
Heterogeneous Network Analysis of Developer Contribution in Bug Repositories

Wen Zhang1, 3, Song Wang1,4, Ye Yang1, 2, Qing Wang1, 2

1Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

3State Key Laboratory of Software Engineering of Wuhan University
4University of Chinese Academy of Sciences

{zhangwen, wangsong, yangye, wq}@nfs.iscas.ac.cn

Abstract—Using a bug repository, developers contribute to

improve the quality of software incrementally by creating and

updating bug reports. All the software artifacts in bug

repositories are derived from developer contribution. Most

prior studies on developer contribution in bug repositories bias

on one particular form, e.g., commenting bug reports.

However, in real practice of bug repositories, developers

participate in and contribute to software projects via multiple

ways, e.g., reporting new bugs, reopening incorrectly fixed

bugs, commenting unfixed bug reports, and fixing unsolved

bugs. In this paper, we exploit recent advances in analysis of

heterogeneous network to avoid biased aspects in measuring

developer contribution and explore multiple types of developer

contribution in bug repositories. Further, we consider

leveraging such multiple types of developer contribution to

assist a typical prediction problem in bug repositories, i.e., bug

triage. Empirical studies on bug repositories of Eclipse and

Mozilla show that our approach can provide enriched

knowledge of developer contribution to improve the resolution

of bug triage. This study strongly suggests using the promising

aspects of heterogeneous network can open many actionable
insights in analyzing software repositories.

Keywords-developer contribution; heterogeneous network;

bug triage

I. INTRODUCTION

Bug report tracking systems (e.g., Bugzilla1) also known
as bug repositories are widely adopted in software
development to manage and track bugs efficiently. Within a
bug repository, developers and users work together and make
contribution continuously to improve the quality of software
projects by reporting encountered problems, commenting
bug reports to provide more detail information, and fixing
bugs [1]. All the software artifacts in bug repositories are
derived from developer contribution. Thus, understanding
the structure of developer contribution could be helpful for
fixing bugs and building success software.

Traditionally, metric LOC (lines of code) is used for
measuring developer contribution in source code repositories
[3], [6], [10]. Recently, as developers’ social behaviors are
more and more explicit in software development [5], [7],
some social network metrics such as degree, betweenness,
and closeness [9] are used to leverage developer or
community contribution to improve software practice in
software repositories. For example, [11], [12] build

1http://www.bugzilla.org/

developer networks in change log repositories to improve
software failure prediction; [13] prioritizes developers, [8]
investigate developer communities via social network
analysis in bug repositories.

Most of above studies employ social network techniques
to construct developer networks bias on a particular form of
developer contribution (e.g., in developer network of [8], a
link between two developers denotes developers have
commented a common bug). However, in real practice of
software repositories, e.g., in a bug repository, developers
contribute to software projects via multiple ways, e.g.,
reporting new bugs, reopening incorrectly fixed bugs,
commenting unfixed bugs, and fixing unsolved bugs.

Since typical social network techniques cannot deal with
multi-relation among nodes [4]. In this paper, we exploit
recent advances in analysis of heterogeneous network [4] to
explore multiple types of developer contribution in bug
repositories. Heterogeneous network analysis has open many
new insights in knowledge mining [22], social multi-relation
analysis [23].

We introduce heterogeneous developer contribution
network to model the multiple types of contribution from
developers to components in software bug repositories.
Different from traditional developer contribution network,
e.g., Fig. 1 (b), a heterogeneous developer contribution
network contains multiple types of objects, such as
developers, bugs, comments, and components, as well as
multiple types of links denoting different semantic relations
among these objects. Moreover, objects in heterogeneous
developer contribution network may connect with each other
via different paths which denote different semantic relations
between objects. For example, in Fig. 1 (a), a path between
developer “Bob” and Component1 as “Bob- Comment1-Bug
Report1- Component1” means Bob comments a bug report of
Component1. The two nodes also have another path as “Bob-
Bug Report2 - Component1” denotes Bob creates a bug
report in Component1. Both of these two paths denote Bob
contributes to Component1, to distinguish the means of
different paths between two objects, we propose to use meta
path [4] (a path that connects objects via a sequence of
relations) to denote multi-relation between two objects.

Further, we study 4 Research Questions (RQs) to explore
the properties of multiple types of developer contribution and
its application in bug repositories, i.e., improving the result
of bug triage.

Bob

Bug report1
write

Comment1

Bug report 2

report

comment

Component1

belong to

belong to

Bob Component1

contribute

(a) (b)

Figure 1. Examples of a simply heterogeneous developer contribution

network (a) and a traditional developer contribution network (b).

Experiments on bug repositories of Eclipse and Mozilla
show that our approach can assist bug triage in bug
repositories, the average accuracy is improved by 43% on
Eclipse and 28% on Mozilla by combining multiple types of
developer contribution.

Our contribution can be summarized as follows:

1. We introduce heterogeneous network analysis to
model multiple types of contribution behaviors of developers
in bug repositories.

2. Using meta path-based approach in heterogeneous
network, we measure and analyze multiple types of
developer contribution in bug repositories.

3. We investigate how to improve a typical prediction
problem, i.e., bug triage, by combining multiple types of
developer contribution with machine learning techniques.

The remainder of this paper is organized as follows.
Section II presents the background. Section III describes the
methodology of extracting heterogeneous networks from bug
repositories. Section IV analyzes multiple types of developer
contribution in bug repositories. Section V presents the
results of assisting bug triage by leveraging multiple types of
developer contribution. Section VI states the threats. Section
VII presents the related work. Section VIII summarizes this
paper.

II. BACKGROUND

A. Bug Repositories

A bug repository is an issue tracking system adopted in
software development and maintenance. Most software
projects use bug repositories to manage their historical and
incoming bugs. Bugs are recorded and managed in bug
repositories in formation of bug reports. Most bugs share a
common lifecycle as described by Anvik et al. [1]. A
developer finds a problem of the software and then creates a
bug report in a bug repository. Next, the bug report will be
assigned to a developer who is responsible for resolving this
bug by a triager. Other developers can provide potential
solutions for resolving this bug by commenting the bug
report. Finally, after the fixer resolves the bug, other
developers verify his/her solution for the bug. If correctly
fixed, the bug will be closed and marked with “resolved” or
the bug will be reopened for future resolution. Following
prior work Jeong et al. [14], we refer developers to all the

people worked in bug repositories, including reporters,
triagers, fixers, and active users.

B. Heterogeneous Network

A heterogeneous network [4] contains multiple types of
objects and multiple types of links, and the definition is
presented as follows.

Heterogeneous Network: A heterogeneous network is
defined as a directed graph . V is the set of nodes,
including n types of objects. is the set of links
between nodes in V, which involves multiple types of links.

Objects in a heterogeneous network can be connected via
different paths with different relations. Formally, these paths
are called meta path [4], and can be defined as below.

Meta Path: A meta path P is a path defined on
heterogeneous network , and is represented in

form of

→

→

→ (n this the number of objects

in P). Here, is an object in V and is a
relation between two objects in V. Meta path P can be
abbreviated as , if there is no ambiguity in
either the meaning or the order of the relations.

In heterogeneous network, path count [4] is frequently
used to measure topological features of meta path.

Path count: the number of path instances p between two
objects x and y following meta path P and denoted
as .

III. EXTRACTING HETEROGENEOUS NETWORK

In this paper we use the bug repositories of open source
projects Eclipse and Mozilla as examples to explore the
heterogeneous network. In a typical bug repository, a bug is
reported and submitted to the bug repository as a bug report,
which contains full information of the bug. Developers can
suggest potential solution for fixing bugs via comments [16],
and each bug belongs to a component.

To construct heterogeneous networks from bug
repositories, we empirically consider 4 types of objects,
namely developers (denoted as D), bugs (denoted as B),
comments (denoted as S), and components (denoted as C),
and their interactions during the process of fixing bugs in
bug repositories. Relations between developers and
comments are represented by “write” and “written by”
(denoted as write-1). Relations between bugs and comments
are represented by “comment” and “commented by”
(denoted as comment-1). Relations between components and
bugs are represented by “contain” and “belong to”. Relations
between bugs are represented by “duplicate” and “duplicate
of” (denoted as duplicate-1). Interactions between developers
and bug reports have multiple types of relations. That is, a
developer can report a new bug, assign a bug to another
developer, toss a bug to other developer, fix a bug, close a
bug, and reopen a bug. Here we use
“report/assign/toss/fix/close/ reopen” to represent the
multiple relations from developers to bugs and use
“report-1/assign-1/toss-1/fix-1/close-1/reopen-1” to represent the

Developer

report/assign/toss/fix/

close /reopen

report-1/assign-1/toss-1/fix-1

/close-1/reopen-1

duplicate/duplicate-1

belong to

contain

ComponentBug

Comment

co
m

m
en

t

co
m

m
en

t-1

Figure 2. Schema for heterogeneous network in a bug repository.

multiple relations from bugs to developers, which means a
bug “reported by”, ”assigned by”, “tossed by”, “fixed by”,
“closed by”, or “reopened by” a developer.

Further, we employ the concept of network schema [4]
shown in Fig. 2 to summarize the meta structure of the
constructed heterogeneous network defined for a bug
repository. In the network schema, nodes denote the types of
objects, and links (also called meta path) denote the relations
between the two objects.

With the network schema, we can extract a
heterogeneous network from a bug repository. Typical bug
repositories maintain a bug report and an activity log for
each bug. A bug report records full information of a bug such
as the reporter, fixer, commenters and their comments, and
the component this bug belongs to. An activity log records
the change histories of a bug report, e.g., the change histories
of the bug status, the fixer, and tossing histories of this bug
report [14].

In bug repositories, bug reports and their activity logs are
typically presented as HTML web pages. By crawling and
parsing these HTML web pages, we can obtain meta paths
directly between two objects shown in network schema to
build a heterogeneous network. Algorithm 1 shows how to
construct a heterogeneous network by extracting different
types of meta paths from bug reports and their activity logs
in a bug repository with network schema in Fig. 2.

Algorithm 1. Extracting a heterogeneous network from a bug repository

Input: B: bug report set, L: activity log set, T: a set of directly link

between objects (shown in Fig. 2)

Output: Heterogeneous network HN

1. HeterogeneousNetworkExtracting(B, L, T);

2. Procedure HeterogeneousNetworkExtracting (B, L, T)

3. for link ti in T do

4. for bug report bi in B do

5. if bi contains objects in ti then

6. add instance of ti to HN;

7. end if;

8. end for;

9. for activity log li in L do

10. if li contains objects in ti then

11. add instance of ti to HN;

12. end if;

13. end for;

14. end for;

TABLE I. THE DETAILS OF DATASET

Porjects #Developers #Components #Bug reports #Comments

Eclipse 32,722 1005 300,191 1,569,403

Mozilla 150,326 709 488,053 4,093,368

IV. MULTIPLE TYPES OF DEVELOPER CONTRIBUTION IN

HETEROGENEOUS NETWORKS OF BUG REPOSITORIES

In this section, we investigate multiple types of developer
contribution and its applications in heterogeneous networks
extracted from bug repositories of two large scale and open
source projects namely Eclipse and Mozilla.

A. Research Questions

We propose four Research Questions (RQs) to explore
developer contribution in bug repositories. The first three
questions are analysis of multiple types of developer
contribution. The fourth question is application of multiple
types of developer contribution in prediction problems. We
answer these two categories of RQs in section IV (RQ1, RQ2,
and RQ3) and section V (RQ4), respectively.

RQ1. How to represent multiple types of developer
contribution in a heterogeneous network extracted from a
bug repository?

RQ2. What is the proportion of each type of
contribution?

RQ3. What is the distribution and evolution of multiple
types of developer contribution in bug repositories?

For RQ1, RQ2, and RQ3, we use four types of meta paths
to explore developer contribution in heterogeneous networks
extracted from bug repositories.

 RQ4. Can we use multiple types of developer
contribution to assist prediction problems in bug
repositories?

In RQ4, we investigate how to leverage meta path-based
developer contribution to improve a typical problem in bug
repositories, i.e., bug triage.

B. Data Collection

To investigate the answers of the above four RQs, we
conducted experiments on bug repositories of Eclipse and
Mozilla. For Eclipse we collected bug reports from
2001/10/10 to 2010/01/31 including 300,191 bug reports; for
Mozilla we collected bug reports from 1998/04/07 to
2009/06/31 including 488,053 bug reports. The details of our
dataset are shown in Table I. With Algorithm 1, we extract
heterogeneous networks from Eclipse and Mozilla projects
based on the above dataset, respectively.

C. Multiple Types of Developer Contribution in

Heterogeneous Network

In software bug repositories, developers can contribute to
a component via multiple ways including reporting new bugs,
reopening incorrectly fixed bugs, fixing unsolved bugs, and
commenting on bug reports. Prior studies [8], [13] consider
developer contribution based on purely developers’
comments. The comment-based approaches ignore other

kinds of developer contribution. For example, according to
our observation, developer “use leaf” has fixed 128 bugs
during 1998/09/14-2003/03/19 in Mozilla project, however,
he made only 1 comment on bug reports; developer “Rick
Osborne” reported 22 bugs in the year 1998 without any
comment. Intuitively, many developers like “use leaf” and
“Rick Osborne” may focus on fixing or reporting bugs. Thus,
they seldom make comments on bug reports. So, simply
applying comment-based approaches to measure developer
contribution in bug repositories might be inappropriate.

This shortcoming motivates us to propose a new developer
contribution measure that captures multiple types of
developer contribution from different behaviors of
developers in bug repositories. In this work, we mainly
consider component-level developer contribution
(contribution from developers to a software component) on
fixing bugs via four types of developer behaviors. These four
types of developer contribution are listed as below:

 Developer contribution via making comments.
Fixing bug is a team work, many developers give
their suggestions or supplying related information by
making comments. We use meta path to
address this kind of developer contribution. This meta
path means a developer (D) makes a comment (S) on
a bug report (B) of a component (C).

 Developer contribution via reporting bugs.
Developers find bugs and report these bugs (here we
only consider non-duplicate bugs), we address this

kind of contribution by meta path

→

→ ,

which denotes a developer (D) reports a new bug
report (B) of a component (C).

 Developer contribution via reopening bugs. Some
bug reports labeled with “FIXED” may be incorrectly
fixed, developers may find these bugs and reopen
them for correctly fixing in the future. We address
this kind of contribution by meta path

→

→ , which means a developer (D)

reopens an incorrectly fixed bug report (B) of a
component (C).

 Developer contribution via fixing bugs. A vital
reason for using a bug repository is improving
software quality by fixing bugs. Thus, fixing bug is a
direct way to contribute to a bug repository. In this
work, we study this kind of developer contribution

via meta path

→

→ , which means a developer

(D) fixes a bug (B) of a component (C).

Fig. 3 shows the four types of meta paths used to address
multiple types of developer contribution in this work. Meta
path instances of these meta paths can be produced by
traversing on the network schema using breadth-first search.

We propose a metric to measure the contribution from a
developer to a component in a bug repository based on four
types of meta paths.

Comment

Bug

Developer

write

co
m

m
en

t

Component

b
elon

g to

Bug

Component

Developer

report

b
el

on
g

to

Bug

Component

Developer

reopen

b
el

on
g

to

Bug

Component

Developer

fix

b
el

on
g

to

 (a) P1: (b) P2:𝐷
𝑟𝑒𝑝𝑜𝑟𝑡
→ 𝐵

𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
→ 𝐶 (d) P3: 𝐷

𝑟𝑒𝑜𝑝𝑒𝑛
→ 𝐵

𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
→ 𝐶 (c) P4: 𝐷

𝑓𝑖𝑥
→ 𝐵

𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
→ 𝐶

Figure 3. Meta paths used to represent developer contribution.

Given a developer di (1 ≤ i ≤ n, n is the number of
developers) and a component c, we use path count of these
four meta paths namely PCP1(di, c), PCP2(di, c), PCP3(di, c),
and PCP4(di, c) to represent the contribution that di made to c
via meta paths P1, P2, P3, and P4, respectively. We denote
Con(di, c) as contribution that di made on c, and it can be
calculated by the following equation.

1 2

3 4

(,) (,)
(,)

 M1 M2
(,) (,)

M3 M4

P i P i

i

P i P i

PC d c PC d c
Con d c

PC d c PC d c

  



 (1)

In equation 1, M1, M2, M3, and M4 are normalized
parameters, by which we normalize each kind of contribution
to the range from 0 to 1. We regulate M1 = max1 ≤ i ≤ nPCP1(di,
c)), M2 = max1 ≤ i ≤ nPCP2(di, c)), M3 = max1 ≤ i ≤ nPCP3(di, c)),
and M4 = max1 ≤ i ≤ nPCP4(di, c)). Thus the range of Con(di, c)
is [0 4]. Moreover, we can calculate the whole developer
contribution from all developers to component c by

1

() (,)i

i n

Con c Con d c
 

  .

Answer to RQ1. Employing meta path-based analysis, we
can represent and measure four types of developer
contribution in bug repositories.

(a)Eclipse

(b)Mozilla

Figure 4. The proportion of four types of meta paths for measuring

developer contribution in bug repositories of Eclipse and Mozilla.

74.39% 13.21%

1.89%

10.51%

D-S-B-C(comment)

D-B-C(report)

D-B-C(reopen)

D-B-C(fix)

86.18%

7.63%

1.10% 5.08%

D-S-B-C(comment)

D-B-C(report)

D-B-C(reopen)

D-B-C(fix)

Proportion of four types of developer contribution.
Understanding the proportion of each types of contribution
could provide valuable insights into the process of software
development and maintenance. We investigate the proportion
of four types of developer contribution in the whole projects.

Fig. 4 presents the ratio of four types of meta paths (listed
in Fig. 3) extracted from bug repositories of Eclipse and
Mozilla. In both projects, the ratios of meta paths

→

→ and

→

→ are lower than the other

two types of meta paths, and the ratio of meta path
 is significant in both projects (over 70%). This
implies that most developers contribute to these two projects
by commenting bugs. We also note that in Eclipse the ratio
of comment-based developer contribution is about 74%, in
Mozilla this ratio is up to 86.18%, one possible reason for
this is the number of developers in Mozilla is larger than that
in Eclipse (150,326 developers in Mozilla, and 32,722
developers in Eclipse) and typically a bug report is assigned
to a single developer. Thus, many developers in Mozilla do
not fix bugs and they may suggest potential solutions for
fixing bugs via commenting bugs.

Answer to RQ2. In both projects, ratios of comment-based
developer contribution are over 74%. Other kinds of
developer contribution are also significant, e.g., over 13%
developer contribution in Eclipse is made by reporting bugs.
This fact supports our argument of the need of capturing
multiple developer contribution ignored in prior work.

Distribution of Developer Contribution. In Fig. 5, we
present a full view of the distribution of component-level
developer contribution in the whole projects. Two indicators
of a component are used, one is the sum of path count of four
types of meta paths in this component, another is the
percentage of developer contribution on this component. We
label the top 10 components which occupy highest developer
contribution with their names.

Fig. 5 lists the detailed distribution of developer
contribution among components of Eclipse and Mozilla.
Obviously, a component with a large sum of path count leads
to occupying high percentage of developer contribution. We
note that the distribution of developer contribution in Eclipse
is not as even as that in Mozilla. In Eclipse, most of the
components that occupy high developer contribution emerge
in the very beginning of the project, e.g., 9 of the top 10
components which occupy high developer contribution
emerge before the year 2001. Moreover, the top 10
components occupy 36.99% developer contribution.
However, in Mozilla, these important components emerge
along with the development of the project gradually. And
these components occupy 25.80% developer contribution.
One possible reason for this result is Eclipse is a corporation
leaded open source project that supported by IBM [17], and
is well designed at the beginning. However, Mozilla is
driven by open source community [18], so its architecture
may not as mature as that of Eclipse at the beginning.

To observe the distribution of contribution of dominant
developers (developers with significant contribution), we

(a) Eclipse

(b)Mozilla

Figure 5. The percentage of developer contribuion on components of

Eclipse and Mozilla. The diameter of a circle denotes the sum of path count
of four types of meta paths.

(a) Eclipse

(b) Mozilla

Figure 6. Contribution on 10 components for 5 dominant developers in

the whole project. For each projcet, the selected 10 components are labled

in Fig. 5, which occupying higest developer contribution. In vertical axis,

the ratio denotes the percentage of developer contribution on components.

present the contribution of top 5 developers (who make the
highest contribution in the whole project) on 10 active
components (i.e., top 10 components in Fig. 5) in Fig. 6. For
most developers, they mainly contribute to one or two
components, while contribute a little to other components.
e.g., in Eclipse, for developer “Tod Creasey”, 76.24%

C1

C2

C3

C4

C5

C6

C7

C8

C9 C10

0

0.02

0.04

0.06

0.08

0.1

0.12

p
e
rc

e
n

ta
g

e
 o

f
d

e
v

e
lo

p
e
r

c
o

n
tr

ib
u

ti
o

n

chronologically sorted components in Eclipse

C1: Platform SWT

C2: Platform Team

C3: Platform UI

C4: JDT Core

C5: JDT debug

C6: JDT UI

C7: Platform Debug

C8: Plugin UI

C9: JDT Text Support

C10: Provisioning

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

0

0.01

0.02

0.03

0.04

0.05

0.06

p
e
rc

e
n

ta
g

e
 o

f
d

e
v

e
lo

p
e
r

c
o

n
tr

ib
u

ti
o

n

chronologically sorted components in Mozilla

C1: Core Editor

C2: Core Layout

C3: Core Plug-ins

C4: SeaMonkey General

C5: Core XUL

C6: SeaMonkey UI Design

C7: MailNews Message Display

C8: Core JS Engine

C9: Core Networking

C10: Firefox General

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ra
ti

o

Dani Megert Darin Wright John Arthorne

Paul Slauenwhite Tod Creasey

0

0.05

0.1

0.15

ra
ti

o

Boris Zbarsky David Baron timeless

Matthias Versen Asa Dotzler

C1: Platform
SWT
C2: Platform
Team
C3: Platform
UI
C4: JDT Core
C5: JDT
debug
C6: JDT UI
C7: Platform
Debug
C8: Plugin UI
C9: JDT Text
Support
C10:
Provisioning
support

contribution is on component Platform UI, while only
0.4%contribution is on component JDT Debug; in Mozilla,
developer “Matthias Versen” mainly contributes to
components SeaMonkey General and Firefox General.

The reason for this fact might be that developers have
different expertise and responsibilities in the development
and maintenance of software projects.

Evolution of Developer Contribution. Both Eclipse and
Mozilla have been developed for many years. To investigate
the evolution of four types of developer contribution, we
select bug reports in 7 continuous years, from Jan. 2002 to
Dec. 2008 in Eclipse and Mozilla. We choose half a year as
an interval. We denote the first half year with “f” and the
second half year with “s”. For each interval, we calculate the
ratios of four types of developer contribution.

As shown in Fig. 7, the ratios in Mozilla are more stable
than these in Eclipse. In Mozilla, the ratio of meta
path , which denotes comment-based developer
contribution, are over 85% in each interval. In Eclipse the
ratio of each types of developer contribution fluctuates
drastic around the year 2004. Moreover, in both projects, the
ratios of each types of developer contribution are kept stable
after 2004.

In both Eclipse and Mozilla projects, the ratios of four
types of developer contribution change over time. This result
might be caused by two possible reasons. One is the
increasing complexity of the two projects; another is the
changing developers of these two projects.

(a) Eclipse

(b)Mozilla

Figure 7. Evolution of normalized percentage for each type of developer

contribution in Eclipse and Mozilla over time.

Answer to RQ3. Several dominant components occupy high
developer contribution. Most developers mainly contribute to
one or two components. The ratios of four types of developer
contribution are changing along with time.

V. ASSIST BUG TRIAGE IN BUG REPOSITORIES

In this section, we investigate the results of leveraging
meta path-based multiple types of developer contribution to
assist a typical prediction problem in bug repositories.
Driven by RQ4, we exam our approach on bug triage which
has been widely studied in existing researches.

Bug triage is a widely known problem during software
development and maintenance, which aims to predict a
potential developer for a new coming bug [1]. Many
machine learning based automatic bug assignment
algorithms have been proposed to reduce time and labor cost
of manual ways. Most of prior work models bug triage as a
text classification problem based on knowledge extracted
from bug reports [1], [13], [14], [15], [19]. In this paper, we
consider improving bug triage by combining machine
learning methods with multiple types of developer
contribution revealed in heterogeneous networks extracted
from bug repositories.

Following Bhattacharya et al. [15], we employ the
incremental learning framework to evaluate the accuracy of
bug triage. We sort bug reports in chronological order and
divide them into 11 folds and execute 10 rounds to
investigate accuracies of all the folds. In each round, we
calculate four types of developer contribution in the
heterogeneous network extracted from the training set, and
then combine it with the prediction set of a classifier to
generate a new prediction set.

Formally, we define our approach as follows.

1. Given a new coming bug report B, we predict a set of
potential developers called PD by a machine learning
classifier, e.g., Supporting Vector Machine (SVM) and
Naïve Bayes (NB).

2. We extract the component c of the new coming bug
report, and calculate four types of developer contribution in
component c of each developer by equation 1.

3. We combine developer contribution with the prediction
results of a machine learning method. For each developer ,
the final score where is the
predicted probability for by a classifier.

4. We rank developers in PD by their final scores and
select developers with highest scores as the final prediction
set. In our work we examine the results of top-5 developers
in the final prediction set.

 5. We evaluate the accuracies of top 1, top 3, and top 5
developers in the final prediction set. The accuracy is

computed by

,

where the number of correctly predicted bug reports is
computed by matching developers in the final prediction sets
and developers who fixed the bugs.

40%

60%

80%

100%

ra
ti

o

D-S-B-C(comment) D-B-C(fix) D-B-C(report) D-B-C(reopen)

80%

85%

90%

95%

100%

ra
ti

o

D-S-B-C(comment) D-B-C(fix) D-B-C(reoprt) D-B-C(reopen)

TABLE II. PREDICATION ACCURACY OF BUG TRIAGE ON ECLIPSE AND MOZILLA

Project Classifier Selection Approach Accuracy for each fold (%) Average

Accuracy

Improvement

2 3 4 5 6 7 8 9 10 11

Eclipse

SVM

Top1 SVM

SVM+MD

16.14

38.04

16.50

41.90

18.67

39.45

22.22

43.62

24.36

44.49

19.72

48.53

21.80

44.07

25.78

45.02

26.60

47.47

26.51

47.16

21.83

43.98

22.15

Top3 SVM

SVM+ MD

25.52

68.40

29.68

74.05

33.90

70.85

37.97

75.71

38.63

75.84

35.10

78.73

41.98

72.62

43.38

74.33

44.29

76.35

44.60

76.87

37.51

74.38

36.87

Top5 SVM

SVM+ MD

30.93

80.95

37.26

87.06

41.16

82.46

45.88

87.03

47.47

87.37

43.72

89.39

52.22

85.06

52.42

86.03

52.93

86.68

54.44

88.11

45.84

86.01

40.17

Naïve

Bayes

Top1 NB

NB+ MD

26.12

37.02

28.64

39.41

29.13

38.94

31.95

41.46

34.77

45.91

29.57

44.76

31.97

43.41

30.71

41.79

32.86

44.52

33.44

45.67

30.92

42.29

11.37

Top3 NB

NB+ MD

34.98

65.47

36.32

71.14

37.19

68.92

40.71

72.26

43.03

74.93

37.21

75.67

39.94

71.20

41.27

71.78

43.29

73.93

44.40

74.53

39.83

71.98

32.15

Top5 NB

NB+ MD

36.53

79.35

37.01

84.95

38.32

80.82

41.95

85.90

44.23

87.14

38.30

88.92

40.72

84.04

42.98

85.24

44.85

85.68

46.22

87.22

41.11

84.93

43.82

Mozilla

SVM

Top1 SVM

SVM+ MD

12.89

32.11

16.52

31.43

15.59

29.27

14.19

28.51

17.55

30.47

18.06

30.88

18.64

31.39

20.29

27.69

23.57

26.55

22.35

27.56

17.97

29.59

11.62

Top3 SVM

SVM+ MD

22.79

55.69

29.71

55.24

28.72

53.70

28.34

52.84

33.65

55.04

35.61

53.70

38.14

56.55

38.07

56.44

41.43

56.03

39.01

56.15

33.55

55.14

21.59

Top5 SVM

SVM+ MD

29.78

66.45

37.77

67.48

37.59

67.58

37.83

64.53

43.35

65.52

46.68

66.14

48.63

66.93

46.57

69.71

50.71

66.21

48.10

66.30

42.70

66.69

23.99

Naïve

Bayes

Top1 NB

NB+ MD

25.43

34.41

27.03

33.65

25.50

31.80

24.95

31.91

26.35

31.70

26.94

33.10

30.16

35.98

30.23

34.13

30.57

34.17

28.35

32.19

27.55

33.30

5.75

Top3 NB

NB+ MD

35.98

57.23

38.59

57.88

36.77

56.37

35.23

54.52

38.21

56.20

38.90

55.38

41.74

58.40

41.30

56.51

40.88

57.95

39.49

56.19

38.71

56.66

17.95

Top5 NB

NB+ MD

38.86

68.61

41.19

69.12

38.93

68.47

37.25

66.28

40.61

67.68

41.60

68.68

43.76

71.21

43.15

71.45

43.04

70.25

41.06

67.74

40.95

68.95

28.00

We validate our approach on bug reports of Eclipse and

Mozilla. We choose bug reports after the year 2005 since in
both projects the four types of developer contribution are
stable. For Eclipse, we select bug reports from 200001 to
300000(Aug 2007 to Jan 2010). For Mozilla, we consider
bug reports from 400001 to 500000(Oct 2007 to Jun 2009).
We remove the non-fixed bug reports (the resolution of bug
reports not marked as “FIXED”) and inactive developers
(developers who have fixed less than 50 bug reports) as prior
work [1], [13]. After this, 49,539 bug reports from Eclipse
and 32,097 bug reports from Mozilla are selected. We use
the techniques of tf-idf [25], removing stop words, and
stemming to extract string vectors from the title and
description of a bug report. For each bug report, its finally
fixer is extracted as a label for the classifier. We use Weka’s
[25] built-in Supporting Vector Machine (SVM) and Naïve
Bayes (NB) classifiers in this work.

Table II shows the results of bug triage in Eclipse and
Mozilla by combining the multiple types of developer
contribution with the output of the classifiers (MD denotes
the multiple types of developer contribution. SVM+MD and
NB+MD denote the results of our approach based on SVM
and NB classifiers, respectively).

It obviously that, for both SVM and NB, the accuracies
are improved when combed with developer contribution. The
maximum prediction accuracy for Eclipse is 89.39% and
71.45% for Mozilla. For both classifiers, when combined
with developer contribution, the average improvement for
Eclipse is better than that of Mozilla. One possible reason for
this fact is the contribution of most developers in Mozilla are
more uniform than that in Eclipse since the number of
developers in Mozilla is larger than that in Eclipse (150,326
developers in Mozilla, and 32,722 developers in Eclipse).
Thus, for Mozilla, the ranks for developers may not change
too much when combining with developer contribution.

As shown in Table IV, by mixing the original vector with

multiple types of developer contribution, the performance is
improved.

Answer to RQ4. By examining a typical prediction problem
in bug repositories, we conclude that meta path-based
multiple developer contribution can provide enriched
knowledge of developer contribution to improve results of
bug triage in bug repositories.

VI. THREATS TO VALIDITY

In this work, we investigate multiple types of developer
contribution based on heterogeneous networks extracted
from bug repositories of two large open source software
projects namely Eclipse and Mozilla. However, it is possible
that our approach may not work well on some closed-source
software (e.g., commercial software) or small scale open
source software projects. Where, developer contribution
pattern in those projects may be different with Eclipse and
Mozilla. Whether our heterogeneous network-based
approach is feasible for these software projects should be
further investigated.

VII. RELATED WORK

A. Developer Contribution in Software Developerment

Gousios et al. [3] propose an approach for evaluating
developer contribution during the process of software
development by a set of predefined developer actions. Their
work also considers positive and negative developer
contribution. Pinzger et al. [11] study the correlation between
developer contribution and the number of post-release
failures by building a developer-module network. Xu et al.
[20] study the development community at SourceForge.net
and empirically classifier developers into project leader, core
developer, co-developer, and active user based on developer
contribution in software projects. Hong et al. [8] analyze the

difference between developer social network and general
social network (e.g., Facebook) based on developers’
comments in bug repository of Mozilla. Xuan et al. [13]
investigate developer prioritization and its applications in
bug repositories by building comment-based developer
networks. J. Eyolfson et al. [24] investigate the relation
between developers’ contribution and the quality of their
commits.

B. Bug triage

Čubranić et al. [2] first model bug triage as a text
classification problem to semi-automate bug assignment.
Anvik et al. [1] improve the above work with filtering out
unfixed bug reports and inactive developers. Jeong et al. [14]
and Bhattacharya et al. [15] improve bug triage using tossing
graph based on developers tossing behaviors in bug
repositories. Our prior work [21] proposes an approach to
improve bug triage based on developer collaboration in
heterogeneous bug repositories. Other work also refers to
this topic, such as developer prioritization based approach
[13], the fuzzy-set and cache-based approach [19].

VIII. CONCLUSION

In this paper, we explore multiple types of developer
contribution revealed by meta path-based analysis in a
heterogeneous network extracted from a bug repository. We
consider leveraging our approach to assist a typical
prediction problem in bug repositories, i.e., bug triage. Our
study strongly suggests using the heterogeneous
network-based analysis can open many actionable insights in
analyzing software repositories.

ACKNOWLEDGMENT

This research was supported in part by National Natural

Science Foundation of China under Grant Nos. 61073044,

71101138, 61003028 and 61379046; National Science and

Technology Major Project under Grant Nos.

2012ZX01039-004; Beijing Natural Science Fund under

Grant No.4122087; State Key Laboratory of Software

Engineering of Wuhan University.

REFERENCES

[1] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This Bug?,”

Proc. 28th Intl. Conf. Software Engineering (ICSE ’06), May 2006,pp.
361-370.

[2] D. Čubranić and G.C. Murphy, “Automatic Bug Triage Using Text

Categorization,” Proc. 16th Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE ’04), Jun. 2004, pp. 92-97.

[3] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring

Developer Contribution from Software Repository Data,” Proc. 5th
IEEE Working Conf. Mining Software Repositories (MSR ’08), May

2008, pp. 129-132.

[4] Y. Sun and J. Han: Mining Heterogeneous Information Networks:
Principles and Methodologies. Synthesis Lectures on Data Mining

and Knowledge Discovery, Morgan & Claypool Publishers 2012.

[5] K. Crowston and J. Howison, "The social structure of free and open
source software development," First Monday, vol. 10, no. 2, 2005.

[6] S.H. Kan, Metrics and Models in Software Quality Engineering.

Addison Wesley, 1995.

[7] C. Bird, D. Pattison, R. D’Souza, V. Filkov and P. Devanbu, “Latent

Social Structure in Open Source Projects,” Proc. 16th ACM
SIGSOFT Intl. Symp. Foundations of software engineering (FSE ’08),

Nov. 2008, pp.24-35.

[8] Q. Hong, S. Kim, S.C. Cheung, and C. Bird, “Understanding a

Developer Social Network and its Evolution,” Proc. 27th IEEE Intl.
Conf. Software Maintenance (ICSM ’11), Sept. 2011, pp. 323-332.

[9] L. C. Freeman. Centrality in social networks: Conceptual clarification.

Social Networks, 1(3), pp. 215-239, 1979.

[10] J. Asundi, “The need for effort estimation models for open source
software projects”, 5-WOSSE: Proc. 5th workshop on Open source

software engineering, May, 2005, pp.1-3.

[11] M. Pinzger, N. Nagappan, and B. Murphy, “Can Developer-Module
Networks Predict Failures?,” Proc. 16th ACM SIGSOFT Intl. Symp.

Foundations of Software Engineering (FSE ’08), Nov. 2008, pp. 2-12.

[12] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
Failures with Deverloper Networks and Social Network Analysis,”

Proc. 16th ACM SIGSOFT Intl. Symp. Foundations of Software
Engineering (FSE ’08), Nov. 2008, pp. 13-23.

[13] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer Prioritization in

Bug Repositories,” Proc. 34st Intl. Conf. Software Engineering
(ICSE ’12), June.2012, pp. 25-35

[14] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage with
Tossing Graphs,” Proc. 17th ACM SIGSOFT Symp. Foundations of

Software Engineering (FSE’09), Aug. 2009, pp. 111-120.

[15] P. Bhattacharya and I. Neamtiu, “Fine-Grained Incremental Learning
and Multi-Feature Tossing Graphs to Improve Bug Triaging,” Proc.

26th IEEE Intl. Conf. Software Maintenance (ICSM ’10), Sept. 2010,
pp. 1-10.

[16] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and

C. Weiss, “What Makes a Good Bug Report?,” IEEE Trans. Software
Engineering, vol. 36, no.5, Oct. 2010, pp. 618-643.

[17] T. Mens, J. Fernandez-Ramil, and S. Degrandsart, “The Evolution of

Eclipse” Proc. 24th IEEE Intl. Conf. Software Maintenance
(ICSM ’08), Sept. 2008, pp. 386 - 395.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of

open source software development: Apache and Mozilla” ACM Trans.
Software Engineering and Methodology, vol. 11, issue 3, July 2002,

pp 309 – 346.

[19] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen, “Fuzzy
Set and Cache-Based Approach for Bug Triaging,” Proc. 19th ACM

SIGSOFT Symp. Foundations of Software Engineering (FSE ’11),
Sept. 2011, pp. 365-375.

[20] 20J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis
of the open souce software development community,” Proc. 38th

IEEE Hawaii International Conference on System
Sciences(HICSS ’05), Jan. 2005, pp. 198a

[21] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “DevNet: Exploring

Developer Collaboration in Heterogeneous Network of Bug
Repositories,” Proc. 7th ACM / IEEE Intl. Symp. Empirical Software

Engineering and Measurement (ESEM’13), Oct. 2013.

[22] Y. Sun, B. Norick, J. Han, X. Yan, P. Yu, and X. Yu, “Integrating
meta-path selection with user-guided object clustering in

heterogeneous information networks,” Proc. 18th ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Mining (KDD’2012),

Aug.2012, pp. 1348-1356.

[23] Y. Yang, N. Chawla, Y. Sun, and J. Hani, “Predicting Links in
Multi-relational and Heterogeneous Networks,” Proc. 12th Int. Conf.

Data Mining (ICDM’ 12), Dec.2012, pp. 755-764.

[24] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?,” Proc. 8th IEEE Working Conf.

Mining Software Repositories (MSR ’11), May 2011, pp. 153-162.

[25] I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. Morgan Kaufmann,

Burlington, MA, 2011.

