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Abstract — We propose an approach called Bug report
assignment with topic modeling and heterogeneous net-

work analysis (BAHA) to automatically assign bug reports
to developers. Existing studies adopt social network anal-

ysis to characterize the collaboration of developers. The

networks used in these studies are all homogenous. In real
practice of bug resolution, different developers collaborate

on different bug reports that makes the homogenous net-
work unable to capture this information. We use heteroge-

neous network to describe the relations between reporters,

bug reports and developers to characterize developers’ col-
laboration. Experiments on Eclipse JDT project show that

BAHA outperforms the state of art methods on automatic

bug report assignment.

Key words — Bug report assignment, Topic model,

Heterogeneous network, Bug report tracking.

I. Introduction

Open bug repository, such as Bugzilla∗∗ , JIRA∗∗∗

and GNATS∗∗∗∗ , has been widely adopted in soft-
ware development and maintenance for software quality
improvement[1,2]. With hundreds of bug reports coming
to the open bug repository each day, it is hard to keep
track of all the developers and their expertise within a
large project[3,4]. For instance, about 200 bugs are filed to
Eclipse bug repository per day near its release dates, and
for Debian project, this number is about 150[5]. Moreover,
about two person-hours per day have to be spent on bug
triage in Eclipse project and nearly 25% of Eclipse bug
reports are reassigned due to inaccurate manual bug as-

signment and, it takes about 40 days to assign a new bug
report to an appropriate developer in Eclipse project[6].

To reduce the workload of bug report assignment, re-
searchers propose several methods based on text analysis
of the bug report[7,8]. They usually assume that the tex-
tual contents of bug reports are of high quality since it is
the solely clues for the classifier to learn the correspon-
dences between bug reports and developers. However, this
assumption is often not the case in real practice[9−11]. For
instance, Bettenburg et al.[9] reported that bug reporters
often provide inadequate even incorrect information that
seriously slow down the process of bug report assignment.
Moreover, the textual contents of bug reports often con-
tain large amount of source code fragments, stack traces,
hyper links even messy code that cannot be properly pro-
cessed by the state of art Natural language processing
(NLP) techniques.

To address the problem, on the one hand, researchers
attempt to adopt more advanced NLP techniques to deal
with the textual contents[5,12]. On the other hand, re-
searchers are intending to utilize the collaboration of de-
velopers to enhance bug report assignment[13,14]. An avail-
able space that needs more work is that currently, all the
networks used to model developer collaboration in bug
repositories are homogenous[15]. That is, all the nodes in
the network are of the same type as developers and all
the links in the networks denote the same relation as co-
commenting same bug reports. However, in real practice
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of bug resolution, this is not the case. In fact, the collabo-
ration of developers are not directly interacted as that in
paper citation network and email network[16] but with in-
direct relation because, a developer submit a bug report
and then other developers comment on the bug report.
That is to say, the developers in bug repositories manip-
ulate bug reports directly rather than interact with each
other directly as they behave in social media like Face-
book and Twitter.

Taking Fig.1 for an example, where D1, D2, D3 and
D4 are 4 developers and B1, B2, B3 and B4 are 4 bug
reports, we can see that in heterogenous network, D4 has
more participation in bug resolution than D1 but, in ho-
mogenous network, the places of D1 and D4 are symmet-
ric that means D1 and D4 have same importance. If the
homogenous network is adopted in bug report assignment,
then D1 and D4 should be at the same place. However, if
both D1 and D4 are candidate developers for a new bug
report, D4 is obviously more proffered than D1 because
D4 is more versatile.

Fig. 1. Heterogenous and homogenous networks for describing
developer collaboration. (a) Heterogeneous network;

(b) Homogenous network

Following this line of thought, we propose a novel ap-
proach called BAHA (Bug report assignment with topic
modeling and heterogeneous network analysis) to auto-
matically assign bugs to developers. Firstly, we use LDA
topic model[17,18] to analyze textual contents of bug re-
ports. Secondly, the heterogeneous network[19] is adopted
to capture structural information inherent in the bug re-
ports. Finally, we combine the outcome of analysis of tex-
tual contents and heterogenous network to assign bug
reports to developers. To evaluate the performance of
BAHA, we conduct extensive experiments using the bug
reports of Eclipse JDT project. Experimental results show
that BAHA can improve the recall by 19.19% at most
compared to the state of art methods for bug report as-
signment.

The rest of this paper is organized as follows. Section
II proposes BAHA for bug report assignment. Section III
conducts the experiments to examine the performances
of BAHA and the state of art methods in bug report as-
signment. Section IV discusses the experimental results.
Section V concludes the paper.

II. BAHA-The Proposed Approach

1. The framework of the approach

Fig.2 shows the proposed bug triage approach called
BAHA. The dotted line shows the training process
(above) and the solid line (below) shows the process of
handling a new bug report. Firstly, we use the textual
contents of historically-resolved bug reports to train LDA
topic model. Secondly, based on the trained LDA topic
model and the structural information extracted from the
historically-resolved bug reports, we train the RankClass
model. Thirdly, when a new bug report is incoming, the
trained LDA model and RankClass model will be used to
calculate its topic distribution. Finally, the topic distribu-
tion of the bug report and the developers’ expertise scores
on the topics are combined to decide the candidate devel-
opers for the new bug report. Overall, BAHA includes
four steps as follows.

1) Extract text contents of bug reports and calculate
topic distribution of the bug reports using LDA
model.

2) Build heterogeneous network and train the
RankClass model initialized by the output of LDA
model.

3) Calculate the topic distribution of bug reports by
combining the outputs of RankClass model and
LDA model.

4) Combine the topic distribution of bug reports and
expertise scores to produce the candidate developer
list for new bug reports.

Fig. 2. The overall structure of BAHA

2. LDA topic modeling for bug reports
Following Anvik et al.[8], we use the bug reports

whose status are RESOLVED, VERIFIED or CLOSED
and their resolution status are FIXED to train the LDA
model. We extract the textual contents including on-line
summaries and full text descriptions from the bug re-
ports in training set. Tokenization, stop words and non-
alphabetic token elimination[20] are conducted to prepro-
cess the textual contents of bug reports.

An open source LDA tool called GibbsLDA++[21]

with Gibbs sampling is used to infer the the topic-
document distribution matrix θk(1 ≤ k ≤ K) and topic-
word distribution matrix ϕm(1 ≤ m ≤ M . The default
values from GibbsLDA++ as α = 50/K and β = 0.01
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are used as the predefined parameters. To the best of our
knowledge, there is no known method of estimating a pri-
ori number of topics in LDA which can best represent the
textual contents. Following Blei et al.[17], we use perplex-
ity measure to estimate the LDA model for a range of
K topics and chose the best one. The lower perplexity
of the distributions of words given topics and documents,
the better is the quality of LDA modeling. In our exper-
iments on the Eclipse JDT bug reports, we find that the
number of topics K = 10 is the best to model the topics
of the bug reports.

3. Training RankClass model
The input of RankClass algorithm includes the het-

erogeneous network extracted from bug reports and the
prior knowledge of topics given the bug reports, i.e.,
{P (x|T (x), K)0}K

k=1, that makes some bug reports “la-
beled” with the prior topics. The heterogeneous network
of BAHA contains 3 types of objects as reporters, bug
reports and developers, i.e., T = 3 in Section II.3.

The prior knowledge of topics given the bug reports
for RankClass algorithm is derived by LDA topic model-
ing. We use the topic with the highest probability to label
the bug report. We admit that this handling of labeling
topics to bug reports directly is a little arbitrary since, in
some cases, the differences of probabilities of topics given
bug reports are not always very obvious. However, Ji et
al.[22] shows that RankClass is theoretically robust and
even if the quality of initial “labeled” bug reports are not
very high. This is also the reason we adopt RankClass al-
gorithm combined with LDA to consider textual contents
and structural information of bug reports simultaneously.

Following Ji et al.[22], we use the top 0.5% of the train-
ing bug reports with largest differences (calculated by the
difference of the largest probability and the second largest
probability) to initialize the RankClass algorithm. The
output of RankClass algorithm are {P (x|T (x), k)}K

k=1 and
{P (k|x, T (x))}K

k=1.
4. Adjust the topic distribution of bug reports
Since reporters tend to submit bug reports of same

components, it is reasonable to use the topic distribution
of bug reports derived from heterogenous network anal-
ysis by RankClass model, i.e., {P (k|x, T (x))}K

k=1 with
T (x) = “bugreport”, to adjust the topic distribution of
the bug report derived from LDA modeling in Section
IV.2. That is, the final topic distribution of a bug report
is defined as Eq.(1):

θbug = r × θLDA,bug + (1 − r) × θHN,sub (1)

Here, θbug is the final topic distribution of bugs.
θLDA,bug is the topic distribution derived from LDA
modeling, i.e, the topic-document matrix θk(1 ≤ k ≤
K). θHN,sub is the topic distribution of bug reports

on reporters derived from RankClass algorithm, i.e.,
{P (k|x, T (x))}K

k=1 with T (x) = “reporter”. The impor-
tance of θLDA,bug and θHN,sub is determined by the weight
r, which ranges from 0 to 1. If the quality of textual con-
tents of bug reports are relatively high, then the value of
r should be larger, and vice versa.

5. Generate candidate developer list
The final step of BAHA is to calculate the probability

of each developer with respect to a bug report in resolv-
ing the bug report, which can be denoted as a condi-
tional probability P (dev|bug). Each bug report has mul-
tiple topics and each developer has an expertise score on
each topic. Thus, P (dev|bug) can be calculated in Eq.(2):

P (dev|bug) =
∑

topic

P (topic|bug) × P (dev|topic) (2)

Since we have a topic distribution of the bug denoted
as θbug and expertise scores of the developer denoted as
{P (x|T (x), k)}K

k=1 (T (x) = “developer”), Eq.(2) can also
be written as the inner product of the two vectors as
Eq.(3):

P (dev|bug) = θbug · {P (x|T (x), k)}K
k=1 (3)

For each bug, we rank all the developers according
to the conditional probability P (dev|bug). Then we chose
the top Q developers to form a candidate developer list.
Before BAHA assigns bug reports to developers, we make
a little adjustment in candidate developer list because, in
open source environment, developers can quit at any time.
Thus, it is necessary to make sure that all the developers
we assign are active. Following Bhattacharya et al.[23], we
delete the developers who were inactive for more than 100
days from the time of new bug report in the list.

III. Experiments

1. The dataset
We collect all the effective bug reports from Eclipse

JDT project∗∗∗∗∗ from 2002 to 2009, which have 18,674
bugs, 3,441 developers, 2,712 reporters and 128,058 com-
ments in sum. Table 1 shows the distribution of comments
on the developers. We see that the distribution is skewed,
which means that although a large number of developers
made comments for the project in history, only a small
number of developers contribute to the project continu-
ously. Only 83 developers made more than 100 comments
over the 8 years. 2,933 developers commented on less than
10 bug reports and we regard them as unreliable for bug
report assignment.

We also observe from the dataset that only 170 of
the total 2,712 reporters in Eclipse JDT project reported
more than 10 bug reports and most reporters (more than
87%) submitted only one bug report. About 70% of all

∗∗∗∗∗http://www.eclipse.org/jdt/
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the bug reports were fixed within three months and 90%
of all the bug reports were fixed within one year. The rea-
sons for bug fixing time longer than one year are mostly
related with the overall changes of the project, such as
migration of bug repository and version upgrades of the
software (bug reports #12430 and #12533 are typical in-
stances). Most bug reports have 2 to 6 comments. 88.7%
of the bug reports have less than 10 comments, which im-
plies that most bug reports are easy to fix, and only about
2% of the bug reports have more than 20 comments.

Table 1. The distribution of comments on developers

# of Comments # of Developers

≥100 83

≤100&≥80 54

≤80&≥60 58

≤60&≥40 62

≤40&≥20 85

≤20&≥10 106

≤10 2,933

We use one year as an interval to classify the whole
dataset from the year 2002 to 2009 into 8 folds since
about 90% of the bug reports are fixed within one year. In
each fold of data, the bug reports fixed from January to
September are used as training set and bug reports fixed
from October to December are used as test set. For each
bug report, we only retain the developers among those
who contributed top 90% of the comments shown in Ta-
ble 1. Meanwhile, the bug report which is submitted by
minor developers(those submitted less than 10% bug re-
ports) is also removed from the dataset.

After preprocessing, the number of bug reports in
training set and test set as well as the number of devel-
opers and reporters of all folds of experimental data are
shown in Table 2. We see that there are 13,526 bug reports
in the training and test set. Different bug reports have dif-
ferent number of developers ranging from 1 to 17. In the
training set, the average number of developers in a bug re-
port is 3. Therefore, we vary the number of recommended
developers Q from 1 to 6 to gauge the performances.

Table 2. Basic information of data

Training set Test set Developer Reporter

2002 2594 512 66 52

2003 1661 457 58 52

2004 1589 463 67 46

2005 1882 308 76 43

2006 1274 218 50 25

2007 987 166 39 22

2008 773 108 27 17

2009 459 75 42 11

2. Experimental setup
ML-KNN is used to transfer the bug triage problem

to multi-labeled classification where each bug report is re-
garded as a data point and the developers who contribute
to bug report resolution are regarded as its labels. This

intuition is from Anviks proposal to transfer bug fixer rec-
ommendation to a typical classification problem[8]. The
parameters of ML-KNN are K and s, where Km is the
number of nearest neighbors and s is used for probability
smoothing. Following Zhang and Zhou[24], we set s as 1
and tune the parameter Km as 15 as suggested by Wu et
al.[14].

For DREX, its parameters includes Kr and Q where
Kr is the number of neighbours with similar textual con-
tents as that of new bug report, and Q is the number of
recommended developer for the new bug report (the same
meaning as that in Section II.4). We set Kr as 20 and use
the network metric as degree to measure developer im-
portance in homogeneous network ranking as suggested
by Wu et al.[14]. For DRETOM, it has three parameters:
the number of topics Td, λ to trade off developers interest
and expertise, and the number of developers Q for recom-
mendation. Following Xie et al.[5], we set Td as 200 and
λ as 0.2 for optimal performance. For Stacked generaliza-
tion (SG), we follow Jonsson et al.[25] to use Bayes Net,
Naive Bayes, SVM, KNN and Decistion Tree as the level-0
classifier and logistic regression as the level-1 classifier to
weight the level-0 predictions for ensemble learning. For
Location based assignment (LBA), we follow Shokripour
et al.[26] to check out developers’ code changes from the
Eclipse CVS repository and developers’ activity histories
from the Eclipse bug tracking system (Bugzilla) to match
new bug report with developers for bug report assignment.
Here, only nouns are used to calculate the similarities of
developers’ histories and new bug reports.

Precision =
# of correctly recommended developers

# of all the recommended developers
(4)

Recall =
# of correctly recommended developers

# of developers participate in the bug
(5)

Traditionally, precision and recall are two common
measurements to evaluate the performance of recommen-
dation system. Precision measures the percentage of cor-
rectly recommended developers in all the recommended
developers (see Eq.(4)). Recall measures the percentage
of correctly recommended developers in all the developers
who actually commented on the bug report (see Eq.(5)).
However, in bug report assignment, we hold that recall
is a better measurement than precision[5] because, differ-
ent bug reports have different number of developers who
commented on the bug report. Supposing we have two
bug reports, one have 2 developers and another have 5
developers. If we recommend 5 developers to the two bug
reports, then the best precision we can derive for the one
bug report is 40% and for the another bug report is 100%.
Thus, it is unreasonable to compare the precisions of bug
reports having different number of developers. However,
recall is acceptable because hundreds of developers in an
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open source project and it is useful to exclude most ir-
relevant developers with the tolerance of a few mistakes.
Therefore, we calculate the recall on each of the 8 folds
to measure the performances of BAHA.

3. Results
We conduct a series of experiments to tune the param-

eter r in Eq.(1) from 0 to 1 with an interval of 0.1 with
varying Q from 1 to 6. We see that when r is increas-
ing from 0.1 to 0.7, the performance of BAHA is also
increased gradually. That is to say, to add more and more
information derived from LDA topics will augment the
performance of BAHA. However, when r becomes larger
than 0.7, the performance of BAHA decreases dramati-
cally. This outcome shows that to further lower the struc-
tural information of BAHA will hurt its performance in
bug report assignment. With this analysis, we set r as 0.7
in the experiments.

With the above predefined parameters, Table 3
(“avg.” abbreviates for “average” and “imp.” abbrevi-
ates for “improvement”) shows the comparative results
of BAHA, ML-KNN, DREX, DRETOM, SG and LBA
in assigning bug reports to different number of developers
(i.e., Q is varying from 1 to 6). We can see that when Q is
smaller than 3, the performances of BAHA are worse than
that of ML-KNN, DREX, SG and LBA. In the extreme
case that Q is set as 1, the performance of ML-KNN,
DREX and LBA are much better than that of BAHA.
We explain this outcome that DREX with degree as im-
portance measure of data objects in homogenous network
is equivalent to use the number of comments that devel-
opers made for bug reports. That is, the more bug reports
a developer commented on in history, the higher priority
he or she will be given among the recommended develop-
ers. Similarly, ML-KNN produces larger probabilities in
recommendation for developers who have a larger num-
ber comments than other developers, when using multi-
label classification for bug report assignment. Thus, the
developer who has the largest number comments and the
largest number of code changes is recommended for bug
report assignment by ML-KNN, DREX and LBA on the
condition that all the other requisites are the same. It is
naturally that the developer with largest number of com-
ments and code commits for historical bug reports would
comment on a new bug report in the future.

However, when we recommend more than 4 develop-
ers for bug report assignment (i.e., Q > 4), BAHA out-
performs ML-KNN and DREX significantly. In compari-
son of BAHA and ML-KNN, the best case appears in the
year 2008 of recommending 6 developers for bug report
assignment with the increase of 35.54% (0.7048/0.5200).
The worst case appears in the year 2005 of recom-
mending 6 developers for bug report assignment with
the increase of 1.05% (0.4091/0.3901). In comparison of
BAHA and DREX, the best case appears in the year

2008 of recommending 6 developers with the increase of
17.19%(70.48/60.14). The worst case appears in the year
2005 of recommending 6 developers with the increase of
0.06%(40.91/40.65). We explain the outcome that when
Q is small, the developer with expertise best matching the
topics of the bug report may be not the one who actually
commented on the bug report because the developer is
probably not active at that time. Nevertheless, when we
recommend more developers, i.e., to relax the activeness
of developers, the matching of developer expertise and
topics of bug report become more and more important in
bug report assignment. This point is also validated with
the results from DRETOM. We see that when Q is larger
than 4, DRETOM performs comparably with DREX in
most folds, even a little better than DREX in from the
year 2005 to the year 2009.

IV. Discussion

1. Effect of r

In Eq.(1), we introduce the parameter r to trade off
proportion of the topic information from the LDA topic
modeling and the topic distribution of reporters from
RankClass algorithm. Obviously, r = 0 indicates that we
ignore that the LDA topic distribution and only use the
topic information of reporters derived from RankClass al-
gorithm. r = 1 indicates that we only use the topic distri-
bution by LDA modeling and ignore the topic information
of bug reporters given by heterogenous network analysis.
r is set between 0 and 1 indicates that the best choice
is to combine both of the two topic information at the
same time. For instance, if we set r as 0.5, then the two
sources of topic information are equally important. In the
experiment, we find that r = 0.7 is the best choice, which
shows that for best performances of BAHA, we should
use both sources of topic information. However, the topic
distribution of bug reports from LDA modeling is more
important than the topic information from heterogenous
network analysis by RankClass algorithm. With this out-
come, we can infer that most bug reports of Eclipse JDT
project have high-quality textual contents.

In Table 3, the best recall at Top 6 is 60.29% and the
worst recall is 54.76% (not considering the extreme cases
as r = 0 and r = 1), which is not a large difference in per-
formances of BAHA. It seems that the parameter r does
not affect experimental results very much. After manual
checking our experiments, we find two reasons explained
for this outcome. The first reason is that the goal we intro-
duce r in the experiments is to trade off the two sources of
topic information and make the topic distribution close to
the “true” distribution that a bug report should be. How-
ever, if the two sources of topic information are similar,
then the parameter r actually dose not make an great
effect.
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Table 3. Recalls of BAHA, ML-KNN, DREX and DRETOM on the 8 folds.

Q 2002 2003 2004 2005 2006 2007 2008 2009 avg. imp.

BAHA Top1 15.79% 17.66% 12.85% 10.98% 14.64% 20.63% 10.88% 18.67% 15.26% -

Top2 26.70% 29.84% 30.04% 17.51% 34.11% 31.63% 34.48% 41.33% 30.70% -

Top3 38.70% 38.17% 38.58% 24.79% 47.05% 42.34% 48.90% 50.56% 41.14% -

Top4 46.41% 45.38% 47.13% 30.24% 54.90% 56.01% 57.55% 58.00% 49.45% -

Top5 53.25% 52.11% 53.80% 35.84% 62.39% 59.98% 65.91% 67.33% 56.32% -

Top6 61.80% 58.67% 59.29% 40.91% 68.70% 62.79% 70.48% 69.56% 61.53% -

ML-KNN Top1 21.15% 20.12% 18.43% 15.43% 26.17% 24.06% 14.15% 19.43% 19.87% -30.17%

Top2 35.11% 30.14% 30.21% 25.83% 37.01% 38.23% 33.10% 35.13% 33.10% -7.78%

Top3 41.06% 38.12% 37.53% 31.01% 45.03% 45.10% 39.86% 44.11% 40.22% 2.21%

Top4 43.32% 44.45% 43.58% 36.46% 51.12% 51.23% 46.82% 51.02% 46.00% 6.98%

Top5 47.01% 44.10% 44.97% 38.17% 55.46% 53.17% 50.02% 56.16% 48.63% 13.66%

Top6 46.10% 45.18% 47.32% 39.01% 56.03% 53.09% 52.00% 59.01% 49.71% 19.19%

DREX Top1 21.42% 18.93% 18.10% 15.53% 24.56% 23.01% 14.38% 18.89% 19.35% -26.80%

Top2 33.95% 30.29% 29.09% 24.23% 36.42% 38.24% 29.03% 31.44% 31.58% -2.87%

Top3 42.85% 39.14% 37.67% 29.79% 47.75% 46.33% 44.46% 43.67% 41.46% -0.78%

Top4 47.27% 45.89% 43.13% 33.18% 55.40% 50.34% 50.43% 51.56% 47.15% 4.66%

Top5 50.51% 49.55% 49.65% 36.05% 58.85% 55.36% 56.79% 58.44% 51.90% 7.86%

Top6 52.99% 51.36% 53.31% 40.65% 62.75% 56.52% 60.14% 61.67% 54.92% 10.73%

DRETOM Top1 12.22% 6.12% 14.83% 8.18% 11.44% 17.72% 19.81% 19.67% 13.75% 9.92%

Top2 20.33% 20.94% 24.61% 14.85% 30.34% 30.17% 30.68% 32.44% 25.55% 16.81%

Top3 27.33% 30.89% 31.94% 22.59% 44.68% 37.17% 37.45% 52.22% 35.53% 13.62%

Top4 38.43% 37.50% 40.02% 28.92% 52.40% 49.34% 46.90% 58.89% 44.05% 10.92%

Top5 42.77% 43.87% 46.88% 39.91% 59.85% 56.27% 57.64% 62.67% 51.23% 9.04%

Top6 52.08% 51.87% 52.02% 43.69% 68.28% 62.44% 58.07% 68.00% 55.56% 9.70%

SG Top1 14.54% 16.35% 15.65% 13.36% 14.87% 22.41% 17.68% 18.23% 16.64% -0.90%

Top2 22.37% 30.42% 31.34% 17.21% 30.21% 31.53% 34.28% 36.67% 29.25% 4.73%

Top3 35.64% 34.78% 36.58% 25.90% 43.12% 38.34% 43.19% 44.84% 37.80% 8.11%

Top4 41.16% 42.76% 43.23% 29.62% 46.81% 49.35% 49.86% 51.67% 44.31% 10.40%

Top5 47.06% 49.93% 48.58% 36.63% 57.02% 55.46% 55.19% 60.81% 51.34% 8.86%

Top6 51.75% 52.62% 52.57% 38.73% 60.26% 57.19% 61.34% 62.47% 54.62% 11.23%

LBA Top1 15.89% 16.32% 17.96% 15.13% 17.28% 21.33% 17.76% 18.65% 17.54% -14.92%

Top2 21.43% 28.38% 29.85% 19.30% 29.96% 29.73% 31.35% 37.87% 28.48% 7.23%

Top3 34.03% 32.32% 36.78% 24.24% 41.26% 39.94% 43.07% 48.95% 37.57% 8.66%

Top4 41.34% 42.89% 44.70% 26.93% 48.36% 51.14% 51.39% 52.13% 44.86% 9.29%

Top5 48.55% 44.93% 47.97% 31.04% 57.08% 53.93% 60.51% 60.59% 50.58% 10.21%

Top6 51.47% 52.56% 52.28% 37.65% 61.87% 58.15% 61.09% 62.37% 54.68% 11.13%

The second reason is that we eliminate those reporters
who submitted a small number of bug reports and the
number of this kind of reporters is very large shown in
Table 1. In Eq.(1), the bug reports submitted by the
eliminated reporters do not have the source of topic in-
formation from RankClass algorithm, which means that
the topic distribution from LDA modeling dominates the
topic information of bug report. For this reason, parame-
ter r does not make an effect on the experimental results.
Therefore, with the two reasons that r doesn’t affect the
results and the outcome that on average, BAHA improves
recall of bug report assignment by more than 5% with
Q > 3, we can regard that r makes a significant impact
on experimental results.

2. Good results or not?
Many researches treat bug report assignment as a

typical classification problem where each bug report re-
garded as a pattern and each developer is regarded a
class label[7,8]. The bug report assignment is then to label
the patterns by predicting developers for the bug reports.

BAHA is proposed to recommend developers in consid-
ering expertise matching of developers and bug reports.
This point is very similar to Xie et al.’s DRETOM [5].
However, they are completely different in that BAHA
adopts heterogenous network analysis to derive the ex-
pertise of developers (i.e. {P (x|T (x), k)}K

k=1 (T (x) =
“developer”) and trade off the topic information with
LDA modeling of textual contents of bug reports.

With this consideration, we paretically emphasize the
results of BAHA and DRETOM. It can be seen from Table
3 that in all the years from 2002 to 2009, BAHA outper-
forms DRETOM. Although in some years such as 2005
and 2006, DRETOM performs very closely with BAHA.
In other years then this two years, DRETOM performs
far behind BAHA. Thus, we can draw that BAHA per-
forms not only more accurately but also more robust than
DRETOM. We attribute this outcome to the structural
information derived from the heterogeneous network anal-
ysis.

When Q is set as 6, the average recall of BAHA is
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only about 60%, that still remains a large space to im-
prove. After our manual checking, we find 2 reasons can
be explained for this outcome. The first reason is that,
in an open source project like Eclipse JDT, developers
frequently join and leave the project from time to time.
If a developer was absent from the project from October
to December and we use the bug ports in this duration
as the test set, then that means the experimental results
will be hurt if the leaving developer is recommended by
whatever means. Conversely, if a developer joined in the
project during October to December, we can not recom-
mend this developer because he or or she does not occur
in the training set. By this time, we can not predict when
the developers would join or leave the project. Thus, we
can not exclude this kind of mistakes. The second rea-
son is that developers of their own technical expertise oc-
casionally commented on the bug reports those are not
within their expertise (with randomness by our observa-
tion). Currently, BAHA has not yet taken these random
events into account. We will address this problem in the
future. Although there are some mistaken recommenda-
tions, we hold that the experimental results are acceptable
in current stage. At least, BAHA has already successfully
predicted the majority of actual developers in resolving
bug reports participants and excluded hundreds of devel-
opers who definitely would not participate in the resolu-
tion given a bug report, resulting a great cost reduction
of possible reassignment.

V. Conclusion and Future Work

This paper proposes a new approach called BAHA to
recommend developers who are the potential participants
and contributors of the collaborative bug report resolu-
tion activities. Firstly, we extract the textual contents
from bug reports and obtain topic information of the bug
reports with respect to the textual contents using LDA
modeling. Secondly, we use the reporter-bug-developer
heterogeneous network to capture the structural infor-
mation of bug reports. Using RankClass algorithm, we
derive the topic information of bug reports with respect
to reporters and the expertise of developers. Thirdly, we
combine the two sources of topic information of bug re-
ports and match the topics of bug reports with developers’
expertise. Experimental results on Eclipse JDT project
demonstrate the superiority of BAHA over other state of
art methods. This outcome demonstrates that the infor-
mation derived from heterogeneous network analysis can
complement the textual information of bug reports.
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