
LLM-Based Safety Case Generation for Baidu
Apollo: Are We There Yet?

Oluwafemi Odu
Lassonde School Of Engineering

York University
Toronto, Canada

olufemi2@yorku.ca

Alvine Boaye Belle
Lassonde School Of Engineering

York University
Toronto, Canada

alvine.belle@lassonde.yorku.ca

Song Wang
Lassonde School Of Engineering

York University
Toronto, Canada

wangsong@yorku.ca

Abstract—Justifying the correct implementation of the non-
functional requirements of mission-critical systems is crucial to
prevent system failure. The latter could have severe consequences
such as the death of people, and financial losses. Assurance
cases (e.g., safety cases, security cases) can be used to prevent
system failure. They are structured sets of arguments supported
by evidence and aiming at demonstrating that a system’s non-
functional requirements have been correctly implemented. How-
ever, although the availability of complete assurance cases is
crucial to allow the research community to contribute to the
system assurance field, it remains very challenging to access
complete assurance cases due to several concerns such as
confidentiality issues. Furthermore, assurance cases are usually
very large documents. Still, their creation remains a manual,
tedious, and error-prone process that heavily relies on domain
expertise. Thus, exploring techniques to support their automatic
instantiation becomes crucial. To fill these gaps, our experience
paper first demonstrates the feasibility of an AMLAS-based
design methodology on a case study aiming at manually creating
a safety case for the ML-enabled trajectory prediction component
of an open-source autonomous driving system i.e. Baidu Apollo.
Our paper then reports our experience in using a Large Language
Model (LLM) to automatically re-create the same safety case. The
lessons we have drawn from this case study provide actionable
insights that could benefit researchers and practitioners.

Index Terms—Requirements engineering, Assurance Cases,
Safety, Machine Learning, Autonomous Driving Systems

I. INTRODUCTION

The rapid advancement of autonomous driving systems
(ADSs) has captured significant attention from both industry
and academia due to their potential to revolutionize trans-
portation. ADSs leverage a combination of sensors along with
Machine Learning (ML) components to autonomously navi-
gate vehicles, minimizing the need for human intervention [1].
These systems combine a network of interconnected elements
that integrate both traditional code logic and ML models to
ensure vehicle operation across various environments [2], [3].
The complexity of ML-enabled ADSs and the unpredictable
environments in which they operate present significant chal-
lenges such as the assurance of their safety [4], which is crucial
to prevent severe outcomes (e.g., fatalities, financial losses).

Assurance cases (e.g., safety cases, security cases) are useful
in demonstrating that mission-critical systems such as ADSs
comply with industrial standards, thereby preventing system

failures and justifying the correct implementation of ADSs
non-functional requirements (e.g., safety, security) [5]–[7].

Significant research efforts have focused on enhancing the
safety assurance of ML-enabled autonomous systems operat-
ing in complex environments (e.g., [8]–[10]). For example,
Hawkins et al. [10] introduced a design methodology called
AMLAS. It allows to manually create safety cases and to sys-
tematically integrate safety assurance throughout the develop-
ment life cycle of the ML components of autonomous systems.
Still, despite the existence of such design methodologies, the
number of freely available safety cases is pretty scarce, which
hinders the research on system assurance.

Furthermore, with the increasing deployment and adoption
of ML-enabled ADSs, traditional design methodologies for
manual safety case creation may struggle to keep pace with
the continually evolving complexity of these systems and
the unpredictable and dynamic environments in which they
operate. Additionally, using these methodologies to manually
create assurance cases can be time-consuming, tedious, and
error-prone [11]. However, to the best of our knowledge, no
study has explored using an LLM (Large Language Model)-
based approach for the automatic creation of safety cases for
open-source ML-enabled ADSs.

This experience paper aims to bridge the aforementioned
gaps by conducting a case study on Baidu Apollo, one of
the leading ML-enabled ADSs. Thus, we focus on building a
safety case for the trajectory prediction component of Baidu
Apollo. To achieve this, we initially used an adaptation of
the AMLAS [10] design methodology to manually create a
safety case for that component, generating sixteen artefacts
in the process. Subsequently, we leveraged these artefacts
together with additional software engineering (SE) knowledge
to facilitate the automatic generation of an LLM-based safety
case for the same component. Insights from our case study
suggest that combining human expertise with LLM capabilities
presents a promising approach for the semi-automatic creation
of assurance cases. This method leverages the strengths of
both manual and automated techniques and could benefit
researchers and practitioners, including vehicle manufacturers,
corporate safety analysts, and regulators.

Our paper aims to investigate two research questions (RQs)
in the light of a case study focusing on Baidu Apollo:



RQ1: Can we rely on an adaptation of AMLAS for the
manual creation of the safety case of an open-source ML-
enabled ADS?

RQ2: Can an LLM outperform human experts when creat-
ing the safety case of an open-source ML-enabled ADS?

We further describe our work in the remainder of this paper.

II. BACKGROUND

A. Assurance Cases

Assurance cases allow justifying that specific systems’
requirements (e.g., safety, security) are met. An assurance case
is defined as ”a reasoned and compelling argument, supported
by a body of evidence, that a system, service, or organization
will operate as intended for a defined application in a defined
environment” [12], There are several categories of assurance
cases (e.g., safety cases, security cases), each focusing on a
particular requirement (e.g, safety) it is designed to validate.

The use of assurance cases across various domains (e.g.,
automotive, avionics) is popular for demonstrating the correct
implementation of safety-critical systems. This is crucial to
prevent system failure, which could lead to catastrophic out-
comes (e.g., death of people, financial losses). Industry stan-
dards (e.g., ISO 26262), as well as regulatory agencies (e.g.,
Food and Drug Administration), recommend using assurance
cases to support the certification of safety-critical systems in
compliance with industry standards [13], [14].

The structure of an assurance case consists of three main
components [15]: (1) The top claim - this represents the
ultimate assertion about a given system requirement. The top
claim is broken down into several sub-claims as needed to
satisfy it. (2) A body of evidence - these include domain
knowledge about system artefacts that support the sub-claims
and the top claim. (3) A set of structured arguments - They
represent the spine of an assurance case [16]. They link the
set of evidence to the associated sub-claims and connect all
the sub-claims to the top claim of an assurance case.

Several notations allow representing assurance cases. These
include textual notations (e.g., structured prose) and graphical
notations [17]. The most popular graphical notation is GSN
(Goal Structuring Notation) [12], [18]. GSN core concepts
include [12]: Goals, Strategies, Solutions. In an assurance case,
they respectively map to Claims, Arguments, and Evidence.
InContextOf and SupportedBy are the main GSN relationships
that link GSN elements. GSN elements can be decorated using
decorators (e.g., Undeveloped, and Uninstantiated). Figure 1
shows an excerpt of a GSN-compliant safety case [19].

B. Assurance Case patterns (ACPs)

Assurance case patterns serve as abstract reusable templates
for the creation of assurance cases [20]. They contain place-
holders for specifying system-specific information [2], [21],
[22]. ACPs promote reusability and well-formedness and ease
the creation of new assurance cases [21]–[23]. They also
help mitigate assurance deficits [24], [25] i.e. knowledge gaps
undermining trust in the assurance case [24]. ACPs provide
a framework for the automatic construction of model-based

Fig. 1: A sample partial safety case adapted from [19]

assurance cases from system design models [21], [26]–[28].
Figure 2 shows a sample ACP represented using GSN.

C. Large Language Models (LLMs)

LLMs are advanced artificial intelligence systems that can
both generate and process human language, creating the ap-
pearance of understanding these languages [29], [30]. Com-
mon examples of LLMs include the GPT series by OpenAI
[31], LLaMA [32], T5 [33], and BERT [34].

LLMs support the automation of various SE tasks (e.g.,
code generation [35], software modeling [36], and test genera-
tion [37]). Various prompting techniques [38] have been intro-
duced to converse and query LLMs. These include the Chain-
of-Thought (CoT) technique [39], zero-shot prompting [40],
one-shot prompting [41] and Few-shot prompting [42]. CoT
prompting enhances the performance of LLMs in complex
reasoning tasks by using a sequence of intermediate reasoning
steps to demonstrate task completion. Zero-shot prompting
involves querying an LLM without providing any examples
for task completion, aiming to leverage the reasoning patterns
it has learned. One-shot prompting provides the LLM with a
single example to guide its response, assisting in illustrating
the task at hand.

III. RELATED WORK

A. Manual creation of assurance cases

Several studies focused on the manual creation of assurance
cases (e.g., [8], [10], [43], [44]). They mostly target ML-
enabled autonomous systems. For instance, Hawkins et al. [10]
introduced a new design methodology called AMLAS. The
latter aims at integrating safety assurance in the development
of ML-enabled components. AMLAS comprises six iterative
stages, each with argument patterns that can be instantiated



Fig. 2: A sample assurance case pattern adapted from [18]

to develop a safety case for the ML-enabled components in
an autonomous system. The development of the safety case is
done concurrently with the development of the system at hand.
Borg et al. [44] followed AMLAS to manually create a safety
case for SMIRK - a pedestrian automatic emergency braking
(PAEB) system. Sivakumar et al. [8] proposed a methodology
derived from AMLAS [10], aiming to simplify the creation of
the safety cases of already deployed ML-enabled ADSs. They
used their methodology to manually create a safety case for
an ML-enabled component utilized by a Quanser Qcar [45].

B. Automatic creation of assurance cases

The manual creation and management of assurance cases
are often laborious and error-prone [11], [46], especially for
complex systems integrating ML components. To address this,
automating assurance case creation has attracted significant
interest, particularly through weaving techniques and model-
based approaches [21], [26], [27]. These methods usually
combine system models with ACPs to automate assurance case
creation by extracting information from these models to form
assurance cases. Ramakrishna et al. [46] explored a different
aspect of automating assurance case creation by developing a
workflow to ease the pattern selection process, viewed as a
coverage problem, using ontology graphs and graph analytics.
The tool called ACCELERATE [47] automates that approach.
Recently, Odu et al. [20] proposed an approach that relies on
LLMs to generate GSN-compliant assurance cases from ACPs.
The tool called SmartGSN automates that approach [48].

C. Use of Assurance Cases in the Automotive Domain

Recent studies have explored the application of assurance
cases to certify systems in the automotive domain. Wagner et
al. [49] focused on constructing safety cases for automotive
systems, such as cruise control components. Their findings
indicate that the use of safety case patterns, modules, and
automotive models—such as functional models, platform mod-
els, and environment models— guides the construction of
safety arguments. Nearchou et al. [50] proposed incorporating
assurance cases into the software development life-cycle of

cyber-physical systems (CPS) to ensure adaptive safety be-
haviors at runtime. They demonstrated their approach with the
F1TENTH racing car. Safety-critical systems like autonomous
vehicles are designed to be interoperable and interconnected,
leading to changes in their operating conditions at runtime
[2], [26]. Hence, understanding operating conditions is vital
for safety [51]. Thus, Weiss et al. [51], presented a safety
case with eight heterogeneous sets of evidence to argue for
the sufficient completeness and consistency of the Operational
Design Domain (ODD) definition during the development of
safety-critical AI-based ADS functionalities. They evaluated
their approach on a driver-less train in the railway domain
with a fixed route. Likewise, Burton et al. [52] demon-
strated a safety assurance approach for ML-based road surface
classification across various operational scenarios for chassis
control functions. They illustrated this approach by creating
an assurance case for a Tire Noise Recognition (TNR) system,
which is essential in determining whether the road is dry.

IV. RQ1: MANUAL CREATION OF THE ASSURANCE CASE
OF AN ML-ENABLED ADS

To address RQ1, we adopted Sivakumar et al. [8]’s design
approach for creating a safety case for an ML-enabled ADS
that is already developed and operational. We applied this ap-
proach to develop a safety case for an ML-enabled component
within Baidu Apollo, an open-source ADS.

A. Steps to Manually Create an Assurance Case for an ML-
Enabled ADS

Figure 3 illustrates the design methodology that Sivakumar
et al. [8] proposed to create the safety cases of ML-enabled
ADSs. We describe how we applied the phases of that method-
ology below.

1) Phase I: HARA (Hazard Analysis and Risk Assessment):
Following Sivakumar et al. [8]’s methodology, we performed
a HARA of the trajectory prediction component to identify
its potential hazards and determine its safety requirements.
HARA is a systematic approach used to identify and evaluate
potential hazards associated with a system and to determine



Fig. 3: RQ1 High-level Approach Overview adapted from [8]

the associated risks [8], [53]. The HARA process facilitates the
creation of several artefacts used in Phase II for instantiating
the selected argument patterns from AMLAS [10].

2) Phase II: Implementation of Selected AMLAS Stages:
In this phase, following Sivakumar et al. [8], we implement
the three stages from the AMLAS [10] that are relevant to the
creation of our safety case. These three stages are stages 1,2
and 6 of AMLAS. We provide a brief description of each of
these stages in the remainder of this section.

1) Stage 1: ML Safety Assurance Scoping
In this stage, we aim to establish a clear framework for
assuring the safety of the ML component. We define
the scope of the safety assurance process for the ML
component, determine the scope of the safety case,
and create the top-level safety assurance claim while
specifying relevant contextual information. We achieve
this by instantiating the ML Safety Assurance Scoping
Argument pattern shown in Figure 7 which is available
online 1.

2) Stage 2: ML Safety Requirements Assurance
In this stage, we focus on developing and validating the
ML safety requirements. We derive these requirements
from the allocated system safety requirements, ensuring
they are aligned with the specific safety needs of the ML
component. We validate these requirements against the
allocated safety requirements, the system and software
architecture, and the operational environment to ensure
completeness. We achieve this process by instantiating
the ML Safety Requirements Argument Pattern shown
in Figure 8 which is available online 2.

3) Stage 6: Model Deployment
This stage consists of providing the necessary arguments
and evidence to demonstrate the successful integration
of the ML component into the ADS. It aims to show that
the system safety requirements continue to be satisfied

1https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png

2https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png

post-integration. We achieve this by instantiating the ML
Deployment Argument Pattern (see Figure 9 which is
available online 3). This ensures the ML model continues
to meet its safety requirements within the ADS.

Each AMLAS stage consists of a list of input artefacts,
output artefacts, and activities that must be performed in that
stage when analyzing a specific system. We describe them in
Section IV-B2, in the light of a real-world system.

3) Phase III: Change impact analysis: This phase ad-
dresses how modifications — such as changes to the ML com-
ponent, other parts of the ADS, or the operating environment
— affect system artefacts and lead to the update of the existing
safety case. Carlan and Gallina [2] opined that ”in safety-
critical domains, a change in the operating context triggers the
need for impact analysis on the artefacts generated during the
safety lifecycle”. ADSs, being part of safety-critical domains,
often encounter changes in their operating environment, such
as transitioning between urban and rural environments. This
highlights the importance of change impact analysis in ensur-
ing the highest level of system safety and functionality. We can
only focus on Phases I and II of the design methodology if
we do not have access to real-time driving and simulation data
needed to complete a comprehensive change impact analysis.

B. Case study: manual construction of a safety case for Baidu
Apollo

The Baidu Apollo open-source ADS consists of several
components, each containing smaller sub-components that
utilize ML models to make critical decisions (e.g., traffic
light detection, collision avoidance, and trajectory prediction).
In this work, we focus on Baidu Apollo version 9.0. Baidu
Apollo is developed using multiple programming languages,
with C++ being the main one, accounting for nearly 76% of its
codebase, including approximately 4.3k C++ files. The entire
system consists of over 6k files and incorporates over 28 ML
models across its various components [3], [54]. Baidu Apollo
is recognized as one of the most advanced ADSs and is widely
utilized in both academic and industrial settings.

3https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png


In this case study, we focus on manually creating a safety
case for the ML-enabled trajectory prediction component of
Baidu Apollo. To create that safety case, we first relied on sev-
eral information sources freely available online and describing
that ADS: Baidu Apollo GitHub project [54], and scientific
papers (i.e. [3], [55], [56], [57]). Then we applied Sivakumar
et al. [8]’s methodology. Thus, in this section, we describe
all the activities and artefacts resulting from the application
of that methodology to the trajectory prediction component of
Baidu Apollo. The instantiated AMLAS patterns, along with
the arguments, activities performed, and the evidence gathered,
collectively form the safety case for that component.

Phase III of the design methodology [8] focuses on change
impact analysis. In this paper, we do not complete this phase
because we do not have access to the real-time driving and
simulation data needed for a comprehensive change impact
analysis. Hence, we generate a static safety case.

1) Phase I: Hazard Analysis and Risk Assessment (HARA):
When completing the HARA process for our case study, we
defined five key system functions of the trajectory prediction
component as follows:

• SF1: Predicts the future position of an obstacle.
• SF2: Outputs the probability value for a predicted obsta-

cle trajectory.
• SF3: Select the most appropriate ML model for predic-

tion.
• SF4: Identifies the scenario of an obstacle.
• SF5: Assigns a priority to an obstacle.
To determine system malfunctions, we applied the guide

word ”Wrongly” combining it with each system function to
derive potential malfunctions, which are listed below.

• MF1: Wrongly predicts the future position of an obstacle
• MF2: Wrongly outputs the probability value for a pre-

dicted obstacle trajectory
• MF3: Wrongly selects the most appropriate ML model

for prediction
• MF4: Wrongly identifies the scenario of an obstacle.
• MF5: Wrongly assigns a priority to an obstacle.
Based on reference literature [3], [54], [55] on Baidu

Apollo’s trajectory prediction component, we defined several
operational scenarios:

• OS1: A vehicle in Cruise scenario
• OS2: A vehicle in Junction scenario
• OS3: Obstacle is a Pedestrian
• OS4: Obstacle is a Vehicle
• OS5: Obstacle priority is set as Ignore
• OS6: Obstacle priority is set as Caution
• OS7: Obstacle priority is set as Normal
At the end of our HARA process, we defined the following

four safety goals, which form the basis of our system safety
requirements for the Baidu Apollo autonomous driving system:

• SG1: Rear-end collisions due to miscalculated obstacle
halt or acceleration shall be prevented.

• SG2: Collision with obstacles at an intersection shall be
prevented

• SG3: Collision due to wrong obstacle priority shall be
prevented.

• SG4: Collision with obstacles wrongly classified shall be
prevented.

The results of our HARA process are available on Github4.
2) Phase II: Implementation of Selected AMLAS Stages:
1) Stage 1: ML Safety Assurance Scoping:

We now provide and describe each input artefacts, output
artefacts, and activities we performed in this stage.

a) Input Artefacts:
• Artefact [A] – System safety requirements:

We derived the system safety requirements from
the safety goals established when completing
the HARA process. These requirements are as
follows:
– SR1: The Ego vehicle will automatically initi-

ate deceleration to prevent rear-end collisions
upon detecting sudden stops or unexpected
changes in acceleration from nearby obsta-
cles.

– SR2: The Ego vehicle will halt at intersec-
tions if the predicted trajectory indicates po-
tential collision with cross-traffic or obstacles.

– SR3: The Ego vehicle will dynamically adjust
the priority of obstacles using real-time envi-
ronmental data to prevent collisions that may
result from incorrect obstacle priority settings.

– SR4: The Ego vehicle will utilize appropriate
ML models to accurately detect and classify
obstacles, preventing collisions due to mis-
classification.

• Artefact [B] - Description of Operating Environ-
ment of System
The Baidu Apollo ADS operates within a com-
plex environment composed of several critical
elements. The road and traffic infrastructure are
defined by High Definition (HD) maps, which
provide details of road layouts, lane markings,
traffic signs, traffic lights, and crosswalks. To
achieve accurate perception of the surrounding
environment, the system employs a diverse ar-
ray of sensors and localization tools, including
cameras, LiDAR, and radars. These are comple-
mented by the Global Navigation Satellite Sys-
tem (GNSS), which ensures precise localization
capabilities.
The operating environment includes a variety
of traffic situations (e.g., highway cruising and
intersection navigation) while adhering to traffic
laws and regulations. We make three assump-
tions regarding the operating environment: 1)

4https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Hazard Analysis Risk
Assessment.xlsx

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Hazard_Analysis_Risk_Assessment.xlsx
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Hazard_Analysis_Risk_Assessment.xlsx
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Hazard_Analysis_Risk_Assessment.xlsx
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Hazard_Analysis_Risk_Assessment.xlsx


perception and localization data used for trajec-
tory prediction remain accurate and current; 2)
obstacles within the environment are classified
as either vehicles or pedestrians, and 3) all
obstacles act independently.

• Artefact [C] - System Description
The Baidu Apollo ADS is structured around
five key components: Localization, Perception,
Prediction, Planning, and Control. The Local-
ization component automatically determines the
exact position of the Ego vehicle, gathering
relevant data about the road and surrounding
environment. It employs vehicle cameras, Global
Navigation Satellite Systems (GNSS), and High
Definition (HD) Maps, which provide road de-
tails within a designated area to ensure safe
navigation. Once the Ego vehicle’s location is
identified on the HD map, the ADS leverages the
Perception component, with sensors like cam-
eras, LiDAR, and radars, to detect surrounding
obstacles and dynamic objects, measuring their
distance from the Ego vehicle. It employs ML
models for the processing and classification of
these detected objects. Based on the perception
information, the ADS uses the Trajectory predic-
tion component to predict the future trajectories
of all detected obstacles. The motion planning
component then uses the compiled information
from the localization, perception, and prediction
components to generate a smooth path according
to different driving scenarios, and sends this to
the control component, which then controls the
Ego vehicle’s movement relative to its environ-
ment to avoid collisions.

• Artefact [D] - ML Component Description
The trajectory prediction component of the
Baidu Apollo ADS predicts the behavior and
future positions of all obstacles (e.g., vehicles,
pedestrians) identified by the Perception com-
ponent. It relies on information such as road
boundaries, lane markings, traffic light loca-
tions and statuses, crosswalks, distances, ve-
locities, and accelerations to generate predicted
trajectories with probability estimates for these
obstacles. The Trajectory Prediction compo-
nent consists of four sub-components: Container,
Scenario, Evaluator, and Predictor. These sub-
components contain various ML models de-
signed for specific tasks or unique scenarios
to predict obstacle trajectory probabilities. The
trajectory prediction component’s configuration
file specifies these ML models and automatically
selects the most suitable model for a task based
on the perception information. The Container
sub-component stores all perception and local-
ization information, including data on the sur-

rounding environment and obstacle history. The
Scenario sub-component analyzes all possible
scenarios involving the Ego vehicle, which in-
clude cruise or junction scenarios. The Evaluator
sub-component evaluates a path and speed for
any given obstacle by outputting a probability
for it using a suitable model depending on the
scenario type and obstacle priority. The Pre-
dictor sub-component is used to generate the
predicted trajectories for all obstacles.

• Artefact [F] - the ML Safety Assurance Scoping
Argument Pattern in Figure 7 5 shows the ML
assurance scoping argument pattern we adapted
from the design methodology [8] for our case
study.

b) Activities Performed:
We utilized the input artefacts ([A], [B], [C],
[D]) to determine the safety requirements that are
allocated to the trajectory prediction component
and instantiate the ML assurance scoping argument
pattern ([F]).

c) Output Artefacts: The outputs for this stage include

• Artefact [E] - Safety Requirements Allocated to
ML Component

• Artefact [G] - Instantiated ML Safety Assurance
Scoping Pattern
The instantiated ML safety assurance scoping
pattern is presented in Figure 10 6, available
online.

2) Stage 2: ML Safety Requirements Assurance
a) Input Artefacts:

• Artefact [E] - Safety Requirements Allocated
to ML Component. Following the completion
of the HARA process for the trajectory predic-
tion component, we identified four safety goals
specific to that component. These four safety
goals outlined below now serve as the safety
requirements allocated to the ML component.

– SG1: Rear-end collisions due to miscalcu-
lated obstacle halt or acceleration shall be
prevented.

– SG2: Collision with obstacles at an intersec-
tion shall be prevented

– SG3: Collision due to wrong obstacle priority
shall be prevented.

– SG4: Collision with obstacles wrongly clas-
sified shall be prevented.

• Artefact [I] - ML Safety Requirements Argu-

5https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png

6https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure10.png

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure7.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure10.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure10.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure10.png


ment Pattern. Figure 8 7 presents the ML Safety
Requirements Argument Pattern we adapted
from the design methodology [8] for the system
at hand.

b) Activities Performed: In this stage, we use the out-
put from the previous stage (Stage 1), namely the
safety requirement allocated to the ML component,
and include it as an input in Stage 2 to develop the
actual ML safety requirement. Subsequently, we
validate this ML safety requirement against the sys-
tem safety requirements. We use the results from
this validation process, along with other artefacts,
to instantiate the ML safety requirement argument
pattern. The artefacts used in this stage are listed
below.

c) Output Artefact:
• Artefact [H] - ML Safety Requirements

We have developed the safety requirements for
our trajectory prediction component (ML safety
requirements) based on the safety requirements
allocated to the ML component and its operating
environment. Consequently, we have identified
the following specific ML safety requirements:
– ML-SR1: The trajectory prediction compo-

nent will accurately predict the path, velocity,
and acceleration of obstacles to prevent rear-
end collisions.

– ML-SR2: The trajectory prediction compo-
nent will provide reliable predictions of ob-
stacle movements at intersections.

– ML-SR3: The trajectory prediction compo-
nent will correctly assign priorities to obsta-
cles based on perceived information from the
environment.

– ML-SR4: The trajectory prediction compo-
nent will continuously re-evaluate obstacle
trajectories and priorities based on new infor-
mation to ensure predictions remain accurate.

Following the approach outlined in AMLAS [8],
[10] and implemented in [8], [44], we have
derived additional safety requirements focusing
on the performance and robustness of the ML
component.
ML Performance Requirement:
i) The trajectory prediction component will ac-

curately predict the future position of an ob-
stacle, maintaining an Average Displacement
Error (ADE) threshold of 0.001 meters.

ML Robustness Requirement:
i) The Trajectory Prediction component will

accurately assign priorities to obstacles under
various weather conditions.

7https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png

ii) The trajectory prediction component will en-
sure high accuracy for both short-term and
long-term prediction horizons.

• Artefact [J] - ML Safety Requirements Valida-
tion Results. This artefact presents the outcomes
of domain expert reviews conducted to verify the
validity of established ML safety requirements
([H]).

• Artefact [K] - ML Safety Requirements Argu-
ment:
This output artefact represents the instantiated
ML Safety Requirements Argument Pattern [I]
specific to our system. The instantiated pattern is
illustrated in Figure 11 which is available online
8. We instantiated this pattern using artefacts [E],
[H], and [J].

3) Stage 6: Model Deployment
a) Input Artefacts: The input artefacts needed for this

stage include the following:
• Artefact [A] - System Safety Requirements
• Artefact [B] - Environment Description
• Artefact [C] - System Description.
We previously described these three artefacts in
stage 1. The additional input artefacts for this stage
include:
• Artefact [V] - ML Model. This artefact describes

the list of all ML models (e.g., the MLP, RNN,
and LSTM models) used within the trajectory
prediction component of the Baidu Apollo ADS.
A complete list of these models, and their spe-
cific use cases for various scenarios, obstacle
types, and obstacle priority types, can be found
in [3], [54].

• Artefact [EE] - Operational scenarios
The operational scenario describes the set of real
scenarios that may be encountered during the
operation of the ADS [10]. In our case study, we
have narrowed down the operational scenarios
to:
– OS1: A vehicle in Cruise scenario - when a

vehicle is moving along a lane
– OS2: A vehicle in Junction scenario - when

a vehicle approaches a road junction
– OS3: Obstacle is a Pedestrian
– OS4: Obstacle is a Vehicle
– OS5: Obstacle priority is set as Ignore (i.e.,

Obstacles that do not affect the Ego vehicle’s
trajectory and can be disregarded)

– OS6: Obstacle priority is set as Caution (i.e.,
Obstacles with a high possibility of interact-
ing with the Ego vehicle)

8https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure11.png

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure8.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure11.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure11.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure11.png


– OS7: Obstacle priority is set as Normal (i.e.
when an obstacle does not fit into the ”ignore”
or ”caution” categories).

• Artefact [GG] - ML Deployment Argument Pat-
tern. Figure 9 which is available online9 presents
the ML Deployment Argument Pattern adapted
from the design methodology [8] for our system.

b) Activities Performed: In this stage, we instantiate
the ML Deployment Argument Pattern [GG] to
generate the instantiated ML Deployment Argu-
ment Pattern [HH].

c) Output Artefacts:
• Artefact [DD] - Erroneous Behaviour Log. In

our case, we assume that no erroneous behavior
is detected in the operation of the trajectory
prediction component or its integration with
the ADS. Therefore, we do not reference this
artefact in the instantiated ML Deployment Ar-
gument Pattern.

• Artefact [FF] - Integration Testing Results. This
includes integration test case results indicating
satisfactory system safety in the defined oper-
ational scenarios after integration with the ML
component.

• Artefact [HH] - ML Deployment Argument.
This represents the instantiated ML Safety Re-
quirements Argument Pattern [GG] specific to
our system, demonstrating that the safety re-
quirements assigned to the trajectory prediction
component are still met when the component is
deployed within the ADS. The instantiated pat-
tern is illustrated in Figure 12 which is available
online 10.

Finally, the three instantiated argument patterns derived
from the AMLAS stages, along with all the described and
referenced artefacts, collectively form the first draft of our
safety case for the trajectory prediction component of the
Baidu Apollo autonomous driving system.

3) Manual evaluation and refinement of the safety case: To
review the first draft of the safety case, two co-authors (raters)
with at least six years of experience in system assurance and/or
SE followed the assurance case review guidelines that the
literature (e.g., [12], [58]–[60]) recommends. This allowed
them to review that safety case by assessing nine review
criteria. These criteria are: 1) Argument comprehension; 2)
Well-formedness; 3) Expressive sufficiency; 4) Presence of
Defeaters and Counter-evidence; 5) Clarity; 6) Atomicity; 7)
Ambiguity; 8) Vagueness; and 9) Appropriate use of elements.

During the review process, the two raters independently
rated each of these criteria on a linear scale going from 1 to 5,

9https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png

10https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure12.png

Fig. 4: RQ2 High-level Approach Overview adapted from [20]

with 1 = Very High, 2 = High, 3 = Average, 4 = Low, and, 5 =
Very Low. For each of these criteria, when the associated rating
was suboptimal (i.e. higher than 1), the rater also commented
on how to refine the safety case by improving that criteria.
The table reporting the nine assessment criteria, the short
explanation of these criteria, and the independent ratings made
by each of the two co-authors are available online11.

To assess the consistency of the ratings made by the two
co-authors, we relied on Kendall’s Tau [61]. The latter is
a correlation coefficient that varies between - 1 (lack of
agreement between raters) and 1 (strong agreement between
raters). We used an online tool 12 to automatically compute the
value of Kendall’s Tau with a 95% confidence interval, using
the ratings from the table reporting the assessment criteria
the two raters used for the review. Hence, the value of the
Kendall’s Tau is 0.44. This indicates a moderate agreement
between the two raters. Besides, the averages of their ratings
are respectively 1.33 and 1.22. This results in a combined
overall average of 1.28, which is close to 1 i.e. Very High.
Thus, the rating results indicate that the manually created
safety case meets most of the assessment criteria. To account
for their moderate agreement, the two raters then discussed
their ratings and reached a consensus. They then used their so-
finalized comments to refine the safety case of the trajectory
prediction component of Baidu Apollo. Figure 14 which is
available online 13 depicts this refined safety case. It notably
consists of a total of 38 GSN elements, including 15 goals, 6
strategies, and 5 solutions.

V. RQ2: AUTOMATIC CREATION OF ASSURANCE CASES
USING AN LLM

To facilitate the automatic creation of assurance cases using
LLMs, we rely on the approach that Odu et al. [20] proposed.
We provide a brief description of this approach in Section V-A.

A. Description of the LLM-powered approach

We follow the LLM-based approach proposed in [20] to
instantiate assurance cases from ACPs (i.e. AMLAS argument
patterns). Figure 4 depicts this approach. We describe it below.

11https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Safety Case Assessment.zip

12https://www.gigacalculator.com/calculators/correlation-coefficient-
calculator.php

13https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure14.png

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure9.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure12.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure12.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure12.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Safety_Case_Assessment.zip
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Safety_Case_Assessment.zip
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Safety_Case_Assessment.zip
https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php
https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure14.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure14.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure14.png


1) Phase I: Data Collection: To collect relevant data for
the automatic instantiation of assurance cases from patterns,
we can focus on safety-critical systems that include specialized
components, such as those employing ML technologies. These
systems present unique assurance requirements due to their
complexity making them ideal candidates for analysis. We
can then identify from peer-reviewed studies (e.g,. [62]), a
set of well-established and validated ACPs which have been
used to structure the assurance cases of the target systems.
Thus, our dataset may comprise these ACPs and the assurance
cases developed from them. We can divide the dataset into two
parts: one for use as a one-shot example and the other (i.e.
the ground truth) for evaluating our approach’s performance.
In our study, we identified and extracted the ACP and the
resulting assurance case from the pattern referenced in [62],
which we used as our one shot example.

2) Phase II: Pre-processing of ACPs into Predicates: In
this phase, we utilized the predicate-based rules Odu et al.
introduced in [20] for the formalization of assurance cases and
ACPs. Thus, we convert each ACP from our dataset into this
predicate-based format. The latter is an advanced structured
prose format that complies with GSN. This conversion enables
our LLM to use it as input for generating an assurance case
that complies with this pattern.

3) Phase III: Using LLM to Automatically Generate Assur-
ance Cases: In this phase, we utilize an LLM to automatically
generate an assurance case for the analyzed component of
Baidu Apollo, using the formalized ACPs provided as input to
that model. These ACPs are the AMLAS argument patterns.

B. Case study: automatic generation of a safety case for Baidu
Apollo

1) Dataset: It consists of the following:
1) ACP and Derived Assurance Case for the DeepMind

System: In [20], the authors relied on peer-reviewed
studies to identify ACPs and instantiated assurance cases
for many systems across various domains. Among these,
DeepMind [62] is the only ML-enabled system. Thus,
we selected the ACP and the derived assurance case
focusing on the interpretability of the ML component
in the DeepMind system as part of our dataset. Our
one-shot experiment uses the two of them as a single
example.

2) Safety Argument Pattern and Derived Safety Case
for Baidu Apollo ADS: Our dataset also comprises the
safety case we manually developed in Section IV-B and
the ACP resulting from the combination of the three
argument patterns we used in Section IV-B to create that
safety case. To validate the experiment results associated
with RQ2, we use that safety case as the ground truth.

2) LLM Description and settings: In our experiments, we
chose GPT-4o as our LLM due to its robust capabilities
and the advanced features it offers as a recent addition to
the OpenAI GPT series. To address the non-deterministic
behavior of our LLM, we conducted each experiment five
times (K=5) following the literature (e.g., [36], [63], [64]). We

interacted with our LLM using the OpenAI API [65], while
maintaining default settings for the different parameters used
in our interaction with GPT-4o. Hence, we set its temperature
to 1 and its maximum number of tokens to 4096.

3) Description of the experiments: To investigate RQ2,
we conducted two different experiments to evaluate the ef-
fectiveness of GPT-4o in generating an assurance case for
Baidu Apollo. Our experiments utilized the CoT prompting
technique [39] combined with SE knowledge. As in existing
work [20], that knowledge includes: 1) Predicate-based rules,
2) Domain Information, 3) Context Information, and 4) One-
shot Example. Domain information is the knowledge and facts
specific to the application domain or system for which the
assurance case is being automatically generated [20]. Context
information is the background details about the structure and
representation of various elements and decorators used in an
assurance case and ACP as represented in GSN [12].

• Experiment 1: One-shot, with context information,
with domain information, and with predicate rules -
This experiment evaluates our LLM ability to instantiate
an assurance case using SE knowledge i.e. a one-shot ex-
ample, domain information about the system, contextual
information, and predicate-based rules.

• Experiment 2: Zero-shot, without context information,
without domain information, and without predicate
rules - It evaluates our LLM ability to instantiate an
assurance case without SE knowledge in its prompts.

4) Description of the LLM prompts: In our experiments,
we interact with our LLM by specifying two types of input
prompts: the system prompt and the user prompt. The system
prompt consists of instructions and guidelines provided to
our LLM to ensure it understands the task and responds
appropriately. This prompt contains our domain information,
context information, and a one-shot example, all structured
using CoT. The user prompt represents our direct input to the
model, requesting it to complete the generation of an assurance
case complying with the given pattern in the user prompt. The
LLM generates the safety case in a textual format, and more
specifically, a structured prose format complying with GSN.

Figure 15 which is available online 14 illustrates the generic
structure of the system prompt used in Experiment 1, while
Figure 16 15 presents an excerpt from the user prompt for
the same experiment. The user prompt includes an excerpt
of the formalized safety case pattern. Figure 13 16 illustrates
that pattern using GSN. The system prompt in Experiment 1
incorporates all four categories of our SE knowledge. Specifi-
cally, the area outlined by blue dotted lines denotes the context
information, the area with orange dotted lines represents our

14https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure15.png

15https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure16.png

16https://github.com/Oluwafemi17/LLM-Based-Safety-
Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/
f61775743d03e8368e3c086471c80cfe6a51dc67/Figure13.png

https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure15.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure15.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure15.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure16.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure16.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure16.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure13.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure13.png
https://github.com/Oluwafemi17/LLM-Based-Safety-Case-Generation-for-Baidu-Apollo-Are-We-There-Yet-/blob/f61775743d03e8368e3c086471c80cfe6a51dc67/Figure13.png


TABLE I: Experiment Results

Exp Exact Match BLEU Score Semantic Similarity
Mean Median Mean Median Mean Median

Exp 1 0.386 0.37 0.47 0.48 0.82 0.81
Exp 2 0.014 0.01 0.01 0.01 0.212 0.22

predicate rules, the area with purple dotted lines showcases
our one-shot example, and the area with the red dotted lines
contains our domain information. That pattern is also provided
as input to the LLM for its automatic instantiation of a safety
case. In Experiment 2, we used the system and user prompts
that Figures 5 and 6, respectively depict.

You are an assistant who assists in developing
an assurance case in a tree structure using Goal

Structuring Notation (GSN). Your role is to
create an assurance case.

Fig. 5: A Sample System Prompt for Experiment 2

Create a safety case for the trajectory
prediction component of the Baidu Apollo

autonomous driving system and display this
safety case in a hierarchical tree format using

dashes (-) to denote different levels.

Fig. 6: A Sample User Prompt for Experiment 2

5) Description of the assessment measures: To assess the
quality of our experiment results, we focus on well-established
metrics designed to measure the similarity between machine-
generated text (i.e. LLM-generated safety case) and reference
human text (i.e. manually generated safety case). These met-
rics are: Exact Match, BLEU Score, Semantic Similarity.
To evaluate the latter, we use the cosine similarity metric.

6) Result analysis: Table I presents the Exact Match, BLEU
score, and Semantic Similarity results from our Experiments.
The mean and median values across the five runs for both
experiments are remarkably close, indicating an absence of
extreme outliers and consistent results across different runs.

As Table I shows, Experiment 1 consistently outperformed
Experiment 2 across all three similarity metrics. Hence Ex-
periment 1 yields an LLM-generated safety case that is sig-
nificantly closer to the ground-truth (i.e. manually generated
safety case for the trajectory prediction component). One
probable reason for this outcome could be the integration
of comprehensive SE knowledge, particularly context infor-
mation, predicate-based rules, one-shot example, and domain
information containing system artefacts generated during our
manual safety case creation in section IV-B2.

VI. DISCUSSION AND IMPLICATIONS FOR FUTURE WORK

A. Reflections on the manual creation of assurance cases

Manually creating assurance cases from scratch can be
tedious and time-consuming. Despite the use of an AMLAS-
based approach to support that task, we found that gathering
the necessary artefacts and performing the required activities
required significant domain expertise across multiple disci-
plines. This expertise encompasses understanding domain-
specific jargon, international standards, safety and compliance
processes within that domain, and a deep knowledge of the
Baidu Apollo ADS, its architecture, and its operating environ-
ment. This timeline highlights the complex and time-intensive
nature of developing a robust safety case for the trajectory
prediction component of Baidu Apollo.

In addition, we relied on several guidelines from the litera-
ture to review and refine the manually created safety case. This
review process was very useful and informed the improvement
of that safety case. Thus, we think it would greatly enhance
AMLAS to incorporate an explicit phase for reviewing gen-
erated assurance cases. This phase could focus on criteria
relevant to ML-enabled components in Autonomous Systems,
thereby further improving that methodology’s robustness.

B. Reflections on the use of an LLM-based approach to
automatically create assurance cases

Our case study suggests that the use of an LLM can provide
significant speed and efficiency as it can quickly process large
volumes of data and generate content, allowing for rapid
generation of safety cases compared to traditional manual
methods. This is advantageous for complex systems like Baidu
Apollo’s ADS, where the manual creation of an assurance case
can be a lengthy process, often taking several months.

Our case study also shows that an LLM may produce inac-
curate or inconsistent outputs if not provided with sufficient
or relevant information. The generation of a reliable assurance
case requires detailed domain-specific knowledge that LLMs
may not inherently possess. This point is highlighted in our
experiments: Experiment 1, which included key SE inputs
outperformed Experiment 2, which lacked them.

To enhance the effectiveness of LLMs in generating high-
quality assurance cases, we can consider several approaches.
These include incorporating additional categories of relevant
knowledge such as results of HARA, details on international
standards and compliance with these standards, ethics, and
operational context relevant to the system being assessed.

While it may appear advantageous to directly ”teach”
AMLAS-based methodologies to an LLM, doing so would
necessitate extensive training datasets specifically tailored to
these methodologies. Unfortunately, such datasets are often
unavailable due to proprietary and sensitive data concerns,
posing a significant challenge to this automation approach.

C. Semi-automatic creation of assurance cases: Human ft.
Machine

Our case study (see experiment 1 results) suggests that
combining human expertise with ML capabilities may offer



a promising approach for the semi-automatic creation of
assurance cases, leveraging the strengths of both manual and
automated approaches. The manual approach which starts with
a detailed HARA, followed by identifying necessary artefacts,
activities, and information, ensures thorough extraction of
domain information. This can be effectively integrated with
LLMs, which provide speed and efficiency, enabling swift
generation of reliable assurance cases.

VII. THREATS TO VALIDITY

In our work, we focused on a single case study: Baidu
Apollo. This hinders the generalization of our results to the
automotive domain. Still, Baidu Apollo is a globally recog-
nized commercial ADS and a popular open-source platform.
Furthermore, its features are common to most ML-enabled
ADSs and it is widely utilized in both academia and industry.

To gauge the ability of an LLM to generate a correct safety
case, we relied on a safety case that we created ourselves. Even
though our safety case has been created by an experienced
team of researchers, it has not yet been reviewed by the
experts who developed Baidu Apollo. This may hinder the
verification of the completeness and usefulness of that safety
case. Still, we have used the adaptation of a well-established
design methodology to manually create that safety case and
followed a very stringent process to review and refine that
safety case. Still, in the future, we plan to work closely with
Baidu Apollo experts to further review our safety case.

VIII. CONCLUSION AND FUTURE WORK

In this experience paper, we have explored two approaches
— manual and automated approaches for creating a safety
case for the trajectory prediction component of an autonomous
driving system. Our study not only demonstrates the potential
of each approach independently but also reveals the specific
strengths and limitations inherent to each approach.

In future work, we aim to expand our work by focusing on
additional case studies and engaging in close collaboration
with industry partners to further validate our work. Also,
we plan to conduct a user study to manually assess the
LLM-generated safety cases using several assessment criteria
including the ones outlined in section IV-B3. This will help to
further evaluate the equivalence of LLM-generated assurance
cases to those developed by assurance case experts.

REFERENCES

[1] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems. in 2018 33rd ieee,” in ACM International
Conference on Automated Software Engineering (ASE), pp. 132–142.

[2] C. Carlan and B. Gallina, “Enhancing state-of-the-art safety case patterns
to support change impact analysis,” in 30th European Safety and
Reliability Conference, 2020.

[3] Z. Peng, J. Yang, T.-H. Chen, and L. Ma, “A first look at the integration
of machine learning models in complex autonomous driving systems: a
case study on apollo,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1240–1250, 2020.

[4] S. Burton, L. Gauerhof, B. B. Sethy, I. Habli, and R. Hawkins, “Con-
fidence arguments for evidence of performance in machine learning for
highly automated driving functions,” in Computer Safety, Reliability, and
Security: SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR,
STRIVE, and WAISE, Turku, Finland, September 10, 2019, Proceedings
38, pp. 365–377, Springer, 2019.

[5] P. Koopman, “Autonomous vehicles and software safety engineering,”
ICSE keynote, 2022.

[6] E. Wozniak, C. Cârlan, E. Acar-Celik, and H. J. Putzer, “A safety case
pattern for systems with machine learning components,” in Computer
Safety, Reliability, and Security. SAFECOMP 2020 Workshops: DEC-
SoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020, Lisbon,
Portugal, September 15, 2020, Proceedings 39, pp. 370–382, Springer,
2020.

[7] R. Salay, K. Czarnecki, H. Kuwajima, H. Yasuoka, T. Nakae, V. Ab-
delzad, C. Huang, M. Kahn, and V. D. Nguyen, “The missing link:
Developing a safety case for perception components in automated
driving,” arXiv preprint arXiv:2108.13294, 2021.

[8] M. Sivakumar, A. B. Belle, J. Shan, O. Odu, and M. Yuan, “Design
of the safety case of the reinforcement learning-enabled component
of a quanser autonomous vehicle,” in 2024 IEEE 32nd International
Requirements Engineering Conference Workshops (REW), pp. 57–67,
IEEE, 2024.

[9] R. Hawkins, M. Osborne, M. Parsons, M. Nicholson, J. McDermid, and
I. Habli, “Guidance on the safety assurance of autonomous systems in
complex environments (sace),” arXiv preprint arXiv:2208.00853, 2022.

[10] R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, and I. Habli,
“Guidance on the assurance of machine learning in autonomous systems
(amlas),” arXiv preprint arXiv:2102.01564, 2021.

[11] C. Menghi, T. Viger, A. Di Sandro, C. Rees, J. Joyce, and M. Chechik,
“Assurance case development as data: A manifesto,” in 2023 IEEE/ACM
45th International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pp. 135–139, IEEE, 2023.

[12] G. S. N. S. W. Group, “Gsn (version 3),” 2023. Accessed on November
30, 2023.

[13] A. Finnegan and F. McCaffery, “A security argument pattern for medical
device assurance cases,” in 2014 IEEE International Symposium on
Software Reliability Engineering Workshops, pp. 220–225, IEEE, 2014.

[14] E. Denney and G. Pai, “Tool support for assurance case development,”
Automated Software Engineering, vol. 25, no. 3, pp. 435–499, 2018.

[15] P. J. Graydon, J. C. Knight, and E. A. Strunk, “Assurance based de-
velopment of critical systems,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07), pp. 347–
357, IEEE, 2007.

[16] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, “Tool-supported
safety-relevant component reuse: From specification to argumentation,”
in Reliable Software Technologies–Ada-Europe 2018: 23rd Ada-Europe
International Conference on Reliable Software Technologies, Lisbon,
Portugal, June 18-22, 2018, Proceedings 23, pp. 19–33, Springer, 2018.

[17] C. M. Holloway, “Safety case notations: Alternatives for the non-
graphically inclined?,” in 2008 3rd IET International Conference on
System Safety, pp. 1–6, IET, 2008.

[18] R. Alexander, T. Kelly, Z. Kurd, and J. McDermid, “Safety cases for
advanced control software: Safety case patterns,” Final Report, NASA
Contract FA8655-07-1-3025, Univ. of York (October 2007), 2007.

[19] M. Vierhauser, S. Bayley, J. Wyngaard, W. Xiong, J. Cheng, J. Huseman,
R. Lutz, and J. Cleland-Huang, “Interlocking safety cases for unmanned
autonomous systems in shared airspaces,” IEEE transactions on software
engineering, vol. 47, no. 5, pp. 899–918, 2019.

[20] O. Odu, A. B. Belle, S. Wang, S. Kpodjedo, T. C. Lethbridge, and
H. Hemmati, “Automatic instantiation of assurance cases from pat-
terns using large language models,” Journal of Systems and Software,
p. 112353, 2025.

[21] C. Hartsell, N. Mahadevan, A. Dubey, and G. Karsai, “Automated
method for assurance case construction from system design models,”
in 2021 5th International Conference on System Reliability and Safety
(ICSRS), pp. 230–239, IEEE, 2021.

[22] O. Odu, A. B. Belle, S. Wang, and K. K. Shahandashti, “A prisma-
driven bibliometric analysis of the scientific literature on assurance case
patterns,” arXiv preprint arXiv:2407.04961, 2024.

[23] T. A. Beyene and C. Carlan, “Cybergsn: a semi-formal language for
specifying safety cases,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W),
pp. 63–66, IEEE, 2021.

[24] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new approach
to creating clear safety arguments,” in Advances in Systems Safety:
Proceedings of the Nineteenth Safety-Critical Systems Symposium,
Southampton, UK, 8-10th February 2011, pp. 3–23, Springer, 2011.



[25] K. K. Shahandashti, A. B. Belle, T. C. Lethbridge, O. Odu, and
M. Sivakumar, “A prisma-driven systematic mapping study on system
assurance weakeners,” Information and Software Technology, p. 107526,
2024.

[26] R. Wei, T. P. Kelly, X. Dai, S. Zhao, and R. Hawkins, “Model
based system assurance using the structured assurance case metamodel,”
Journal of Systems and Software, vol. 154, pp. 211–233, 2019.

[27] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving an
assurance case from design: a model-based approach,” in 2015 IEEE
16th International Symposium on High Assurance Systems Engineering,
pp. 110–117, IEEE, 2015.

[28] M. Zeroual, B. Hamid, M. Adedjouma, and J. Jaskolka, “Formal model-
based argument patterns for security cases,” in Proceedings of the 28th
European Conference on Pattern Languages of Programs, pp. 1–12,
2023.

[29] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo,
D. Lo, J. Grundy, and H. Wang, “Large language models for soft-
ware engineering: a systematic literature review (2023),” arXiv preprint
arXiv:2308.10620, 2023.

[30] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Barnes, and A. Mian, “A comprehensive overview of large language
models,” arXiv preprint arXiv:2307.06435, 2023.

[31] T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A
brief overview of chatgpt: The history, status quo and potential future
development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5,
pp. 1122–1136, 2023.

[32] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[33] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1–67, 2020.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[35] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” arXiv preprint
arXiv:2103.06333, 2021.

[36] K. Chen, Y. Yang, B. Chen, J. A. H. López, G. Mussbacher, and
D. Varró, “Automated domain modeling with large language models: A
comparative study,” in 2023 ACM/IEEE 26th International Conference
on Model Driven Engineering Languages and Systems (MODELS),
pp. 162–172, IEEE, 2023.

[37] J. Shin, S. Hashtroudi, H. Hemmati, and S. Wang, “Domain adaptation
for code model-based unit test case generation,” in Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 1211–1222, 2024.

[38] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern
catalog to enhance prompt engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

[39] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24824–24837, 2022.

[40] B. Romera-Paredes and P. Torr, “An embarrassingly simple approach to
zero-shot learning,” in International conference on machine learning,
pp. 2152–2161, PMLR, 2015.

[41] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[42] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in neural information processing systems, vol. 30,
2017.

[43] E. A. Nguyen and A. G. Ellis, “Experiences with assurance cases for
spacecraft safing,” in 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pp. 50–59, IEEE, 2011.

[44] M. Borg, J. Henriksson, K. Socha, O. Lennartsson, E. Sonnsjö Lönegren,
T. Bui, P. Tomaszewski, S. R. Sathyamoorthy, S. Brink, and
M. Helali Moghadam, “Ergo, smirk is safe: a safety case for a machine

learning component in a pedestrian automatic emergency brake system,”
Software quality journal, vol. 31, no. 2, pp. 335–403, 2023.

[45] Quanser, “Qcar.” https://www.quanser.com/products/qcar/, 2024.
[46] S. Ramakrishna, H. Jin, A. Dubey, and A. Ramamurthy, “Automating

pattern selection for assurance case development for cyber-physical
systems,” in International Conference on Computer Safety, Reliability,
and Security, pp. 82–96, Springer, 2022.

[47] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning,
pp. 1–16, PMLR, 2017.

[48] O. Odu, D. M. Beltrán, E. B. Gutiérrez, A. B. Belle, and M. Sherafat,
“Smartgsn: a generative ai-powered online tool for the management of
assurance cases,” arXiv preprint arXiv:2410.16675, 2024.

[49] S. Wagner, B. Schätz, S. Puchner, and P. Kock, “A case study on safety
cases in the automotive domain: Modules, patterns, and models,” in 2010
IEEE 21st International Symposium on Software Reliability Engineering,
pp. 269–278, IEEE, 2010.

[50] I. Nearchou, L. Rafalko, R. Phillips, M. Anderson, W. Shen, and
S. Drager, “An assurance case driven development paradigm for
autonomous vehicles: An f1tenth racing car case study,” in 2023
IEEE/ACIS 21st International Conference on Software Engineering
Research, Management and Applications (SERA), pp. 156–161, IEEE,
2023.

[51] G. Weiss, M. Zeller, H. Schoenhaar, C. Drabek, and A. Kreutz, “Ap-
proach for argumenting safety on basis of an operational design domain,”
in Proceedings of the IEEE/ACM 3rd International Conference on AI
Engineering-Software Engineering for AI, pp. 184–193, 2024.

[52] S. Burton, I. Kurzidem, A. Schwaiger, P. Schleiss, M. Unterreiner,
T. Graeber, and P. Becker, “Safety assurance of machine learning for
chassis control functions,” in Computer Safety, Reliability, and Security:
40th International Conference, SAFECOMP 2021, York, UK, September
8–10, 2021, Proceedings 40, pp. 149–162, Springer, 2021.

[53] F. Yan, S. D. Foster, I. Habli, and R. Wei, “Model-based generation of
hazard-driven arguments and formal verification evidence for assurance
cases,” in 10th International Conference on Model-Driven Engineering
and Software Development, pp. 252–263, SciTePress, 2022.

[54] Baidu, “Apollo, https://github.com/apolloauto/apollo.”
[55] K. Xu, X. Xiao, J. Miao, and Q. Luo, “Data driven prediction archi-

tecture for autonomous driving and its application on apollo platform,”
in 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 175–181, IEEE,
2020.

[56] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo em motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[57] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A
survey on trajectory-prediction methods for autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–674, 2022.

[58] T. Kelly, “Reviewing assurance arguments-a step-by-step approach,”
in Workshop on assurance cases for security-the metrics challenge,
dependable systems and networks (DSN), 2007.

[59] S. Yamamoto and S. Morisaki, “A system theoretic assurance case
review,” in 2016 11th International Conference on Computer Science
& Education (ICCSE), pp. 992–996, IEEE, 2016.

[60] F. U. Muram and M. A. Javed, “Attest: Automating the review and
update of assurance case arguments,” Journal of systems architecture,
vol. 134, p. 102781, 2023.

[61] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1-2, pp. 81–93, 1938.

[62] F. R. Ward and I. Habli, “An assurance case pattern for the interpretabil-
ity of machine learning in safety-critical systems,” in Computer Safety,
Reliability, and Security. SAFECOMP 2020 Workshops: DECSoS 2020,
DepDevOps 2020, USDAI 2020, and WAISE 2020, Lisbon, Portugal,
September 15, 2020, Proceedings 39, pp. 395–407, Springer, 2020.

[63] M. Sivakumar, A. B. Belle, J. Shan, and K. K. Shahandashti, “Prompting
gpt–4 to support automatic safety case generation,” Expert Systems with
Applications, vol. 255, p. 124653, 2024.

[64] M. Sivakumar, A. B. Belle, J. Shan, and K. K. Shahandashti, “Exploring
the capabilities of large language models for the generation of safety
cases: the case of gpt-4,” in 2024 IEEE 32nd International Requirements
Engineering Conference Workshops (REW), pp. 35–45, IEEE, 2024.

[65] OpenAI, “Openai api.” https://openai.com/api/, 2023.


	Introduction
	Background
	Assurance Cases
	Assurance Case patterns (ACPs)
	Large Language Models (LLMs)

	Related Work
	Manual creation of assurance cases
	Automatic creation of assurance cases
	Use of Assurance Cases in the Automotive Domain

	RQ1: Manual creation of the assurance case of an ML-enabled ADS
	Steps to Manually Create an Assurance Case for an ML-Enabled ADS
	Phase I: HARA (Hazard Analysis and Risk Assessment)
	Phase II: Implementation of Selected AMLAS Stages
	Phase III: Change impact analysis

	Case study: manual construction of a safety case for Baidu Apollo
	Phase I: Hazard Analysis and Risk Assessment (HARA)
	Phase II: Implementation of Selected AMLAS Stages
	Manual evaluation and refinement of the safety case


	RQ2: Automatic creation of assurance cases using an LLM
	Description of the LLM-powered approach
	Phase I: Data Collection
	Phase II: Pre-processing of ACPs into Predicates
	Phase III: Using LLM to Automatically Generate Assurance Cases

	Case study: automatic generation of a safety case for Baidu Apollo
	Dataset
	LLM Description and settings
	Description of the experiments
	Description of the LLM prompts
	Description of the assessment measures
	Result analysis


	Discussion and implications for future work
	Reflections on the manual creation of assurance cases
	Reflections on the use of an LLM-based approach to automatically create assurance cases
	Semi-automatic creation of assurance cases: Human ft. Machine

	Threats to Validity
	Conclusion and Future Work
	References

