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Abstract. Ensuring the fairness of machine learning (ML) applications
is critical to the reliability of modern artificial intelligence systems. De-
spite extensive study on this topic, the fairness of ML models in the
software engineering (SE) domain has not yet been explored well. As a
result, many ML-powered software systems, particularly those utilized in
the software engineering community, continue to be prone to fairness is-
sues. Taking one of the typical SE tasks, i.e., code reviewer recommenda-
tion, as a subject, this paper investigates the fairness of ML applications
in the SE domain, specifically focusing on the code reviewer recommen-
dation task. Our empirical study demonstrates that existing ML-based
code reviewer recommendation systems exhibit unfairness and discrimi-
nating behaviors. Specifically, male reviewers get, on average, 7.25% more
recommendations than female code reviewers compared to their distri-
bution in the reviewer set. This paper also investigates why the studied
ML-based code reviewer recommendation systems are unfair and pro-
vides solutions to mitigate the unfairness. For instance, such systems
may recommend male reviewers at a significantly higher rate than fe-
male reviewers in a discriminatory manner. Our study further indicates
that the existing mitigation methods can enhance fairness significantly
in projects with a similar distribution of protected and privileged groups.
Still, their effectiveness in improving fairness on imbalanced or skewed
data is limited.

Keywords: Fairness · Machine Learning · Code Reviewer Recommen-
dation

1 Introduction

Machine Learning (ML) approaches and models are increasingly being used in
the development of modern software [50] to assist developers in different tasks,
e.g., defect prediction [47,46], software bug triage [29], and code reviewer rec-
ommendation [13,38], etc. Meanwhile, the wide adoption of ML has given rise
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to new concerns and issues regarding the trustworthiness and ethicality of such
systems, one of which is the issue of fairness [40,33].

Despite the fact that previous studies [26,8,22,10,11,7,45,52,9,42] have ex-
tensively examined the fairness of ML applications, while most of these studies
mainly focus on general ML applications, little is known about the fairness of ML
applications in software engineering domain, e.g., automated bug triage [29,53].
In this work, we take one of the typical SE tasks, i.e., code reviewer recommen-
dation as a subject to explore the fairness of ML applications in SE domain.
Specifically, code reviewer recommendation systems are widely used in mod-
ern software development to identify the most appropriate code reviewers for a
code change. Recently, many ML-based code reviewer recommendation systems
have been proposed. For instance, Patanamon et al. proposed RevFinder that
used a similarity of previously reviewed file path to recommend an appropriate
code-reviewer [44] and Pandya et al. [38] proposed CORMS, which leveraged
similarity analysis and support vector machine (SVM) models to recommend
reviewers. Although these examined code reviewer recommendation approaches
can achieve good performance, none of the fairness characteristics (e.g., race,
age, and gender) were considered when recommending reviewers. As a result,
there may be bias or fairness issues in such systems that have not previously
been investigated, which can potentially harm reviewers’ activities. [9,40,42].
For example, in such systems, the final recommendation list may exhibit a need
for more representation of female reviewers, as they might be recommended less
frequently than their male counterparts in a biased manner.

To address the aforementioned concerns, in this paper, we look into the prob-
lem of assessing fairness issues in ML-based code reviewer recommendation sys-
tems. Specifically, we conduct an empirical study on two recent ML-based code
reviewer recommendation systems, RevFinder [44] and CORMS [38], and we
use the same dataset from CORMS [38] to build these systems and run our
experiments. Note that, when exploring the fairness of ML-based code reviewer
recommendation systems, we only consider the factor of gender. This is mainly
because collecting data to identify sensitive factors such as age or race is difficult,
as reviewers and code review platforms often do not disclose this information.
Moreover, since obtaining non-binary gender information is difficult, and in line
with previous fairness research [26,40,11,10,33] that used gender as the sensitive
attribute, we are treating gender as a binary attribute in our analysis. Nev-
ertheless, it’s essential to emphasize that our study’s scope is not confined to
binary values and can be expanded to include non-binary genders if we acquire
adequate data (details are provided in 3.2). Our experimental results show that
both RevFinder and CORMS have unfair behavior in their recommendations.
Specifically, they favor male reviewers over female reviewers. For example, we
observe that in the Node.js project, male reviewers recommended by CORMS
have approximately 85% more chance of being recommended for new code review
requests, which is 16% more than the fair condition (details are in Section 4). We
further explore the underlying factors that contribute to the unfairness of ML-
based code reviewer recommendation systems, e.g., popularity bias, and whether
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the existing unfairness mitigation approaches [51,21,17,41] can help improve the
fairness of these systems. Our experiment results show that the existing miti-
gation approaches can improve fairness, but not consistently across all projects.
This study contributes to creating fairer ML-based code reviewer recommen-
dation systems, reducing gender-based discrimination, and promoting societal
equality and fairness. Those creating systems that engage with humans can ap-
ply the findings and methodology from our research to ensure their software
products are equitable and contribute to equality among users. The methods
used in our study also apply to other types of recommendation systems, such as
team recommendation systems for collaborative software development [2]. As a
summary, this paper makes the following contributions:

– We conduct an empirical study to investigate the fairness of two recent ML-
based code reviewer recommendation systems.

– We analyze the underlying factors that influence the outcomes of code re-
viewer recommendation systems and demonstrate that the existing unfair-
ness mitigation methods can be utilized to alleviate the unfairness in ML-
based code reviewer recommendation systems.

– We show that the current mitigation approaches have limitations in terms
of fairness improvement for projects with imbalanced or skewed data.

– We release the dataset and source code of our experiments to help other
researchers replicate and extend our study3.

2 Background and Related Work

2.1 Code Reviewer Recommendation System

A code reviewer recommendation system is a software application that supports
software development teams in identifying the most appropriate code reviewers
for a particular code change request by suggesting a list of the most qualified
candidates to conduct the review request [16].

While the first code reviewer recommendation system already utilized ma-
chine learning techniques when it was introduced [23], earlier systems often relied
on heuristic approaches [37,3], such as graph and search-based approaches. As an
example, Ounti et al. [37] proposed RevRec, a recommendation system that uses
a genetic algorithm to find an appropriate peer reviewer for a code change. As
the field progressed, newer systems increasingly employed more machine learn-
ing methods [49,43,14,38] e.g., SVM (Support Vector Machines), collaborative
filtering, and Naive Bayes, to improve their recommendations. These reviewer
recommendation systems use different factors and features for determining the
most qualified reviewer for a review request, such as file similarity, developers’
expertise, social relations, developers’ activeness, etc [16].

In this work, we select two state-of-the-art ML-based code reviewer recom-
mendation systems, i.e., RevFinder [44] and CORMS [38], as our research sub-
jects to explore their fairness (details are in Section 3.3). These code reviewer
3 https://doi.org/10.5281/zenodo.11054911

https://doi.org/10.5281/zenodo.11054911
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recommendation systems have been shown to outperform their prior baselines
and have been found effective in recommending code reviewers.

2.2 Fairness Analysis in Machine Learning Application

In machine learning applications, there are two common types of fairness [33,40]:
i.e., 1) Group Fairness, which ensures that different groups of people, including
protected groups and privileged groups, are treated similarly and fairly. For ex-
ample, in cases where gender is not a deciding factor, the female group should
be treated similarly to the other groups (e.g., the male group) [33,40] and 2)
Individual Fairness which ensures that individuals that are similar based on a
criterion should be treated fairly and similarly [33,40,1]. For example, regardless
of demographic background, each applicant in the employment process should be
treated equitably. In this study, we conduct our analysis based on the group fair-
ness definition. Rather than focusing on individual cases, group fairness analysis
evaluates the influence of machine learning models on distinct groups of people.

2.3 Unfairness in Recommendation Systems

In this work, we focus on the fairness of recommendation systems. The concepts
and definitions of fairness analysis in recommendation systems and general ML
applications slightly differ [48]. For example, in previous studies [40,26,33], since
all approaches target classification problems, the concept of fairness thoroughly
depends on the predictions of the target attribute and its relation to the pro-
tected group. On the contrary, the concept of fairness in recommendation sys-
tems can be discussed from several points of view, e.g., the fairness of each of the
recommended items (item-based fairness) and the fairness of the exposure and
quality that each user experiences from the recommended items (user-based fair-
ness) [48]. Also, in recommendation systems, not all of the biases are considered
as unfairness, e.g., popularity bias, position bias, and conformity bias [48,12].
The fairness of recommendation systems can be categorized into two groups
[48]:

– Process fairness: This means ensuring that the process used to produce rec-
ommendations is fair and unbiased to all users, regardless of their sensitive
attributes.

– Outcome fairness: This means ensuring that the system’s outcomes are dis-
tributed fairly and proportionately among various groups of people. This
means that recommendations should neither favor nor discriminate against
any particular group based on their sensitive attributes.

In this study, we focus on investigating outcome fairness in ML-powered
code reviewer recommendation systems, specifically we examine the item-based
fairness through group fairness analysis. In particular, the items being rec-
ommended in our case are code reviewers. Therefore, our research focuses on
assessing whether the final list of recommendations upholds fairness with re-
gards to these recommended code reviewers.
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2.4 Unfairness Mitigation Techniques

To mitigate the unfairness in ML applications, many unfairness mitigation mech-
anisms have been proposed [33,40], which can be categorized into three major
types, i.e., pre-processing strategies [41,17] (by modifying training data before it
is utilized for training), in-processing approaches [5,28] (by altering the machine-
learning algorithm to increase fairness), post-processing techniques [24,35] (by
updating output scores and predictions of the machine learning models). In this
work, we focus on the “post-processing” category of fairness mitigation methods
and exclude both “in-processing” and “pre-processing” mitigation approaches.
“in-processing” approaches require non-trivial changes to the code reviewer rec-
ommendation systems, which are not generalizable. Additionally, the majority
of “pre-processing” approaches are unsuitable for the recommendation tasks em-
ployed in our study subjects, given the inherent characteristics of our data, thus
not suitable for fairness study in recommendation systems [41,17]. In many “pre-
processing” methods, unfairness is often identified by analyzing proxy attributes,
which are features correlated to sensitive attributes [26,40,33]. These methods
heavily rely on numerical features. However, in the code reviewer recommen-
dation systems we studied, the features are not numerical. Additionally, vector
embedding as a way to calculate the score and rank the code reviewers is not
used among both recommendation systems, as only CORMS uses this approach
partially in its hybrid workflow [38]. Instead, using string-matching methods,
RevFinder and CORMS determine the reviewers’ scores based on the similar-
ity between the file paths used in previous reviews [38,44]. This limited use of
vector embedding and the non-numerical nature of the features in our studied
systems pose significant challenges unique to our subjects. As a result, many “pre-
processing” techniques are not applicable in this specific scenario, highlighting
the need to focus more on “post-processing” approaches.

3 Empirical Study Setup

3.1 Research Questions

In this study, we are going to answer the following three research questions
(RQs):

RQ1 (Existence of Fairness): Is there any unfairness in the ML-
based code reviewer recommendation systems?

RQ2 (Root Cause for Unfairness): What is the root cause for un-
fairness in the code reviewer recommendation systems?

RQ3 (Effectiveness of Existing Unfairness Mitigation Techniques):
Do existing unfairness mitigation approaches work for ML-based code
reviewer recommendation systems?

3.2 Data Collection

For our analysis, we need datasets that include human-related information of re-
viewers, such as their gender, which is our desired sensitive attribute. However,
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Missing Names and Genders

Fig. 1. The percentages of missing names and genders (“unknown”) for each project
examined in our study. We select projects with at most 10% missing names and genders,
which is any project whose bar is beneath the red dashed line.

existing code reviewer recommendation datasets from previous studies [38,44,48]
do not include that critical information. To collect the gender information of re-
viewers, in this work, we propose heuristic methods to infer a reviewer’s gender
information from their names and other publicly available information online
(e.g., homepage, GitHub account information, and LinkedIn profile). Our ex-
periment is conducted on the same dataset as the previous study [38], which
includes code review requests from 34 open-source projects. These code review
requests are collected from code review platforms like Gerrit and GitHub that
are available to the public. As mentioned before, these code review systems do
not keep reviewers’ human-related information, such as gender, and we cannot
directly obtain the genders of the reviewers from the datasets.

For each project in our dataset, we first get reviewers’ names through the
user ID provided by the code review platform. Then we use the following steps
to infer a reviewer’s demographic gender.

We first remove projects that have a high percentage of reviewers with missing
names. If the field for a reviewer’s name is null or blank, we consider this as not
having a name mainly because the reviewer did not specify a name on his/her
profile. Also, reviewers may have nicknames instead of their real names on their
profiles. We consider all these records “unknown” since we cannot infer the gender
from them. To distinguish nicknames from real names, we use the following
heuristic, i.e., if a name contains any number, symbol, or sign, we consider that
a nickname; e.g., in the nixcommunity project, there was a reviewer with the
name “jD91mZM2”, which has been removed from the data. We discard projects
with reviewers who have more than 10% “unknown” names to ensure the quality
of our experiment data. The missing rates are demonstrated in Figure 1. As a
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Table 1. Details of the four selected projects. The columns “Missing Genders”, “Total
Ex.”, “F. Ratio”, “M#”, and “F#”, are the percentage of missing genders, the total
number of examples, the ratio of female reviewers, the number of female reviewers, and
the number of male reviewers, respectively.

Project Missing Genders Total Ex. F.Ratio F# M#
nodejs 2.7% 110 0.13 5 28
bssw 5.2% 213 0.67 9 9

getsentry 4.1% 775 0.08 6 64
shopify 2.8% 565 0.06 17 148

result, we selected seven out of 34 projects. In the seven projects examined, there
were at most four reviewers who had nicknames on their profiles.

Second, for the selected seven projects, we manually check each reviewer’s
information through online resources, e.g., personal and institutional homepages,
GitHub accounts, and LinkedIn profiles. Some of the reviewers have links to
their social media accounts on their GitHub profiles, so we can access their
information directly. For the reviewers who do not provide social connections
(20% of our reviewer set), we search their full name on the internet to find their
social media accounts and get their gender information. During the process, we
discard names that point to indistinguishable users (e.g., people who have the
same name and similar profiles on social media). We look for gender information
in their specified pronouns in their profiles, and their online content, including
the pronouns and genders the reviewers themselves or others used to describe
them. In this manual analysis, we checked 355 reviewers’ information on the
internet. These reviewers may possess several reviews and contributions in our
dataset, employed for training the models, and the corresponding statistics are
displayed in Table 1. According to our analysis, we obtained at least 90% of the
reviewers’ gender information through this manual analysis. Three authors are
involved during this process to ensure the correctness of the manually analyzed
results.

Finally, we remove projects for which there is only one reviewer from the
protected group, i.e., the female reviewer group. In each remaining project, we
exclude records relating to reviewers of unknown genders. After applying our
gender identification approach, four out of the 34 candidate projects from [38]
are selected for our experiments, details are in Table 1.

3.3 Subjects of Study

As mentioned in Section 2.1, We use two recent existing ML-based code re-
viewer recommendation systems as the research subjects, i.e., CORMS [38] and
RevFinder [44]. RevFinder recommends code reviewers based on a machine
learning-based ranking algorithm that learns the scores of different candidates
for a given review request based on the similarities in the file locations involved in
past code reviews from the dataset. By evaluating the records in the dataset and
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propagating the scores of each reviewer involved in review requests with similar
file path locations, RevFinder provides a list of unique reviewers and their scores
for the given dataset. On the other hand, CORMS is a hybrid code reviewer rec-
ommendation system that uses the same similarity model as RevFinder (with
additional features) and employs an SVM model that learns from each review
subject in the training set. Finally, appropriate reviewers are chosen based on
their computed scores and associated ranks corresponding to their scores in the
final recommendation list.

Although these two code reviewer recommendation approaches that we have
examined can achieve good performance in terms of accuracy of the reviewer rec-
ommendation task, none of the fairness characteristics, e.g., race, age, and gen-
der, were considered when recommending reviewers by using these approaches.
In this study, the female reviewer group is considered the protected group. Fur-
thermore, we ensure the validity of our findings by replicating the configurations
of the selected two code reviewer recommendation systems as specified in their
respective publications [44,38].

It is worth noting that we are selecting the mentioned subjects because they
are suitable for datasets that either contain human-related information or sup-
port indirectly adding human-related information to them to facilitate our anal-
ysis. Although there were also other different code reviewer recommendation
systems, they were either trained on different datasets that are incompatible for
fairness analysis or their architecture simply does not comply with our dataset.

3.4 Evaluation Measures

Existing studies [30,19] revealed that improving fairness usually comes at a cost
in terms of performance measures such as model accuracy. As a result, in order
to demonstrate that an unfairness mitigation strategy is useful to deploy, most
studies in fairness analysis will include a performance measure before and after
applying the unfairness mitigation technique [40,26,15]. This trade-off can be
balanced through different approaches, but it also relies on the context and
domain of the application and the extent to which we can sacrifice accuracy
for fairness [15,30,25,4,20,34]. It is important to clarify that the objective of our
study is to evaluate the fairness of code reviewer recommendation systems, rather
than focusing on their performance. Performance measures are solely utilized to
assess the influence of unfairness mitigation strategies on the recommendation
outcomes, both before and after implementing these strategies. In this work, we
follow existing studies [26,40] and use the average of all measure values for each
record in our dataset to represent the overall performance.

Fairness Measures To evaluate the fairness of recommendation systems, we
use two measures that rely on the top-K results and one measure that is in-
dependent of the top-K results [21,48]. Similar to existing works [38,44] that
conducted their experiments in a specific setting, we limit the values of K to 4,
6, and 10.
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SkewSi
@K: The skew of the ranked list of top-K candidates for a certain

value Si of the sensitive attribute is:

SkewSi
@K(C) = ln(

PCK,Si

PD,Si

) (1)

where C is the ranked list of candidates, CK is the top-K candidates from C,
PCK,Si

is the proportion of candidates having the sensitive attribute value Si

in the top-K results, and PD,Si
is the desired proportion of candidates with the

sensitive attribute value Si in the given dataset.
Statistical Parity Difference For top-K results (SPD@K): The statistical

parity difference (SPD) is a well-known measure of fairness that is used in many
articles about how fair machine learning is when it comes to classification tasks
[40,26]. This measure is demonstrated in Eq. 2 as an example for the binary
classification: ∣∣∣P [Ŷ = 1|S = 1]− P [Ŷ = 1|S ̸= 1]

∣∣∣ ≤ ϵ (2)

Nevertheless, to use this measure for top-K results in recommendation sys-
tems such as code reviewer recommendation systems, we must change the cal-
culation in Eq. 2. As a result, we introduce the SPD@K measure, which is
described in Eq. 3:∣∣∣P [Ŷ ∈ CK |S = 1]− P [Ŷ ∈ CK |S ̸= 1]

∣∣∣ ≤ ϵ (3)

Where CK is the ranked list of top-K candidates from the ranked list of candi-
dates C as the result of the recommendation. In this measure, we also refer to ϵ
as the expected SPD threshold. This threshold will be computed by calculating
the absolute difference between the male and female ratios in the dataset, which
is described in Eq. 4:

ϵ =

∣∣∣∣ # Females
# Reviewers

− # Males
# Reviewers

∣∣∣∣ (4)

The reason that we calculate an expected value for ϵ as depicted in Eq. 4 is
that we expect that the difference in recommendation rates for males and fe-
males should be similar to the disparity in ratios of these groups in the dataset.
Although ϵ can be variable and should usually be identified by domain experts
of the application in which the fairness analysis is being conducted [40], Eq. 4
is still a reasonable statistical estimation of the difference between the rates of
recommendations for both privileged and unprivileged groups to be in a fair
state.

Normalized Discounted Cumulative KL-divergence (NDKL): Eq. 5 describes
the normalized discounted cumulative Kullback-Leiber (KL) divergence given a
ranked list of the candidates C:

NDKL(C) =
1

Z

∑
i∈Ks

1

log2(i+ 1)
dKL(DCi ||Dd) (5)
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In Eq. 5 dKL(DCi ||Dd) =
∑

j DCi(j) ln
DCi (j)

Dd
, Z =

∑C
i=1

1
log2(i+1) , and Ks =

{4, 6, 10} where DCi and Dd represent the proportion of the top i candidates in
the ranked list of candidates C having the sensitive attribute j, respectively, and
the desired proportion based on the dataset with the sensitive attribute value j.

Performance Measures In this study, we adopt the identical performance
metrics utilized in previous research papers discussing CORMS and RevFinder
[38,44], i.e., Top-K Accuracy and Mean Reciprocal Rank (MRR). This enables
us to cross-compare and guarantee accurate replications of both works and to
ensure a fair assessment before and after applying bias mitigation strategies. In
our scenario, we use MRR@K to focus on the top-K recommendations. This
means that we only consider the top-K candidates in the original calculations.
Every candidate not on the top-K list has a reciprocal rank of zero. The rest of
the calculations remain the same.

3.5 Selected Unfairness Mitigation Approaches

Researchers have proposed several unfairness mitigation strategies for recom-
mendation systems [48,51,27,21,6,36,39], but not all of them are applicable to
our case due to different views on fairness [48] (more details in Sec. 2.3) and lim-
itations around different techniques such as “in-processing” and “pre-processing”
approaches (more details in Sec. 2.4). Also, due to the inherent differences in the
fairness of classification and recommendation tasks (e.g., techniques used for clas-
sification do not support top-K results), we cannot employ those mitigation tech-
niques for classification tasks in our study [48]. Moreover, each recommendation
system can have a distinct and different architecture, and only some mitigation
techniques apply to that type of architecture (e.g., reinforcement learning-based
approaches may not be suitable for many recommendation systems) [48]. Also,
although there were various “post-processing” mitigation approaches in the lit-
erature, not all could be easily adapted and applied to our study subjects. For
example, the re-ranking approaches proposed by Liu et al. [32] and Naghiaei et
al. [36] look at the fairness of recommendation from a multi-sided perspective. In
contrast, in our study, we only focus on item-based fairness, which is the fairness
of the reviewers recommended for each review request (more details in Sec. 2.3).

Thus, in this work, we select two applicable approaches from the “post-
processing” category of fairness mitigation methods (see 2.4) for reviewer rec-
ommendation systems [48]. The details of these two mitigation approaches are
as follows.

DetGreedy Algorithm Geyik et al. [21] developed this algorithm for fairness-
aware recommendation in LinkedIn Talent Search recommendation systems. This
algorithm works as follows. Given a top-K list, there are two requirements to
satisfy the fairness condition:

a. Min: ∀K < |C| ∧ ∀si ∈ A, countK(Si) ≥ ⌊PD,Si ·K⌋
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b. Max: ∀K < |C| ∧ ∀si ∈ A, countK(Si) ≤ ⌈PD,Si
·K⌉

Where A is the set of attribute values, C is the list of candidates, PD,Si
is the

desired proportion of candidates with the attribute value Si, and countk(Si) is
the number of candidates with the attribute value Si in the top-K results. If
some candidates are close to not meeting the minimum requirement, select the
one with the highest score from that group. If all candidates meet the minimum
requirement, choose the one with the highest score among those who have not
yet reached their maximum requirements.

DetRelaxed To improve DetGreedy, Geyik et al. [21] further proposed De-
tRelaxed. While DetGreedy aims to include as many high-scoring candidates as
possible in the ranked list, it may not be effective in various scenarios, accord-
ing to the authors [21]. The DetRelaxed algorithm was proposed to consider
all candidates who satisfy the minimum requirement and minimize the term⌈
⌈PD,Si

·K⌉
PD,Si

⌉
to select the candidate with the highest score for the next position.

The formulas and details mentioned for both approaches are based on Geyik
et al.’s study [21], which you can refer to for more information. According to
this research study [21], these approaches resulted in a huge improvement in
fairness at the production stage. Hence, we select these approaches to assess
their effectiveness with our subjects.

4 Results and Analysis

4.1 RQ1: Existence of Fairness

Approach: To answer this RQ, we first build RevFinder and CORMS on the
training data selected from our experimental dataset (details are in Section 3.2).
When training each model, following existing studies [44,38], we divide the
dataset into two sections, with 80% for training and the remaining 20% for
testing, chronologically. Then, we use the measures mentioned in Section 3.4 to
evaluate the fairness of the recommendations generated by these code reviewer
recommendation systems based on the testing data.
Result: Table 2 presents the findings of our experiments, where we analyze all
the evaluation measures for each project across three different scenarios, i.e.,
original (i.e., results obtained without any mitigation approaches), DG (i.e.,
outcomes obtained after using DetGreedy), and DR (i.e., results obtained after
using DetRelaxed). Also, it presents the SPD threshold for each project in the
dataset. As we can see from column “Original” in the table, Skew@K has nega-
tive values under both CORMS and RevFinder on the four projects with differ-
ent K values, e.g., BSSW, GetSentry, Node.js, and Shopify, which have negative
Skew@K values, i.e, −0.19, −0.01, −0.73, and −0.90 under CORMS when rec-
ommending top 10 reviewers. For SPD@K, as we can see on most projects, the
values of SPD@K are above the specified threshold values which indicates that
the disparity between the percentages of males and females being recommended
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Table 2. Summary of experiment results. The results that are considered unfair rec-
ommendations based on the SPD@K and Skew@K measures are highlighted in and
, respectively.

Top-K Subjects Measures
Projects

BSSW GetSentry Node.js Shopify
Original DG DR Original DG DR Original DG DR Original DG DR

Top-4

CORMS

TopK-ACC 79% 79% 79% 43% 43% 37% 41% 41% 41% 25% 25% 30%
MRR@K 0.54 0.54 0.54 0.23 0.23 0.21 0.26 0.26 0.27 0.19 0.19 0.21
SPD@K 0 0 0 0.93 0.93 1 0.85 0.85 1 0.80 0.87 1
Skew@K 0.01 0.01 0.01 -1.82 -1.82 -2.25 -1.79 -1.79 -2.7 -1.41 -1.50 -2.35

RevFinder

TopK-ACC 71% 73% 73% 43% 43% 37% 50% 50% 45% 25% 25% 24%
MRR@K 0.5 0.5 0.5 0.25 0.25 0.22 0.32 0.32 0.31 0.15 0.15 0.14
SPD@K 0.09 0 0 0.90 0.88 1 0.52 0.56 1 0.97 0.96 1
Skew@K -0.001 0.01 0.01 -1.48 -1.48 -2.12 0.15 0.09 -2.71 -2.03 -1.94 -2.17

Top-6

CORMS

TopK-ACC 84% 87% 87% 44% 44% 38% 52% 52% 47% 34% 36% 37%
MRR@K 0.55 0.56 0.56 0.24 0.24 0.21 0.29 0.29 0.28 0.21 0.21 0.22
SPD@K 0.31 0 0 0.87 0.87 1 0.86 0.86 0.66 0.80 0.87 1
Skew@K -0.35 0.01 0.01 -1.20 -1.20 -2.25 -1.56 -1.56 0.12 -1.14 -1.28 -2.35

RevFinder

TopK-ACC 88% 83% 83% 49% 49% 46% 54% 54% 54% 36% 36% 37%
MRR@K 0.53 0.52 0.52 0.26 0.26 0.24 0.33 0.33 0.33 0.17 0.17 0.17
SPD@K 0.13 0 0 0.81 0.80 1 0.60 0.69 0.66 0.97 0.96 1
Skew@K -0.14 0.01 0.01 -0.53 -0.58 -2.12 0.07 -0.1 0.15 -1.97 -1.87 -2.17

Top-10

CORMS

TopK-ACC 94% 100% 100% 45% 46% 45% 58% 58% 58% 42% 43% 46%
MRR@K 0.57 0.57 0.57 0.24 0.24 0.24 0.29 0.29 0.29 0.22 0.22 0.22
SPD@K 0.2 0 0 0.79 0.82 0.8 0.82 0.78 0.8 0.77 0.73 0.8
Skew@K -0.19 0.01 0.01 -0.01 -0.1 0.14 -0.73 -0.31 -0.35 -0.90 0.26 0.04

RevFinder

TopK-ACC 88% 92% 92% 62% 62% 55% 68% 68% 68% 44% 44% 43%
MRR@K 0.53 0.53 0.53 0.28 0.28 0.25 0.35 0.35 0.35 0.18 0.18 0.17
SPD@K 0.17 0 0 0.81 0.82 1 0.68 0.68 0.8 0.96 0.96 1
Skew@K -0.19 0.01 0.01 -0.03 -0.16 -2.12 0.06 0.06 -0.32 -1.83 -1.77 -2.17

CORMS NDKL 0.04 0.01 0.01 0.08 0.08 0.08 0.11 0.10 0.08 0.14 0.08 0.09
RevFinder NDKL 0.04 0.01 0.01 0.07 0.07 0.09 0.06 0.06 0.08 0.09 0.09 0.10

SPD Threshold 0 0.82 0.69 0.79

in BSSW, GetSentry, Node.js, and Shopify projects is 15%, 3%, 3%, and 8%,
respectively. Overall, considering the different SPD@K metric variations and
their corresponding expected SPD threshold, male reviewers get an average of
7.25% more recommendations than female code reviewers compared to their dis-
tribution in the reviewer set. This calculation involves averaging across all the
mentioned variations. Results from Skew@K and SPD@K indicate there are
unfairness issues for each of the four experimental projects under both CORMS
and RevFinder.

Furthermore, we analyze the normalized discounted KL divergence measure
(NDKL), which is shown in Table 2. Our experiments indicate that the NDKL
measure yielded positive values for all projects, suggesting that the outcomes
may be biased towards a particular value of the sensitive attribute.

Answer to RQ1: In the examined projects, male reviewers get an average of
7.25% more recommendations than female code reviewers, considering their
distribution in the recommendation list under both CORMS and RevFinder.
Our experiment results suggest that the two ML-based code reviewer recom-
mendation systems studied exhibit bias towards gender.
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4.2 RQ2: Root Cause for Unfairness

Approach: To answer this question, we first conduct an exclusive analysis of
current fairness studies in the literature to collect all the possible factors that
have been examined to be effective in determining the fairness of ML appli-
cations [33,12,40,54,48], especially recommendation systems. Three factors were
collected: (1) imbalanced or skewed data, (2) popularity bias, and (3) algorithmic
objectives.

Note that we exclude the factor of algorithmic objectives since it requires us
to examine the code reviewer recommendation architectures, which is out of the
scope of this paper. As a result, we employ the factors of imbalanced or skewed
data and popularity bias to explore the possible root causes of code reviewer rec-
ommendation systems. Imbalanced or skewed data can lead to unfairness because
models trained on such data have a strong probability of learning behavior to-
wards over-represented groups, eventually becoming overfitted to them [48,12].
Popularity bias and unfairness also have a strong connection with each other
[12,54]. The “long-tail effect” occurs when recommendation systems favor pop-
ular items over less popular ones [18,31], which leads to discrimination against
the less popular items. If the less popular items are generally from the protected
group, popularity bias will turn into unfairness.
Result: The following are the primary factors responsible for the unfairness and
disparities between actual and expected distributions of the protected group in
the outputs of the code reviewer recommendation system:

Imbalanced or Skewed Data: Our analysis indicates that the imbalanced
representation of male and female reviewers in some projects is one of the reasons
behind the unfair outcomes of code reviewer recommendation systems. Table
1 shows that, apart from the BSSW project, which has an equal number of
female and male reviewers, the number of male reviewers is higher than that
of female reviewers in all other projects (males are approximately 8 times more
than females), which leads to skewed data. The BSSW project has a record of
females accounting for 67% of the total, while in the Node.js, GetSentry, and
Shopify projects, this percentage is 13%, 8%, and 6%, respectively. Consequently,
Table 2 reveals that the results of the SPD@K measure for the BSSW project
are substantially lower than those of other projects, suggesting a fairer outcome.
The same pattern is observed for the Skew@K measure in the BSSW project,
as other projects exhibit more negative values for this measure, indicating larger
discrepancies between the current and fair conditions.

Popularity Bias: In the projects examined, bias was found to be more
prevalent in projects where male reviewers were more popular than female re-
viewers. For instance, in Shopify and Node.js, the first 14% and 15% of popular
reviewers were all male, respectively. This led to unfairness in the CORMS and
RevFinder recommendation systems, which learned and incorporated this pref-
erence for male reviewers into their decision-making processes. In contrast, in
the BSSW project, the first two popular reviewers were female, resulting in fair-
ness measures like Skew@K and SPD@K being closer to fair values, such as
Skew@K being closer to zero.
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Answer to RQ2: We confirm that popularity bias and imbalanced or skewed
data are two factors that can affect code reviewer recommendation systems,
both of which can lead to unfairness. Projects that do not have these issues
(e.g., BSSW) result in values in fairness measures that are closer to a fair
state, in contrast to projects that do suffer from these problems.

4.3 RQ3: Effectiveness of Existing Unfairness Mitigation Techniques

Approach: In this RQ, we examine the selected unfairness mitigation approaches
(i.e., DetGreedy and DetRelaxed) in Section 3.5 to see if they could improve
the fairness of code reviewer recommendation systems. Furthermore, because
applying an unfairness mitigation technique has been shown to have a trade-
off with performance measures [15,30], we should also guarantee that applying
these mechanisms does not adversely affect performance measures. As a result,
we compare performance measures before and after using unfairness mitigation
techniques.
Result: The fairness measures after applying these two mitigation approaches,
i.e., DetGreedy and DetRelaxed, for each project, are shown in Table 2.

As we can see from the table, both DetGreedy and DetRelaxed mitigation
techniques can improve fairness, but not across all projects. The bolded values
on this table indicate fairness improvements compared to original settings. With
the use of these approaches, the BSSW project saw a significant fairness improve-
ment of 100%. Also, in the BSSW project, RevFinder’s top-K accuracy decreased
by 5% solely in the top-6 scenario. While performance measures were not ad-
versely impacted (only a 1.75% decrease on average on all projects), the fairness
enhancement was not as noticeable in projects with an imbalanced distribution
of male and female reviewers (e.g., Node.js, GetSentry, and Shopify). Thus, to
mitigate unfairness in code reviewer recommendation systems, we should select
a mitigation technique that aligns with the dataset’s characteristics or performs
independently of those characteristics.

Answer to RQ3: DetGreedy and DetRelaxed mitigation approaches can
improve fairness while maintaining performance, but not consistently across
all projects.

5 Conclusion

This paper represents a novel investigation into the fairness issue of machine
learning-based code reviewer recommendation systems. Specifically, two recent
existing systems (CORMS and RevFinder) and code review data from four open-
source projects were used to conduct the fairness analysis. Our empirical study
demonstrates that current ML-based code reviewer recommendation techniques
exhibit unfairness and discriminating behaviors. This paper also discusses the
reasons why the studied ML-based code reviewer recommendation systems are
unfair and provides solutions to mitigate the unfairness.
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