. Studies in heterogeneous
networks have opened new capabilities in knowledge mining
[3], [15], software failures prediction [12], social relations
prediction [16], and alzheimer’s disease prediction [19].

We present DevNet, a framework to represent and
analyze multiple developer collaboration in bug repositories
based on heterogeneous developer networks. Different from
traditional homogeneous developer network, e.g., Fig. 1 (b),
a heterogeneous developer network contains multiple types
of entities, such as developers, bugs, comments, components,
and products as well as multiple types of links denoting
different relations among these entities. Moreover, different
paths between two nodes in heterogeneous developer
network may denote different relations. For example, in Fig.
1 (a), a path between developers “Tom” and “Jim” as
“Tom-Comment2-Bug Report1- Comment1 -Jim” means that
Tom and Jim have commented on a common bug report.
These two developers have also another path as
“Tom-Comment4-BugReport2-Component1-BugReport1-
Comment1-Jim” denotes that they have commented on bug
reports belonging to the same component. In order to
distinguish the means of different paths between two entities,
we propose to use meta path (a path that connects entities via
a sequence of relations) to denote multi-relation between two
entities.

We leverage our approach to improve bug triage in bug

repositories. Experiments on Eclipse and Mozilla bug

repositories show that our approach can improve the

state-of-the-art bug triage methods by 5-15% in accuracy.

Jim
Tom

Bug Report 1

Bug Report 2

Comment2

Comment4

Comment1

Comment3

Component 1 Jim Tom

co-comment bugs

 (a) (b)

Figure 1. Examples of a simply heterogeneous developer network (a) and

a homogeneous developer network (b).

Our contributions can be summarized as follows:

1. We propose a framework to represent, establish, and

analyze developer network based on heterogeneous network

in bug repositories. To our knowledge, this is the first work

for exploring heterogeneous information networks of
software repositories.

2. We explore multiple developer collaboration in bug

repositories based on heterogeneous developer networks.
3. We examine that developer collaboration revealed in

heterogeneous developer networks can improve bug triage in
bug repositories.

The rest of this paper is organized as follows. Section II
states the background and related work. Section III presents
the proposed DevNet framework. Section IV describes the
designs of case studies. Section V shows the results of case
studies. Section VI states the threats to validity. Section VII
concludes this paper and outlines future work.

II. BACKGROUND AND RELATED WORK

A. Bug Triage

Bug triage is a widely known problem during software
maintenance, which aims to assign a new bug to a potential

developer [1]. Many machine learning based automatic bug

assignment algorithms have been proposed to reduce time

and labor cost of manual ways. Čubranić et al. [2] model

bug triage as a text classification problem. Anvik et al. [1]

improve the above work with more extensive preprocessing

on the data and more effective classification algorithms.

Jeong et al. [17] and Bhattacharya et al. [13] improve bug

triage based on tossing graph extracted from tossing

histories of bug reports. Other work also refers to this topic,

such as developer prioritization based approach [6], and the
fuzzy-set and cache-based approach [20].

In this paper, we empirically evaluate whether the

developer collaboration revealed in heterogeneous

developer networks can improve the result of this problem.

B. Developer Collaboration

Bird et al. [7], [8] examine the collaboration among
developers in open source projects by mining

communication networks from email archives. Wolf et al. [9]

introduce an approach to mine developer collaboration from

communication repositories. Additionally, they use their

approach to predict software build failures [10].

Bhattacharya et al. [14] employ developer collaboration

graph to analyze software evolution. Meneely et al. [4]

empirically validate the collaboration relationship among

developers can be represented by social network metrics.

Based on developer collaboration extracted from comments
in bug repositories, [6] proposes a method to prioritize

developers and [5] studies the characteristic of developer

social networks based on developer collaboration.

Our work differs in two ways from most of these prior

studies: (1) we consider developer collaboration in a

heterogeneous developer network, which is more complex

and with richer information than a homogenous developer

network. (2) Taking the advantage of heterogeneous

network, we capture more types of developer collaboration.

C. Heterogeneous Network

Heterogeneous Network: A heterogeneous network is

defined as a directed graph, in which nodes and relations are

of different types [3].

In a heterogeneous network, a meta path is a path

consisting of a sequence of relations defined between

different entities [15]. Formally, meta path defined as below.

Meta Path: A meta path P is a path defined on a
heterogeneous network, and is denoted in form of

11 2

1 2 3 1
nRR R

n nO O O O O

    , and Oi (1 ≤ i ≤ n) is an

entity, Ri is a relation between two entities.

Given a specified meta path P: O1-O2-O3
…On-1-On in a

heterogeneous network, random walk [3] is frequently used

to measure the topological features between two nodes in

the meta path, which denotes the probability of the random

walk that from x to y (x is an instance of O1 and y is an

instance of On) following meta path P. We use RWP(x, y) to

denote the random walk from node x to y.
 With information explosion in the real world, how to

utilize heterogeneous information becomes an important

research problem in many areas. For example, [19]

improves the prediction of alzheimer’s disease by fusing

heterogeneous data sources. [12] explores the correlation

between heterogeneous developer contribution network and

the number of post-release failures. [3] studies the principles

and methodologies in mining heterogeneous networks, [15]

investigates how to cluster different types of nodes in social

network by considering meta path.

 In this paper, we represent, establish, and analyze
heterogeneous developer networks extracted from bug

repositories. Based on heterogeneous developer networks,

we investigate multiple types of developer collaboration in

bug repositories.

III. DEVNET: A FRAMEWORK TO DERIVE

HETEROGENEOUS DEVELOPER NETWORK IN BUG

REPOSITORIES

A. Overall Framework of DevNet

 Fig. 2 shows the overall structure of DevNet for deriving

heterogeneous developer networks in bug repositories. It

contains the following four elements:

1) Bug related Entities: In a bug repository, there are

many types of entities, e.g., developers, documents,

software bugs. To fix bugs, these entities frequently
interact with each other. Interactions among these

entities generate a heterogeneous network.

2) Schema: A schema is used to summarize meta

structure of a heterogeneous network, which illustrates

the entities as well as the relations among entities in a

heterogeneous network.

3) Meta Path: Meta path is a path, which consists of a

sequence of relations between different entities.

4) Heterogeneous Network: A heterogeneous network
contains multiple types of entities and entities may

connect with each other via different meta paths.

Entity Type Identification

New bugs

Historical bug repositories

Jim

Bill

Bob

Tom

Andy

Bug Report1

Bug Report2

Comment7

Comment14

Comment4

Comment8

Comment9

Comment5

Comment6

Comment16

Comment10

Comment11

Comment1

Comment12

Comment2

Comment15

Comment3
Comment13

Component ID

22

Heterogeneous

developer network

Meta path

extraction

Analyzing Relations

among Entity Types
Meta path

extraction

Comment

Bug

Component

Developer

Constructing

Heterogeneous Network

Schema

Figure 2. The overall structure of DevNet.

First, we identify the entities in the bug repositories,

and we empirically analyze relations among these entities.

Second, we establish a heterogeneous network schema

which summarizes the structure of overall heterogeneous

network in a bug repository considering the entities and

their relations. Third, based on the heterogeneous

network schema we use meta path extraction algorithm to

extract meta paths between developers to build a

heterogeneous developer network. Finally, we update the

heterogeneous developer network by adding related meta

paths extracted from new coming bugs.

B. Identifying Entities in Bug Repositories

In a typical Bugzilla
1
-based bug repository, such as

Eclipse and Mozilla bug repositories, a bug is reported and

submitted to the bug tracking system in formation of a bug

report, which contains full information of the bug. Thus,

1 http://www.bugzilla.org/

developers can comment on the bug report for potential

solution of fixing bugs [18]. In a bug repository, each bug

belongs to a component of a product. We empirically

consider 5 types of entities, namely developers
2
, bugs,

comments, components, and products. As an abbreviation,

we use the first capital letters to denote these entities,
namely D for developers, B for bug reports, C for

components, and P for products. In order to distinguish the

abbreviation of components and comments, we use S to

denote comments.

Bug

CommentDeveloper

contain-1

write

write-1

Component Product

contain contain

contain-1

Figure 3. Schema for heterogeneous networks in bug repositories.

C. Analyzing Relations among Entities and Establishing

Network Schema

During the software development, entities in bug

repositories interact with each other frequently. These

interactions denote various relations among entities. We

empirically investigate the relations of interactions between

entities in a bug repository. During the process of fixing

bugs, interactions exist between developers and comments

by the relations “write” and “written by” (denoted as write-1);

between bugs and comments by “comment” and
“commented by” (denoted as comment-1); between

components and bugs, products and components by “contain”

and “belong to” (denoted as contain-1). Interactions between

developers and bugs have multi-relation. Existing work [1],

[18] investigate the possible operations from a developer to

a bug in a bug repository detailed. Based on their analysis,

here we use “report/assign/toss/fix/close/reopen” to denote

the multiple relations from developers to bugs and

“report-1/assign-1/toss-1/fix-1/close-1/reopen-1” to denote the

multiple relations from bugs to developers. Interactions

exist between bugs by the relations “duplicate” and

“duplicate of” (denoted as duplicate-1).
Having obtained entities and relations among them, we

use network schema to summarize the meta structure of a

heterogeneous network, which is shown in Fig. 3. In the

schema, nodes denote the types of entities, and edges denote

2Following existing work [5], [6], in this paper, developers include
reporters, programmers, testers, and active end users.

relations between entities. Entities can connect with each

other via different meta paths, e.g., two developers can be

connected via “developer-bug-developer” path, “developer-

comment-bug-comment-developer” path and so on.

Note that network schema in Fig. 3 shows overall

heterogeneous information of a typical bug repository, i.e.,
heterogeneous structure between bugs and comments,

comments and developers, bugs and developers, and

between developers, etc. As a result, to build a

heterogeneous developer network in a bug repository, a

further work about extracting meta paths among developers
is needed.

D. Building Heterogeneous Developer Network

 In order to build a heterogeneous developer network

in a bug repository, within the network schema, we parse

the source data (e.g., bug reports and activity logs) to

collect all the meta path instances directly between any

two entities, then we build a heterogeneous developer

network by extracting meta path instances between

developers.
Meta Path Parsing. Typical bug repositories maintain a

bug report and an activity log for each bug. A bug report

includes information such as the reporter, fixer, commenters

and their comments, and the component and product this

bug report belongs to. An activity log includes the assigning
and tossing histories of a bug report.

In Fig. 4, we take bug report #4 in Eclipse as an example

to show the detailed information of a bug report. From the

bug report, we can obtain meta path instances between bugs

and components (this bug belongs to component “Team”),

components and products (component “Team” belongs to

“Platform”), developers and bugs (“Grant Gayed” reported

this bug and “Michael Valenta” fixed this bug), comments

and bugs (comment1 and comment2 are made on this bug),

and developers and comments (“DJ Houghton” wrote

comment1 and “Kevin McGuire” wrote comment 2).

Table I shows the activity log of bug report #4 in Fig. 4.
The bold lines mark the assigning and tossing information

of this bug. From the table we can obtain meta path

instances between developers and bugs, e.g.,

“jean-michel_lemieux” assigned this bug to himself and

then tossed it to “Kevin McGuire”, later “Kevin McGuire”

tossed this bug to “Michael_Valenta”.

Meta paths directly between any two entities in network

schema can be obtained by analyzing bug reports and their

activity logs. In bug repositories, bug reports and activity

logs are typically presented as HTML pages. By crawling

and parsing these HTML pages we obtain meta paths
directly between two entities.

Building Heterogeneous Developer Network. In a

heterogeneous network of a bug repository, there are various

meta paths denote different relations between any two

entities, to build a heterogeneous developer network, we

select meta paths starting and ending with the entity

“developers”, e.g., meta path
1toss tossD B D


  (denotes

Bug 4 - need better error message if catching up over read-only resource (1GF69TF)

Status: RESOLVED

FIXED

Product: Platform

Classificatio

n:

Eclipse

Component: Team

Version: 2.0

Platform: All All

Importance: P5 normal (vote)

Target

Milestone: ---

Assigned To: Michael Valenta

QA Contact:

Show dependency tree

Reported: 2001-10-10 21:34 EDT by Grant

Gayed

Modified: 2002-03-01 16:27 EST (History)

CC List: 0 users

See Also:

Grant Gayed 2001-10-10 21:34:49 EDT Description

- become synchronized with some project in a repository

- use a different Eclipse to make a change to a file resource within this project and release it to the repository
- in the original Eclipse mark this file resource as being read-only (select it, right-click -> Properties, change,
OK)

- select the file resource, right-click -> Team -> Synchronize with Stream
- in the subsequent comparison view select the file resource, right-click -> Catchup

- since it has been marked as read-only there are inevitable problems. However the error dialog that is
shown does not offer much assistance ("An IO error occurred: IO Error")
NOTES:

DJ Houghton 2001-10-23 23:39:11 EDT Comment1
PRODUCT VERSION: 0.122 win32

Kevin McGuire 2002-03-01 16:27:31 EST Comment2

Now says "Access is denied"

Figure 4. Bug report#4
3
 in Eclipse Platform.Team.

TABLE I. THE ACTIVITY LOG OF BUG REPORT#4
4

Who When What Removed Added
jean-michel_lem

ieux

2001-10-12

11:30:02 EDT
Assignee

Jean-Michel_Le

mieux
Kevin_McGuire

Status ASSIGNED NEW

Michael_Valent

a

2001-10-18

16:38:25 EDT
Assignee Kevin_McGuire Michael_Valenta

Michael_Valenta 2001-10-26
12:02:22 EDT

Status NEW ASSIGNED

James_Moody 2002-01-03

16:44:14 EST
Priority P3 P5

Kevin_McGuire 2002-03-01

16:27:31 EST

Status ASSIGNED RESOLVED

Resolution --- FIXED

TABLE II. SELECTED META PATHS USED FOR BUILDING

HETEROGENEOUS DEVELOPER NETWORKS

Meta Path Meaning of the Relation
1toss tossD B D


  developer di tosses a bug to developer dj

1assign assignD B D


  developer di assigns a bug to developer dj

D-S-B-S-D developers di and dj make comments on the

common bug report bi

D-S-B-C-B-S-D

developers di and dj make comments on two bug

reports belonged to the same component ci

D-S-B-C-P-C-B-S-D

developers di and dj make comments on bug

reports which belong to two components ci and cj

in product pi

tossing relation [17]), if there is no ambiguity in either the

meaning or the order of the relation this meta path can be

abbreviated as D-B-D. As a result, 5 types of meta paths in

the network schema are selected and presented in Table II,

where the meaning of each meta path is given in the second

column. After collecting all the directly meta path instances

among 5 entities, we use Algorithm 1 to extract instances of

meta paths listed in Table II to build a heterogeneous

developer network.

3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=4
4 https://bugs.eclipse.org/bugs/show_activity.cgi?id=4

https://bugs.eclipse.org/bugs/show_bug.cgi?id=4
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#status
https://bugs.eclipse.org/bugs/describecomponents.cgi
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#classification
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#classification
https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Platform
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#importance
https://bugs.eclipse.org/bugs/page.cgi?id=voting/user.html&bug_id=4#vote_4
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#target_milestone
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#target_milestone
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#assigned_to
https://bugs.eclipse.org/bugs/showdependencytree.cgi?id=4&hide_resolved=1
https://bugs.eclipse.org/bugs/show_activity.cgi?id=4
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html#see_also

Algorithm 1. Meta Path Extraction

Input: a heterogeneous network HN in a bug repository, entity instances

Ostart and Oend, meta path between Ostart and Oend P

<Ostart-O1-O2…-Ok-…-Oend> (1 1k n   , n is the length of meta path P)

Output: list L (instances of meta path P)

1. PathExtract(W, Ostart, Oend, P,0);

2. Procedure PathExtract(HN, Ostart, Oend, P,i)

3. i=i+1; CandidateList= Ostart;

4. for entity xof Oi do

5. add x to CandidateList;

6. if i<n-1 then

7. PathExtract(HN, Ostart, Oend, P,i);

8. else

9. add Oend to CandidateList;

10. add CandidateList to L;

11. end else;

12. end if;

13. end for;

TABLE III. SUMMARY OF DATA SETS

Porjects #Developer #Component #Bug report #Comment #Product

Eclipse 34562 1200 316911 1670180 140

Mozilla 153577 741 499848 4189149 46

IV. DESIGNS OF THREE CASE STUDIES TO APPLY

DEVNET

In this section, we introduce the designs of three case

studies to apply our proposed DevNet to: 1) build

heterogeneous developer networks in bug repositories of

both Eclipse and Mozilla; 2) analyze characteristics of

heterogeneous developer networks and developer
collaboration in these two communities; and 3) illustrate the

benefits of DevNet in improving bug triage.

A. Case Study I: Heterogeneous Developer Networks in

Bug Repositories

In order to examine the proposed DevNet framework,

we conduct experiments on two large open source projects:
Eclipse and Mozilla. Both projects use Bugzilla as their bug

tracking system and both have evolved over 10 years.

Data Set for Case Study I. For Eclipse we collect bug

reports from 2001/10/10 to 2010/06/25 (bugs 1-318069)
which including 316911 bug reports; for Mozilla we collect

bug reports from 1998/04/07 to 2009/09/02 (bugs

35-514157) including 499848 bug reports. The details of our

data sets are presented in Table III. Note that since some bug

reports are removed during development (e.g., bugs from

346-815 in Eclipse and bugs from 1-34 in Mozilla) or not

anonymously accessible (e.g., bug 400020 in Mozilla), the

number of collected bugs does not equal to the range of bug

IDs.

Building Heterogeneous Developer Networks: For

each bug in each project, we collect the meta path

instances directly between two entities by parsing its bug

report and activity log stored in Eclipse and Mozilla bug

repositories. To automate this process, we developed a
tool that can automatically crawl the web pages of bug

reports and their activity logs, parse meta path instances

from these web pages. Then based on the heterogeneous

network schema, we use the proposed meta path

extraction algorithm (Algorithm 1) to extract meta path

instances between developers to build heterogeneous

developer networks in both Eclipse and Mozilla.

B. Case Study II: Analyzing Heterogeneous Developer
Networks and Developer Collaboration in Eclipse

and Mozilla

Bug

Developer

Developer

 assign

as
si

gn
-1

 toss

Bug

Developer

Developer

to
ss

-1

Comment

Bug

Developer

write

co
m

m
en

t

Comment

com
m

en
t

Developer

write

(a) P1: 1assign assignD B D



  (b) P2: 1toss tossD B D


  (c) P3: D-S-B-S-D

Figure 5. Three types of meta paths used to represent developer

collaboration.

Based on the proposed DevNet framework, we build

heterogeneous developer networks in bug repositories of

both Eclipse and Mozilla datasets. For better understanding

the heterogeneous developer networks, we analyze and

compare characteristics of these two heterogeneous

developer networks in this case study. Further, based on the

heterogeneous developer networks extracted from Eclipse

and Mozilla bug repositories, we explore how to represent
multiple developer collaboration and study the difference

about developer collaboration in Eclipse and Mozilla.

Developer Collaboration via Meta Path: Most of

existing work considers developer collaboration based on

homogeneous developer networks. However, in real

practice of software bug repositories, developers collaborate

with each other during the process of fixing bugs via

multiple ways. We empirical study three types of developer

collaboration and list them as follows:

 Assigning-based Developer Collaboration. For a
new coming bug report, a developer of the
corresponding component reads the description and
assigns the bug to a proper developer to fix it. We
address this kind of collaboration by meta path

1assign assignD B D


  , which denotes a developer assigns
a bug to other developer.

 Tossing-based Developer Collaboration. When
developer di is unable to fix a bug assigned to
him/her, di can toss this bug to other developer who
can resolve this bug well. We investigate this kind of

developer collaboration via meta path
1toss tossD B D


  .

 Comment-based Developer Collaboration. Fixing
bugs is a team work. Many developers may give
their suggestions or supply related information by
making comments on an existing bug report to help
the fixer better resolve the bug. We use meta path
D-S-B-S-D to address this kind of developer
collaboration in bug repositories.

Fig. 5 presents the three different types of meta paths

used in our approach to address multiple developer
collaboration in heterogeneous developer networks.

We propose a metric to measure the collaboration
probability between two developers to fix bugs in a common
component based on different types of developer
collaboration in a bug repository.

Given developers di and dj (both i and j range from 1 to n,
n is the number of developers) in a bug repository, we denote
CoDev(di, dj, c) as the collaboration probability which
captures the probability that developer di collaborates with dj

to solve bugs in component c. CoDev(di, dj, c) is defined by
the following equation based on the random walk of three
types of meta paths on a given component.

1

2 3

(, ,) (,)

 (,) (,)
i j P i j

P i j P i j

CoDev d d c RW d d

RW d d RW d d

 


 (1)

Where RWP1(di, dj), RWP2(di, dj), and RWP3(di, dj) denote

the random walk of three types of meta paths in component

c, respectively. Since random walk of a meta path ranges

from 0 to 1, the range of CoDev(di, dj, c) is [0 3].

C. Case Study III: Improving Bug Triage with

Developer Collaboration

Bug triage is a widely known problem during software

maintenance, which aims to assign a new coming bug to a

potential developer [1]. In this paper, we consider improving

bug triage with developer collaboration in heterogeneous

developer networks.

Data Set for Bug Triage. We validate our approach on

Eclipse and Mozilla projects. Both projects are long-lived

and kept stable for more than 10 years. For Eclipse, our data

set ranges from bug 200001 to 300000(Aug 2007 to Jan
2010). For Mozilla, we consider bug reports from 400001 to

500000(Oct 2007 to Jun 2009). We use the same heuristics

as prior work [1], [6] to remove the non-fixed bug reports

(the resolution of bug reports not marked as “fixed”) and

inactive developers (developers who have fixed less than 50

bug reports). After this, 49539 bug reports of Eclipse and

32097 bug reports of Mozilla are left. We employ tf-idf [21],

stop words, and stemming to extract string vectors from the

title and description of a bug report. For each bug report, the

developer who has fixed it is extracted as a label for a

machine learning classifier.

Predicting Developers. Bug triage is widely modeled as

text classification based on text features extracted from bug

reports, following the existing work [6], [13], we employ

the incremental learning to evaluate the result of bug triage,

we sort bug reports in chronological order and divide them

into 11folds and execute 10 rounds to investigate accuracies

of all the folds. In each round, we find the partner of every
developer (partner has the biggest possibility to collaborate

with this developer) based on developer collaboration in the

heterogeneous developer network extracted from the

training set, then combine this with the prediction set of a

classifier (when using a classifier, the input consists of the

string vectors extracted from the title and description of bug

reports, and the classifier returns a list of potential

developers ranked by relevance) to generate a new

prediction set. We use two typical classifiers, i.e.,

Supporting Vector Machine (SVM) and Naïve Bayes (NB).

Formally, we define our prediction approach as follows.

1. Given a new bug report, we predict a list of potential

developers by a machine learning classifier, e.g., SVM, NB.

2. Based on the predicted developer set P = {p1, p2, …,

pn} of an classifier, our approach create a new prediction set,

HP = {p1, t1, p2, t2, …, pn, tn}, ti is the developer who has the

highest probability to collaborate with pi, also called the

partner of pi in this paper.

3. Select the first 5 developers in HP to measure our

prediction accuracy, the predicted list would be a set, {p1, t1,
p2, t2, p3}.

Evaluation. We evaluate the results of our approach

with the accuracy of top 2, top 3, top 4, and top 5 predicted

developers in the prediction set. The accuracy is defined as

correctly predicted bug reports
Accuracy

all the bug reports
 based on the

recommended prediction set.

V. RESULTS

In this section, we present the results of three case

studies designed in Section IV.

A. Results of Case Study I

We apply the proposed DevNet framework to collect

meta paths from bug reports and their activity logs. We

collect meta path instances between bugs and components

(with “contain/contain-1” relation), components and

products (with “contain /contain-1” relation), developers and

bugs (with “report/report-1” and “fix/fix-1” relation),

comments and bugs (with “comment/comment-1” relation),
developers and comments (with “write/write-1” relation),

and between bugs (with “duplicate/duplicate
-1

” relation)

from bug reports in each project.

We collect meta path instances between developers and

bugs (with “assign/assign-1”, “toss/toss-1”, “close/close-1”,

and “reopen/reopen-1” relations) from the activity logs of

bug reports in each project.

Figure 6. Heterogeneous developer network of product DD (Device

Debugging Project) in Eclipse. Nodes in blue denote the developers, in

yellow denote the comments, in green denote the bugs, in red denote the

components, and in black denote the products.The diameter of a circle

denotes the sum of 5 types of meta paths listed in Table II starting from this

node. We label developers and componets with their names.

Having obtained all the directly meta path instances (e.g.,

“developer”-“comment”) among 5 entities, we use

Algorithm 1 to extract all the instances of meta paths
between developers listed in Table II to build a

heterogeneous developer network.

In Fig. 6, we take the product DD (Device Debugging

Project) in Eclipse as an example to illustrate the

heterogeneous network deriving from the proposed DevNet

framework. This network contains 38 developers, 152 bugs,

6 components, and 572 comments.

B. Results of Case Study II

In Fig. 7, we present the ratio of 5 types of meta paths

(listed in Table II) extracted from bug repositories of Eclipse

and Mozilla for building heterogeneous developer networks.

In both projects the ratios of meta paths
1toss tossD B D


 

and
1assign assignD B D


  are lower than other three types of
meta paths, and the ratio of meta path D-S-B-C-B-S-D is

significant. This implies that most developers interact with

each other by commenting bugs of the same component.

This fact has been confirmed in prior work [5] that implicit

(a)Eclipse

(b)Mozilla

Figure 7. The ratio of 5 types of meta paths in Eclipse and Mozilla.

communities may be emerged in bug repositories during

software development, and developers of the common

communities usually focus on a component. Note that in

Eclipse the ratio of meta path 1toss tossD B D


  and
1assign assignD B D


  is around 1, however in Mozilla this ratio

is up to 2. This means that fixing bugs in Mozilla may take

more labor cost than that in Eclipse. One possible reason for
this is that products in Mozilla are more complex than those

in Eclipse.
Based on the heterogeneous developer network extracted

from Eclipse dataset, we take five developers in component
PDE_UI (Plugin Development Environment UI) of Eclipse
as an example to illustrate how to represent collaboration
between two developers. Statistical information about the
five developers in component PDE_UI is shown below in
Table IV.

TABLE IV. INFORMATION OF FIVE DEVELOPERS IN PDE_UI

Developer # toss bugs # assign bugs # comment bugs

ankur_sharma 17 40 403

cwindatt 50 198 2898

bcabe 1 34 712

caniszczyk 6 345 5407

olivier_thomann 4 119 297

TABLE V. SUMMARY OF THREE TYPES OF META PATH AMONG FIVE DEVELOPERS

Developer ankur_sharma cwindatt bcabe caniszczyk olivier_thomann

RWP1 RWP2 RWP3 RWP1 RWP2 RWP3 RWP1 RWP2 RWP3 RWP1 RWP2 RWP3 RWP1 RWP2 RWP3
ankur_sharma - 0.740 0.076 1.000 0.007 0.312 0.000 0.191 0.575 0.000 0.062 0.037 0.000

cwindatt 0.086 0.102 0.889 - 0.214 0.058 0.111 0.649 0.773 0.000 0.051 0.067 0.000

bcabe 0.166 0.306 0.000 0.004 0.043 0.000 - 0.797 0.577 0.000 0.033 0.074 0.000

caniszczyk 0.518 0.646 0.000 0.044 0.090 1.000 0.327 0.161 0.000 - 0.111 0.103 0.000

olivier_thomann 0.226 0.303 0.000 0.079 0.031 0.000 0.076 0.111 0.000 0.619 0.555 0.000 -

1.80% 1.90%

21.10%

35.23%

39.97%

D-B-D(tossing)

D-B-D(assigning)

D-S-B-S-D

D-S-B-C-B-S-D

D-S-B-C-P-C-B-S-D

1.72% 3.36%

17.22%

33.36%

44.34%

D-B-D(tossing)
D-B-D(assigning)
D-S-B-S-D
D-S-B-C-B-S-D
D-S-B-C-P-C-B-S-D

In Table V, we calculate the random walk of three types
of meta paths among five developers in component PDE_UI.
RWP1, RWP2, and RWP3 represent the random walk of meta
paths P1, P2, and P3 (shown in Fig. 5) respectively. Column
in bold of each row denotes developer in this row has a
higher collaboration probability with developer in the
column than other four developers, e.g., ankur_sharma has
higher probability to collaborate with cwindatt than others
and we call cwindatt is the partner of ankur_sharma in
component PDE_UI of Eclipse.

For better understanding the developer collaboration

revealed in heterogeneous developer networks of Eclipse

and Mozilla bug repositories, we apply our approach to

all the developers in Eclipse and Mozilla during

2002/01/01-2008/12/31. Following [6] we choose half

year as time interval. We denote the first half year with “f”

and the second half year with “s”. For each time interval,

we investigate the ratio of developers who change their

partner in the whole projects.

As shown in Fig. 8, the average ratio in Eclipse is 75.7%

and in Mozilla is 80.8%. This reflects that developers and

teams in Eclipse are more stable than those in Mozilla.

Overall, the ratios in both projects are more than 60%. One

possible reason for this fact is the unstable developers in the

open source projects. Moreover, the ratios after 2004s in
Eclipse and after 2005s in Mozilla are fluctuant decreasing.

This may because developers and teams are becoming more

stable along with the development of these two projects.

C. Results of Case Study III

In Table VI, we present the results of bug triage by

Figure 8. Developer collaboration evolution.

combining developer collaboration with the output of the

classifiers (denoted as SVM+MDC or NB+MDC, MDC

stands for Multiple Developer Collaboration) in Eclipse

and Mozilla. Overall, for both SVM and Naïve Bayes, the

accuracy is improved when combining with developer

collaboration. The maximum prediction accuracy for

Eclipse is 71.69% and for Mozilla is 58.60%. Note that, the

average improvement for Eclipse is around 21%, while for
Mozilla, it’s only about 10%. One of the possible reasons

for this fact is that the developers and teams in Eclipse are

more stable than that in Mozilla. Thus, for Mozilla,

developer collaboration extracted from a training data set is

very different from that in a testing data set. While in

Eclipse, the change of developer collaboration is not as

drastic as that in Mozilla so the performance of our

approach is better in Eclipse.

TABLE VI. PREDICATION ACCURACY OF BUG TRIAGE ON ECLIPSE AND MOZILLA

Project

classifier

Size

Approach

Accuracy for each fold (%) Average

Accuracy

Improvement

2 3 4 5 6 7 8 9 10 11

Eclipse

SVM

Top2 SVM

SVM+MDC

21.85

46.77

24.00

51.51

27.80

49.56

31.69

53.08

33.02

57.90

28.73

58.37

34.26

55.86

36.98

57.13

37.34

59.79

37.47

58.62

31.31

54.86

23.55

Top3 SVM

SVM+MDC

25.52

49.50

29.68

56.37

33.90

54.40

37.97

58.47

38.63

63.59

35.10

64.19

41.98

61.88

43.38

62.46

44.29

64.21

44.60

63.31

37.51

59.84

22.33

Top4 SVM

SVM+ MDC

28.54

52.32

33.86

59.72

37.48

57.95

42.08

61.60

43.43

67.68

40.28

68.54

47.60

66.10

48.40

66.47

48.78

68.89

49.89

67.44

42.03

63.67

21.64

Top5 SVM

SVM+MDC

30.93

54.59

37.26

62.28

41.16

60.75

45.88

64.40

47.47

70.71

43.72

71.27

52.22

69.56

52.42

69.60

52.93

71.69

54.44

70.60

45.84

66.56

20.72

Naïve

Bayes

Top2 NB

NB+MDC

32.93

52.81

34.55

57.62

35.44

55.91

38.78

58.72

41.47

63.37

35.61

63.28

38.17

59.44

38.45

58.73

40.85

62.61

41.87

62.07

37.81

59.46

21.65

Top3 NB

NB+MDC

34.98

55.98

36.32

61.55

37.19

58.95

40.71

62.36

43.03

67.74

37.21

66.74

39.94

63.77

41.27

62.92

43.29

66.61

44.40

66.33

39.83

63.30

23.47

Top4 NB

NB+MDC

35.84

57.92

36.79

62.94

37.90

60.50

41.57

63.94

43.91

69.24

37.94

68.05

40.47

65.39

42.38

65.12

44.32

68.21

45.51

68.36

40.66

64.97

24.31

Top5 NB

NB+MDC

36.53

58.87

37.01

63.37

38.32

61.26

41.95

64.67

44.23

69.85

38.30

68.87

40.72

66.25

42.98

66.30

44.85

69.07

46.22

69.33

41.11

65.78

24.67

Mozilla

SVM

Top2 SVM

SVM+MDC

18.88

40.85

24.09

41.16

23.17

40.99

22.48

40.54

26.42

41.23

28.55

43.63

29.58

43.15

30.84

42.97

34.30

44.52

32.46

44.57

27.08

42.36

15.28

Top3 SVM

SVM+MDC

22.79

43.28

29.71

45.34

28.72

45.41

28.34

45.54

33.65

46.13

35.61

49.04

38.14

50.07

38.07

48.32

41.43

49.42

39.01

50.09

33.55

47.26

13.71

Top4 SVM

SVM+MDC

26.38

45.85

33.93

49.07

33.52

49.93

33.24

49.31

39.44

50.99

41.74

53.39

43.59

55.00

42.73

53.46

46.84

54.35

44.60

54.82

38.60

51.62

13.02

Top5 SVM

SVM+MDC

29.78

47.74

37.77

52.23

37.59

53.05

37.83

52.47

43.35

54.49

46.68

57.44

48.63

58.60

46.57

57.33

50.71

58.15

48.10

58.18

42.70

54.97

12.27

Naïve

Bayes

Top2 NB

NB+MDC

33.04

45.78

35.16

47.53

33.93

46.20

32.04

45.51

35.06

45.61

35.54

47.29

38.62

47.33

38.49

46.57

38.07

46.40

36.10

45.05

35.61

46.33

10.72

Top3 NB

NB+MDC

35.98

49.55

38.59

51.30

36.77

49.73

35.23

49.49

38.21

49.76

38.90

51.68

41.74

51.47

41.30

50.65

40.88

50.55

39.49

48.82

38.71

50.30

11.59

Top4 NB

NB+MDC

37.94

51.20

40.34

53.46

38.45

51.88

36.77

51.47

39.86

51.95

40.92

53.29

43.04

53.50

42.67

52.91

42.43

52.78

40.42

50.84

40.28

52.33

12.05

Top5 NB

NB+MDC

38.86

52.26

41.19

54.52

38.93

53.05

37.25

52.60

40.61

53.08

41.60

54.32

43.76

54.87

43.15

54.28

43.04

53.63

41.06

51.32

40.95

53.39

12.44

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

 r
at

io
 o

f
d

e
ve

lo
p

e
rs

 w
h

o
 c

h
an

ge
 t

h
e

ir
 p
a
rt
n
er

Eclipse

Mozilla

Comparisons. To further evaluate the effectiveness of our

approach, we compare it with the following two similar

methods:

 Comment-based Developer Prioritization. In [6], the
authors prioritize developers based on their
interaction via comments in bug repositories. They
examine that their model can improve bug triage by
combining the developer prioritization with the
output of machine learning classifiers (SVM and
NB). We use DP to denote this method.

 Tossing Graph. In [17], Jeong et al. first introduce
the concept of tossing graph in a bug repository.
They proposed a method to improve bug triage by
combining tossing graph with the output of machine
learning classifiers (SVM and NB). Then
Bhattacharya et al. [13] improve this method by
fine-grained incremental learning and multi-feature
tossing graphs. We use TG to denote method in [13].

For the above two methods, we use the same data set as

our approach to evaluate their performance. Results are

shown in Fig. 9. In the figure, the vertical axis is the

accuracy rate, the horizontal axis is the top N list’s size

(starting from N=2). Results show that, comparing with the

other two methods our approach has 5-15% relative

improvement in Eclipse dataset, 1-5% relative improvement

in Mozilla dataset. Moreover, our approach is more stable

than the other two methods in both Eclipse and Mozilla. For

example, in Eclipse dataset, based on both SVM and NB the

average improvement of our approach is over 20%.
However, for method DP and TG, the performance based on

SVM is more significant than that based on NB.

Compared to other two methods, the improvement

achieved in our approach is mainly due to the abundant and

actual information about developer collaboration revealed

by analyzing heterogeneous developer network in bug

repositories.

VI. THREATS TO VALIDITY

In this section, we discuss the main threats to validity of

our approach.

A. Building Heterogeneous Developer Network

In this work, we build heterogeneous developer

networks based on meta paths between developers extracted

from bug reports and bugs activity logs in bug repositories

of two large open source projects namely, Eclipse and

Mozilla. Both projects maintain a bug report and an activity

log for each bug, and most of these documents are
anonymously accessible. However, for closed-source

software projects (e.g., commercial software projects),

entities in their bug repositories and interactions among

entities may be different with that of open source projects.

Whether our model is suitable for closed-source software

should be further investigated.

(a)Eclipse

(b)Mozilla

Figure 9. The Comparisons between our approach with other methods.
The vertical axis is the accuracy rate, and the horizontal axis is the top N

list’s size (starting from N=2).

B. Developer Collaboration Analysis

 In our work, we consider the developer collaboration

based on three types of meta path, however, there are other

types of collaboration which are not recorded in software

bug repositories and cannot be captured by meta path-based

approach, for example a developer may collaborate with

others to fix bugs via emails or offline table meetings. Thus,

it is hard to validate our obtained results. A further study
about examining meta path-based developer collaboration

on other kinds of software repositories (mailing list

repositories, change log repositories, and source file

repositories) is needed.

C. Improving bug triage

In this paper we show that the multiple developer
collaboration in a heterogeneous developer network is

effective to improve bug triage in software repositories

based on empirical evaluation. The multiple types of

developer collaboration can supply more information to

update the output of classifiers. However, further questions

may be proposed, for example, why heterogeneous

developer network is helpful for bug triage? And what is the

internal relation between developer collaboration and fixing

bugs? In this paper, we reveal different types of

collaboration between developers during the process of

fixing bugs. For further work, more case studies should be
conducted to explore the correlation between the developer

collaboration and bug triage.

VII. CONCLUSION AND FUTURE WORK

During software development and maintenance, fixing

0.3

0.4

0.5

0.6

0.7

2 3 4 5
SVM SVM+DP
SVM+TG SVM+MDC

0.3

0.4

0.5

0.6

0.7

2 3 4 5

百

NB NB+DP
NB+TG NB+MDC

0.25

0.35

0.45

0.55

0.65

2 3 4 5

SVM SVM+DP

SVM+TG SVM+MDC

0.25

0.35

0.45

0.55

0.65

2 3 4 5

NB NB+DP

NB+TG NB+MDC

bugs is the result of developer collaboration. Thus,

understanding the structure of developer collaboration could

be helpful for effective and efficient bug fixing. In this paper,

we present DevNet, a framework for representing and

analyzing developer collaboration in bug repositories based

on heterogeneous developer networks. Moreover, we apply
such developer collaboration to improve bug triage.

Experiments on bug repositories of Eclipse and Mozilla

show that our method can improve the state-of-the-art bug

triage methods by 5-15% in accuracy. We believe that the

proposed approach provides new insights for analyzing

software repositories through heterogeneous networks. Our

future work consists of the following.

 Exploring the proposed DevNet framework on a
variety of projects, including commercial projects.
Currently, we only examine our framework on two
open source projects. In the future we plan to
investigate the performance of DevNet on some
closed-source software projects.

 In this paper, we study developer collaboration and
its application in heterogeneous developer networks
extracted from bug repositories. We are planning to
explore other kinds of behaviors of developers in a
heterogeneous developer network, e.g., developer
contribution, developer communication.

 In this paper, we empirically investigate
heterogeneous developer network in bug repositories
of software products. A further study about
examining heterogeneous developer networks in
other kinds of software repositories, for example,
mailing list repositories, change log repositories, and
source file repositories will be conducted.

To our knowledge, this study is the first to investigate
multiple types of developer collaboration by meta

path-based approach in heterogeneous developer networks

extracted from software bug repositories.

ACKNOWLEDGMENT

This research was supported in part by National Natural

Science Foundation of China under Grant Nos. 61073044,

71101138 and 61003028; National Science and Technology

Major Project under Grant Nos. 2012ZX01039-004; Beijing

Natural Science Fund under Grant No.4122087; State Key

Laboratory of Software Engineering of Wuhan University.

REFERENCES

[1] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?,”

Proc. 28th Intl. Conf. Software Engineering (ICSE ’06), May 2006,pp.
361-370.

[2] D. Čubranić and G.C. Murphy, “Automatic Bug Triage Using Text

Categorization,” Proc. 16th Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE ’04), Jun. 2004, pp. 92-97.

[3] Y. Sun and J. Han: Mining Heterogeneous Information Networks:

Principles and Methodologies. Synthesis Lectures on Data Mining
and Knowledge Discovery, Morgan & Claypool Publishers 2012.

[4] A. Meneely and L. Williams, “Socio-Technical Developer Networks:
Should We Trust Our Measurements?,” Proc. 33rd Intl. Conf.

Software Engineering (ICSE ’11), May 2011, pp. 281-290.

[5] Q. Hong, S. Kim, S.C. Cheung, and C. Bird, “Understanding a
Developer Social Network and its Evolution,” Proc. 27th IEEE Intl.

Conf. Software Maintenance (ICSM ’11), Sept. 2011, pp. 323-332.

[6] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer Prioritization in
Bug Repositories,” Proc. 34st Intl. Conf. Software Engineering

(ICSE ’12), June.2012, pp. 25-35

[7] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in MSR’06.

[8] C. Bird, D. Pattison, R. D’Souza, V. Filkov and P. Devanbu, “Latent

Social Structure in Open Source Projects,” Proc. 16th ACM
SIGSOFT Intl. Symp. Foundations of software engineering (FSE ’08),

Nov. 2008, pp.24-35.

[9] T. Wolf, A. Schröter, D. Damian, L. D. Panjer, and T. H. D.
Nguyen. “Mining Task-Based Social Networks to Explore

Collaboration in Software Teams,” IEEE Software, vol. 26, no. 1,pp.
58–66, 2009.

[10] T. Wolf, A. Schröter, D. Damian, and T. Nguyen, “Predicting Build
Failures Using Social Network Analysis on Developer

Communication,” Proc. 31st Intl. Conf. Software Engineering
(ICSE ’09), May 2009, pp. 1-11.

[11] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting

Failures with Deverloper Networks and Social Network Analysis,”
Proc. 16th ACM SIGSOFT Intl. Symp. Foundations of Software

Engineering (FSE ’08), Nov. 2008, pp. 13-23.

[12] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-Module
Networks Predict Failures?,” Proc. 16th ACM SIGSOFT Intl. Symp.

Foundations of Software Engineering (FSE ’08), Nov. 2008, pp. 2-12.

[13] P. Bhattacharya and I. Neamtiu, “Fine-Grained Incremental Learning
and Multi-Feature Tossing Graphs to Improve Bug Triaging,” Proc.

26th IEEE Intl. Conf. Software Maintenance (ICSM ’10), Sept. 2010,
pp. 1-10.

[14] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,

“Graph-Based Analysis and Prediction for Software Evolution,” Proc.
34st Intl. Conf. Software Engineering (ICSE ’12), June.2012, pp.

419-429.

[15] Y. Sun, B. Norick, J. Han, X. Yan, P. Yu, and X. Yu, “Integrating
meta-path selection with user-guided object clustering in

heterogeneous information networks,” Proc. 18th ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Mining (KDD’2012),

Aug.2012, pp. 1348-1356.

[16] Y. Yang, N. Chawla, Y. Sun, and J. Hani, “Predicting Links in

Multi-relational and Heterogeneous Networks,” Proc. 12th Int. Conf.
Data Mining (ICDM’ 12), Dec.2012, pp. 755-764.

[17] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage with

Tossing Graphs,” Proc. 17th ACM SIGSOFT Symp. Foundations of
Software Engineering (FSE’09), Aug. 2009, pp. 111-120.

[18] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and

C. Weiss, “What Makes a Good Bug Report?,” IEEE Trans. Software
Engineering, vol. 36, no.5, Oct. 2010, pp. 618-643.

[19] J. Ye, K. Chen, T. Wu, J. Li, Z. Zhao, R. Patel, M. Bae, R. Janardan,

H. Liu, G. Alexander, and E. Reiman E, “Heterogeneous data fusion
for alzheimer’s disease study,” Proc. 14th ACM SIGKDD Intl.

Conf. Knowledge Discovery and Data Mining (KDD’2008),
July.2008, pp. 1025–1033.

[20] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen, “Fuzzy

Set and Cache-Based Approach for Bug Triaging,” Proc. 19th ACM
SIGSOFT Symp. Foundations of Software Engineering (FSE ’11),

Sept. 2011, pp. 365-375.

[21] I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Morgan Kaufmann,

Burlington, MA, 2011.

