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ABSTRACT
Deliberation is a common and natural behavior in human daily
life. For example, when writing papers or articles, we usually first
write drafts, and then iteratively polish them until satisfied. In light
of such a human cognitive process, we propose DECOM, which
is a multi-pass deliberation framework for automatic comment
generation. DECOM consists of multiple Deliberation Models and
one Evaluation Model. Given a code snippet, we first extract key-
words from the code and retrieve a similar code fragment from a
pre-defined corpus. Then, we treat the comment of the retrieved
code as the initial draft and input it with the code and keywords
into DECOM to start the iterative deliberation process. At each
deliberation, the deliberation model polishes the draft and gener-
ates a new comment. The evaluation model measures the quality
of the newly generated comment to determine whether to end the
iterative process or not. When the iterative process is terminated,
the best-generated comment will be selected as the target comment.
Our approach is evaluated on two real-world datasets in Java (87K)
and Python (108K), and experiment results show that our approach
outperforms the state-of-the-art baselines. A human evaluation
study also confirms the comments generated by DECOM tend to
be more readable, informative, and useful.
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1 INTRODUCTION
With software growing in size and complexity, developers tend to
averagely spend around 59% of their effort on program compre-
hension during software development and maintenance [32, 62].
Source code comments provide concise natural language descrip-
tions of code snippets, which not only greatly reduce the effort for
developers to understand the code, but also play a vital role in soft-
ware maintenance and evolution. However, manually commenting
code is time-consuming, and code comments are often missing or
outdated in software projects [13, 30]. Therefore, the code com-
ment generation task, which aims at automatically generating a
high-quality comment for a given code snippet, has long attracted
the interest of many researchers.

Most of the existing approaches treat comment generation as
a machine translation task and adopt a one-pass encoder-decoder
process, i.e., first encode the input code into a sequence of seman-
tic features, then decode the features to a natural language com-
ment [26, 28, 34, 64]. Although the encoder-decoder framework has
achieved remarkable performance on the comment generation task,
it still suffers from two major limitations. The first one is that such
models adopt a regular one-pass decoding process that sequentially
generates comments word by word. They directly use the gener-
ated comment as the final output, which results in their inability to
correct the mispredicted words. The words mistakenly predicted in
the early steps may lead to error accumulation under the constraint
of the language model. Taking the auto-generated comments in
Figure 1 as an example, the one-pass model Re2com [58] incorrectly
predicts the sixth word “probability” as “bytes”, which leads the
model to keep exploring the words related to “bytes” when predict-
ing the consequential words. As a result, the related words “written
to this stream” are mistakenly generated, which results in a typical
example of error accumulation. The second limitation is that they
generate comments sequentially. Thus, such sequential one-pass
models cannot leverage the global information of the generated
comment to further polish its local content. As the example shown
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One-Pass Decoding: 
Rencos: prunes all table values that have a probability lower than the threshold 

Re2com: returns a copy of the bytes written to this stream 

Editsum: creates a new copy of the given table of the table

public CategoricalTable copy(){

Map<Value,Double> newTable=new HashMap<Value,Double>();

if(variable == null){

variable = 1;

}

if(table.isEmpty()){

return new CategoricalTable(variable);

}

for(Value v : table.keySet()){

newTable.put(v,table.get(v));

}

return new CategoricalTable(variable,newTable);

}

Ground Truth: returns a copy of the probability table

Initial Draft: constructs a new multivariate table from a univariate table

Multi-Pass Deliberation: 
First-Pass: creates a new copy of the given distribution 

Second-Pass: returns a copy of the table from this table

Third-Pass: returns a copy of the probability table

Closeness to copy()

Closeness to copy()

Figure 1: A motivation example of multi-pass deliberation.

in Figure 1, the one-pass model EditSum [34] generates two consec-
utive prepositional phrases after the word “cop”. Although either
of them is reasonable in their local contexts (“of the given table”
and “of the table”), putting them together degrades the comment
fluency and makes the developers hard to understand.

To alleviate these challenges, we introduce theDeliberationmech-
anism [63] in the comment generation task, aiming to further en-
hance the performance. Deliberation is a common and natural
behavior in human daily life. When writing papers or articles, we
usually first write drafts, and then iteratively polish them until
satisfied. Figure 1 illustrates an example of applying multi-pass
deliberation on comment generation. Based on the initial draft
“constructs a new multivariate table from a univariate table”, the
first-pass deliberation will generate the comment “creates a new
copy of the given distribution”, and refine it in the second and
the third pass guided by the closeness to the similarity with the
give code snippet. In the end, we could obtain the most satisfying
comment “returns a copy of the probability table”.

In light of such a human cognitive process, we propose a novel
multi-pass deliberation framework for automatic comment genera-
tion, named DECOM, which contains multiple Deliberation Models
and one Evaluation Model. Given a code snippet, initially, we re-
trieve the most similar code from a pre-defined corpus and treat its
comment as the initial draft. We also extract the identifier names
from the input code as keywords, since these user-defined words
usually contain more semantic information that users want to ex-
press [10, 48, 53]. Then, we input the code, the keywords, and the
initial draft into DECOM to start the iterative deliberation process.
At each deliberation, the deliberation model polishes the draft and
generates a new comment. The evaluation model calculates the
quality score of the newly generated comment. This multi-pass
process terminates when (1) the quality score of the new comments
is no longer higher than the previous ones, or (2) the maximum
number of deliberations is reached. To evaluate our approach, we
conduct experiments on two real-world datasets in Java (87K) and
Python (108K), and the results show that our approach outperforms

the state-of-the-art baselines by 8.3%, 6.0%, 13.3%, and 10.5% with
respect to BLEU-4, ROUGE-L, METEOR, and CIDEr on Java dataset.
On Python dataset, DECOM improves the performance on BLEU-
4, ROUGE-L, METEOR, and CIDEr by 5.8%, 3.8%, 6.6%, and 6.3%,
respectively. We also conduct a human evaluation to assess the
generated comments on three aspects: naturalness, informative-
ness, and usefulness, showing that DECOM can generate useful
and relevant comments.

Our main contributions are outlined as follows:
• Technique: a multi-pass deliberation framework for com-
ment generation, named DECOM, which is inspired by the
human cognitive process, and can effectively generate com-
ments in an iterative way. To the best of our knowledge,
this is the first work that employs multi-pass deliberation to
enhance the performance of comment generation.

• Evaluation: an experimental evaluation of the performance
of DECOM against state-of-the-art baselines, which shows
that DECOM outperforms all baselines, together with a hu-
man evaluation, which further confirms the readability, in-
formativeness, and usefulness of DECOM.

• Data: publicly accessible dataset and source code [4] to fa-
cilitate the replication of our study and its application in
extensive contexts.

In the rest of this paper, Section 2 elaborates the approach. Sec-
tion 3 presents the experimental setup. Section 4 demonstrates
the results and analysis. Section 5 describes the human evaluation.
Section 6 discusses indications and threats to validity. Section 7
introduces the related work. Section 8 concludes our work.

2 APPROACH
In this section, we present our DECOM, a multi-pass deliberation
framework that performs an iterative polishing process to refine the
draft to a better comment. Figure 2 illustrates an overview of DE-
COM, which consists of three main stages: (1) Data initialization,
for extracting the keywords from the input code and retrieving the
similar code-comment pair from the retrieval corpus; (2) Model
training, for leveraging a two-step training strategy to optimize
DECOM; and (3)Model prediction, for generating the target com-
ment of the new source code. Below, we provide details for each
stage in DECOM.

2.1 Data Initialization
Given a code snippet 𝑥 , this stage aims to extract the keywords 𝑡
from 𝑥 , and retrieve the initial draft 𝑧0 from the retrieval corpus.

Extract keywords from code. A code snippet contains many
different types of tokens, such as reserve words (if, for), identi-
fier names (set_value, SortList), and operators (+, ∗). Among them,
identifier names defined by users usually contain more semantic
information that users want to express [10, 48, 53]. For example,
a method’s name is a typical identifier name, which is used to de-
scribe the overall functionality of the code and can be considered
as a shorter version of its code comment. Thus, to enable the model
to attend more on the identifier names and capture semantic in-
formation from them, we extract these words from code. First, we
use the javalang [3] and tokenize [5] libraries to extract identifier
names from the Java and Python code snippets, respectively. Then,
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Step 1： Locally train the K Deliberation models
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Code 
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Encoder
1st

Decoder

𝒛𝟎

𝒕

𝒙

𝒛𝟏

1st Deliberation Model

Evaluation Model

Comment 

Encoder

Code 

Encoder

Evaluator

𝒛𝟎

𝒙

Retrieval  

Corpus
Keywords

𝒕

Similar 
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Step 2： Globally finetune the K 
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Evaluation ModelK Deliberation Models

Deliberation 

Loss
Evaluation 
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𝒚

Freeze three 

encoders

𝒙,  𝒕, 𝒛𝟎

2.3 Model Prediction

Iteratively train the K-1 Deliberation models

𝒚

Figure 2: The overall architecture of DECOM

we further split the extracted identifier names into sub-tokens by
CamelCase or snake_case to obtain the smaller semantic units and
reduce data sparsity. These sub-tokens are treated as the keywords
of the code.

Retrieve the initial draft. To obtain the initial draft, follow-
ing the previous studies [58], we use the lexical similarity-based
retrieval method to identify the top similar code-comment pair for
the given code 𝑥 . Specifically, we first take the training set of the
benchmark dataset as the retrieval corpus. Then, for each code in
the retrieval corpus, we adopt the BM25 [45] metric to calculate
the similarity between it and the given code 𝑥 . The BM25 is a bag-
of-words retrieval metric to measure the relevance of documents
to a given search query in IR and is also widely used in code clone
detection and code search tasks [29, 39, 46]. Finally, we extract the
code with the highest similarity score as the retrieved result, and
use the comment of the code as the initial draft 𝑧0. Since the size of
our training sets is quite large, we leverage the open-source search
engine Lucene [1] to speed up the retrieval process. We follow the
settings of Lucene from Re2Com [58] to run our experiments.

2.2 Model Training
DECOM contains 𝐾 deliberation models and one evaluation model,
where 𝐾 is the maximum deliberation number. To reduce computa-
tion cost and facilitate the sharing of information between models,
all 𝐾 deliberation models share three encoders with others and
share the code encoder and comment encoder with the evaluation
model. Each deliberation model has its own decoder, which can
avoid these models generating highly similar comments.We employ
a two-step training strategy to train DECOM as shown in Figure 2.
In the first step, we locally train the 𝐾 deliberation models: we first

jointly train the first deliberation model and the evaluation model.
Then we freeze the shared encoders and train the other deliberation
models one by one. In the second step, we fine-tune DECOM by
jointly optimizing all trained models.

2.2.1 DeliberationModel. Each deliberationmodel consists of three
different encoders (i.e. code encoder, keyword encoder, and com-
ment encoder) and a decoder. The details of them are illustrated in
the following.
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Figure 3: The detailed structure of the Deliberation model.
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Encoders. The code encoder, keyword encoder, and comment
encoder aim to encode the source code 𝑥 , keywords 𝑡 , and the
previous comment 𝑧𝑘−1 as vectors, thus enabling the deliberation
model to obtain the semantic information from both source-side
(code and keywords) and target-side (the past comment). We con-
struct the three encoders by following the structure of the vanilla
Transformer Encoder [54]. As shown in Figure 3, each encoder is
composed of a stack of 𝑁 identical Transformer Encoder blocks.
Each block contains two sub-layers: The first sub-layer is a multi-
head self-attention layer (MHAtt), which employs multiple atten-
tion heads to capture the information from different representation
sub-spaces at different positions. The second sub-layer is a two-
layer Feed-Forward Network (FFN) with a ReLU activation function
in between. The residual connection is employed around the two
sublayers, followed by layer normalization (LayerNorm) [7]. Since
the three encoders have the same structure, we only introduce the
code encoder for simplicity.

Given a code snippet 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑙 (𝑥) ], where 𝑙 (𝑥) is the
number of words in the code. The code encoder first embeds each
word of the code into a 𝑑 dimensional word vector:

−→𝑥𝑖 =𝑊𝑒T · 𝑥𝑖 + 𝑃𝐸𝑖 (1)

where𝑊𝑒 is a trainable embedding matrix, and 𝑃𝐸𝑖 is the position
encoding of the 𝑖-th word. Following previous study [54], we use
the 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 function of different frequencies to compute
the position encoding:

𝑃𝐸𝑖,2𝑗 = sin
(
𝑗/100002𝑗/𝑑

)
(2)

𝑃𝐸𝑖,2𝑗+1 = cos
(
𝑗/100002𝑗/𝑑

)
(3)

where 𝑖 is the position of the word and 𝑗 denotes the 𝑗-th dimension
of the embedding vector.

Then, the code encoder inputs the sequence of word embeddings
into 𝑁 identical encoder blocks to calculate the hidden states of the
code. For the 𝑖𝑡ℎ block of the code encoder, suppose that the input
is 𝐻𝑖−1, the output 𝐻𝑖 is calculated as follows:

𝐻𝑖,1 = LayerNorm
(
𝐻𝑖−1 +MHAtt(𝐻𝑖−1, 𝐻𝑖−1, 𝐻𝑖−1)

)
(4)

𝐻𝑖 = LayerNorm
(
𝐻𝑖,1 + FFN(𝐻𝑖,1)

)
(5)

where 𝐻𝑖,1 is the hidden states of the first sub-layer. Initially, the
word embedding vectors [−→𝑥1,−→𝑥2, ...,−−−→𝑥𝑙 (𝑥) ] are fed into the first block,
and the 𝑁 𝑡ℎ block outputs the final hidden states of the input code
𝐻 = [ℎ1, ℎ2, ..., ℎ𝑙 (𝑥) ]. Similarly, DECOM can encode the keywords
𝑡 and the past comment 𝑧𝑘−1 into hidden states 𝑃 and 𝑅𝑘−1, respec-
tively.

There are two points worth noting: (1) In the first-pass delib-
eration, DECOM takes the comment of the retrieved code as the
initial draft 𝑧0, for each turn after this, DECOM uses the comment
generated in the previous turn as the draft. (2) source code 𝑥 and
keywords 𝑡 do not change in the iterative deliberation process, so
to save computational resources and time, we compute their hidden
states 𝐻 and 𝑃 only once, and reuse them in subsequent iterations.

Decoder. The decoder aims to improve the quality of the pre-
viously generated comment 𝑧𝑘−1 by jointly leveraging its context
and the semantics of the source code 𝑥 and the keywords 𝑡 . As

shown in Figure 3, the decoder is also composed of a stack of 𝑁
identical decoder blocks, and each block consists of four sub-layers.
In addition to the first and the last sub-layers introduced in the
part of Encoders in section 2.2.1, the decoder block inserts two
multi-head cross attention sub-layers in between, which are used
to capture the information from the outputs of the three encoders.

In the 𝑘𝑡ℎ pass deliberation (𝑘 ≥ 1), given the hidden states 𝐻 ,
𝑃 , 𝑅𝑘−1. The 𝑖𝑡ℎ block of the decoder first gets the hidden states of
the first sub-layer 𝑆𝑖,1 using Eq. (4). Then, in the second sub-layer,
the block separately performs multi-head attention over the hidden
states of the source code 𝐻 and the keywords 𝑃 :

𝑎𝑖 = MHAtt(𝑆𝑖,1, 𝐻, 𝐻 ) (6)
𝑏𝑖 = MHAtt(𝑆𝑖,1, 𝑃, 𝑃) (7)

Besides, to effectively leverage the information from source-side,
we utilize the gate mechanism [23] to adaptively incorporate the
𝑎𝑖 containing source code features and the 𝑏𝑖 containing keywords
features:

𝛽 = Sigmoid(𝑊 T
𝑔𝑎𝑡𝑒 [𝑎𝑖 ; 𝑏𝑖 ]) (8)

𝑆𝑖,2 = LayerNorm
(
𝑆𝑖,1 + 𝛽 · 𝑎𝑖 + (1 − 𝛽) · 𝑏𝑖

)
(9)

where 𝛽 is the degree of integration between source code and key-
words, A larger value of the 𝛽 (ranges from 0 to 1) indicates that the
model should pay more attention to the information in the source
code.𝑊𝑔𝑎𝑡𝑒 is a trainable parameter matrix, [; ] is concatenation op-
eration, and 𝑆𝑖,2 is the hidden states of the second sub-layer. In the
third sub-layer, the block obtains the 𝑆𝑖,3 by performing multi-head
attention over the hidden states of the previous comment 𝑅𝑘−1:

𝑆𝑖,3 = LayerNorm
(
𝑆𝑖,2 +MHAtt(𝑆𝑖,2, 𝑅𝑘−1, 𝑅𝑘−1)

)
(10)

Based on this equation, the decoder can capture the important
clues from the global information of the past comment for further
refinement. Then, according to Eq. (5), the 𝑖𝑡ℎ block uses the 𝑆𝑖,3 to
compute the output of the last sub-layer 𝑆𝑖 . After the calculation
of 𝑁 decoder blocks, the decoder gets the hidden states of the last
decoder block 𝑆 . For the 𝑗-th decoding step, the probability of 𝑗𝑡ℎ
token 𝑧𝑘

𝑗
can be calculated by projecting the 𝑗𝑡ℎ state 𝑠 𝑗 in 𝑆 via a

linear layer followed by a Softmax function.

𝑝 (𝑧𝑘𝑗 |𝑧
𝑘
1 , 𝑧

𝑘
2 , ..., 𝑧

𝑘
𝑗−1) = Softmax(𝑊 T

𝑜 · 𝑠 𝑗 + 𝑏𝑜 ) (11)
where𝑊𝑜 is the parameter matrix and 𝑏𝑜 is the bias. Ultimately, we
use the Argmax function to generate the new comment 𝑧𝑘 .

𝑧𝑘 = Argmax( [𝑝 (𝑧𝑘1 ) ; 𝑝 (𝑧
𝑘
2 ) ; · · · ; 𝑝 (𝑧

𝑘
𝑙 (𝑘) )]) (12)

where the 𝑙 (𝑘) is the length of the 𝑘𝑡ℎ generated comment.

2.2.2 Evaluation Model. The evaluation model aims to estimate
the quality of the generated comments and calculate their quality
scores. As shown in Figure 4, the evaluationmodel contains a shared
code encoder, a shared comment encoder, and an evaluator.

Given the new comment 𝑧𝑘 generated by the 𝑘𝑡ℎ deliberation
model, the comment encoder encodes the 𝑧𝑘 into hidden states 𝑅𝑘 .
To obtain the representation of the comment, the evaluator first uses
Mean Pooling to average the hidden states 𝑅𝑘 = [𝑟𝑘0 , 𝑟

𝑘
1 , ..., 𝑟

𝑘
𝑙 (𝑘) ]

to get the aggregated features 𝑣𝑘𝑚𝑒𝑎𝑛 . Then, it utilizes a two-layer
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Figure 4: The detailed structure of the Evaluation model.

feed-forward network (FFN) to map the features into the comment
representation 𝑣𝑘 .

𝑣𝑘𝑚𝑒𝑎𝑛 = MeanPooling( [𝑟𝑘0 ; 𝑟𝑘1 ; · · · ; 𝑟𝑘
𝑙 (𝑘) ]) (13)

𝑣𝑘 = FFN(𝑣𝑘𝑚𝑒𝑎𝑛) = ReLU(𝑣𝑘𝑚𝑒𝑎𝑛 ·𝑊1 + 𝑏1) ·𝑊2 + 𝑏2 (14)
Similarly, the evaluator can obtain the code representation 𝑣𝑥 using
the Eq. (13) and (14) . Then, we use the cosine similarity metric
to calculate the similarity score 𝑄𝑘 between 𝑣𝑘 and 𝑣𝑥 . A higher
similarity score indicates that the comment 𝑧𝑘 is more semantically
similar to the source code 𝑥 .

𝑄𝑘 = 𝐶𝑜𝑠 (𝑣𝑥 , 𝑣𝑘 ) = 𝑣𝑥T · 𝑣𝑘

∥ 𝑣𝑥 ∥ · ∥ 𝑣𝑘 ∥
(15)

2.2.3 Two-Step Training. In this section, we describe the training
process and strategies for DECOM.We denote the parameters of the
𝑘𝑡ℎ deliberation model as 𝜃𝑘

𝑑
and the parameters of the evaluation

model as 𝜃𝑒 .
Deliberation loss and Evaluation loss. Given the source code

𝑥 , the ground truth 𝑦, the keywords 𝑡 , and the previous comment
𝑧𝑘−1, the 𝑘𝑡ℎ deliberation model can be optimized by maximizing
the probability of 𝑝 (𝑦 |𝑥, 𝑡, 𝑧𝑘−1). The loss function is calculated as:

L𝑑𝑒𝑙𝑖𝑏 (𝜃𝑘𝑑 ) =
∑︁

1≤𝑖≤𝑙 (𝑦)
− log𝑝

(
𝑦𝑖 |𝑦<𝑖 , 𝑥, 𝑡, 𝑧𝑘−1

)
(16)

where 𝑙 (𝑦) is the length of ground truth𝑦. For the evaluation model,
we use the Circle Loss function [51] to optimize its parameters 𝜃𝑒 :

L𝑒𝑣𝑎𝑙 (𝜃𝑒 ) = 𝑙𝑜𝑔
(
1 + 𝑒𝜆 (𝐶𝑜𝑠 (𝑣

𝑥 ,𝑣𝑘 )−𝐶𝑜𝑠 (𝑣𝑥 ,𝑣𝑦 ))
)

(17)

where 𝐶𝑜𝑠 () denotes the cosine similarity score, 𝑣𝑥 , 𝑣𝑘 and 𝑣𝑦 are
the representation vectors of the source code, the 𝑘𝑡ℎ generated
comment, and the ground truth, respectively.

Two-step Training Strategy. In theory, we can train the frame-
work from random initialization by jointly optimizing all compo-
nents. However, we find that training the multi-pass model directly

from scratch is unstable in practice, which is mainly because of the
cold start [49] problem. To mitigate this problem, we use a two-step
training strategy as shown in Figure 2.

Step 1: Locally train the 𝐾 Deliberation models. We first jointly
train the first deliberation model and the evaluation model by min-
imizing the following loss function:

L(𝜃1
𝑑
, 𝜃𝑒 ) = L𝑑𝑒𝑙𝑖𝑏 (𝜃1𝑑 ) + 𝛼𝑒L𝑒𝑣𝑎𝑙 (𝜃𝑒 ) (18)

where the 𝛼𝑒 is a hyperparameter, which is set to be 0.1 in our exper-
iments to control the weight of the evaluation loss. Then we freeze
the three shared encoders, and iteratively train the subsequent de-
liberation models using the Eq. (16) until the last deliberation model
is trained.

Step 2: Globally train the 𝐾 Deliberation models. One of the draw-
backs of the first-step training is that the deliberation models is
optimized independently and the model components cannot share
the information. To address this, we further fine-tune DECOM by
jointly training all 𝐾 deliberation models and the evaluation model:

L(𝜃1
𝑑
, ..., 𝜃𝐾

𝑑
, 𝜃𝑒 ) =L𝑑𝑒𝑙𝑖𝑏 (𝜃1𝑑 ) + ... + L𝑑𝑒𝑙𝑖𝑏 (𝜃𝐾𝑑 )+

𝛼𝑒L𝑒𝑣𝑎𝑙 (𝜃𝑒 )
(19)

Note that in this step, all parameters are unfrozen and are updated
at the same time.

2.3 Model Prediction
The prediction stage aims to generate a concise and useful comment
for a given code snippet. As shown in Figure 2, given a new code
snippet 𝑥 , we first perform data initialization introduced earlier
to obtain the keywords 𝑡 and the initial draft 𝑧0. Then, we input
them into DECOM to generate the target comment automatically.
The comment generation process involves multiple deliberation
processes. During the 𝑘𝑡ℎ deliberation, the 𝑘𝑡ℎ deliberation model
polishes the previously generated comment 𝑧𝑘−1 and generates a
new comment 𝑧𝑘 . The evaluation model estimates the quality of
the new comment 𝑧𝑘 by calculating the cosine similarity between
this and the source code 𝑥 . The deliberation process is performed
iteratively unless either of the following two conditions is satisfied:
(1) the quality score of the new comment is no longer higher than
the previous ones; (2) a certain number of deliberations 𝐾 > 0 is
reached. In the former case, we adopt the previous comment as the
target comment. In the latter case, the last generated comment is
accepted.

3 EXPERIMENTAL SETUP
3.1 Dataset
Since most of the related studies [6, 12, 16, 64, 65] for comment
generation tasks are evaluated on JCSD [27] and PCSD [9] bench-
mark datasets, in this study, we also select these two datasets in our
experiments. JCSD has 87,136 code-comment pairs collected from
more than 9K Java Github repositories created from 2015 to 2016
with at least 20 stars. It first extracted Java methods and Javadocs,
and treated the first sentence of the Javadoc as the ground-truth
comment of the corresponding code. PCSD contains 108,726 code-
comment pairs collected from open source repositories on GitHub.
It used docstrings (i.e., the string literals that appear right after the
definition of functions) as comments for Python functions.
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For the sake of fairness, we preprocess the JCSD and PCSD
strictly following Rencos [64]. Specifically, we first split datasets
into a training set, validation set, and test set in a consistent propor-
tion of 8 : 1 : 1 for the Java dataset and 6 : 2 : 2 for the Python dataset.
We use the javalang [3] and tokenize [5] libraries to tokenize the
code snippet for JCSD and PCSD, respectively. We further split
code tokens of the form CamelCase and snake_case to respective
sub-tokens. In common with [64], we remove the exactly duplicated
code-comment pairs in the test set for JCSD. The specific statistics
of the two preprocessed datasets are shown in Table 1.

Table 1: Statistic of Datasets

Dataset JCSD PCSD
Train 69,708 65,236
Validation 8,714 21,745
Test 6,489 21,745
Unique tokens in code 230,336 481,756
Unique tokens in comment 35,535 37,111
Avg. tokens in code 99.9 133.1
Avg. tokens in comment 17.1 9.9
Max. token in code 4,842 157,116
Max. token in comment 670 333

3.2 Evaluation Metrics
We evaluate the performance of different approaches using com-
monmetrics including BLEU [43], ROUGE-L [37], METEOR [8], and
CIDEr [55]. BLEU measures the 𝑛-gram precision by computing
the overlap ratios of 𝑛-grams and applying brevity penalty on short
translation hypotheses. BLEU-1/2/3/4 corresponds to the scores of
unigram, 2-grams, 3-grams, and 4-grams, respectively. ROUGE-L
is defined as the length of the longest common subsequence be-
tween generated sentence and reference, and based on recall scores.
METEOR is based on the harmonic mean of unigram precision and
recall, with recall weighted higher than precision. CIDEr considers
the frequency of 𝑛-grams in the reference sentences by computing
the TF-IDF weighting for each 𝑛-gram.𝐶𝐼𝐷𝐸𝑟𝑛 score for 𝑛-gram is
computed using the average cosine similarity between the candi-
date sentence and the reference.

3.3 Implementation Details
Following previous studies [64], we set the length limits (in terms
of #words) of code and comment (i.e., 300 and 30 for JCSD, 100
and 50 for PCSD). To save the computing resource, we limit the
maximum vocabulary size of source code and comment to 50K for
both datasets. The out-of-vocabulary words are replaced by ‘UNK’.
The word embedding size of both code and comment is set to 512.
We set the dimensions of hidden states to 512, the number of heads
to 8, and the number of blocks to 6, respectively. The maximum
deliberation number 𝐾 is set to be 3. We set the mini-batch size
to 32 and train our approach using the Adam [31] optimizer. In
the first-step training, we set the learning rate to 1e-4, and for
the second-step training, we use a smaller learning rate (1e-5) to
fine-tune DECOM. To avoid the over-fitting problem, we apply
dropout [22] with 0.2. The maximum number of epochs is set to
100 for each step of training. We also use the strategy of early

stopping, when the validation performance does not improve for 20
consecutive epochs, the training process will be stopped. To reduce
training time, we use the greedy search to generate comments at
the training stage. During the prediction stage, we use the beam
search [59] and set the beam size to 5 for choosing the best result.
Our approach is implemented based on the Pytorch [2] framework.
The experimental environment is a desktop computer equipped
with an NVIDIA GeForce RTX 3060 GPU, intel core i5 CPU, and
12GB RAM, running on Ubuntu OS.

4 RESULTS
We address the following three research questions to evaluate the
performance of DECOM:

RQ1 : How does the DECOM perform compared to the state-of-
the-art comment generation baselines?

RQ2: How does each individual component in DECOM con-
tribute to the overall performance?

RQ3: What’s the performance of DECOM on the data with dif-
ferent code or comment length?

4.1 RQ1: Comparison with Baselines
4.1.1 Baselines. We compare our approach with three categories
of existing work on the comment generation task. We exactly adopt
the hyperparameter settings reported in the original paper for all
baselines. For a fair comparison, we use the same maximum code
and comment length for all approaches, and evaluate their perfor-
mance using the same training/testing datasets.

• IR-based baselines. LSI [14] is an IR technique to analyze the
latent meaning or concepts of documents. The similarity between
the code and the comment is computed based on the LSI-reduced
vectors and cosine distance, and we set the vector dimension
to be 500. VSM [47] is also a commonly used IR technique in
comment generation tasks. For a given code snippet, we represent
the code as a vector using TF-IDF, and extract the comment of
the most similar code based on cosine similarity. NNGen [38] is
a nearest-neighbors approach for generating commit messages.
It first embeds code into vectors based on the bag of words and
the term frequency. Then, it retrieves the nearest neighbors of
the code. Finally, it outputs the message of the code with the
highest BLEU score.

• NMT-based approaches. CODE-NN [28] is the first learning-
based model for comment generation. It maps the source code
sequence into word embeddings, then uses the LSTM and the
attention mechanism to generate comments. TL-CodeSum [27]
is a multi-encoder neural model that encodes API sequences
along with code token sequences and generates comments from
source code with transferred API knowledge.Hybrid-DRL [56]
incorporates ASTs and sequential content of code snippets into
a deep reinforcement learning framework.

• Hybrid approaches. Rencos [64] is a hybrid approach that com-
bines the advantages of both IR-based and NMT-based techniques.
Re2Com [58] is an exemplar-based comment generation ap-
proach that leverages the advantages of three types of methods
based on neural networks, templates, and IR to improve the per-
formance. EditSum [34] is the most recent hybrid approach. It
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Table 2: The results of comparison with baselines, with the improvement compared with the best baselines in percentage.

Method JCSD PCSD
BLEU-1/2/3/4 ROUGE-L METEOR CIDEr BLEU-1/2/3/4 ROUGE-L METEOR CIDEr

LSI 31.4 22.5 19.3 17.3 34.8 14.4 1.803 36.3 23.6 20.1 17.6 40.0 17.2 1.982
VSM 33.3 24.4 21.1 19.0 36.6 15.4 1.983 38.9 26.1 22.1 19.3 42.7 19.0 2.216
NNGen 33.0 24.4 20.9 18.7 36.3 15.0 1.933 36.5 23.8 20.1 17.4 40.2 17.1 1.967
CODE-NN 23.9 12.8 8.6 6.3 28.9 9.1 0.978 30.8 15.4 10.7 8.1 35.1 13.4 1.229
TL-CodeSum 29.9 21.3 18.1 16.1 33.2 13.7 1.660 31.1 16.5 12.5 10.4 35.3 13.6 1.335
Hybrid-DRL 32.4 22.6 16.3 13.3 26.5 13.5 1.656 41.1 26.2 19.5 15.0 42.2 17.9 2.042
Re2com 33.7 23.6 19.0 16.3 38.1 15.1 1.807 36.6 22.3 17.4 14.5 40.8 17.0 1.813
Rencos 37.5 27.9 23.4 20.6 42.0 17.3 2.209 43.1 29.5 24.2 20.7 47.5 21.1 2.449
EditSum 34.1 24.3 19.5 16.9 38.6 15.2 1.865 37.7 23.1 18.2 15.6 42.0 17.1 1.894
DECOM 40.4 30.2 25.2 22.3 44.5 19.6 2.442 45.6 31.4 25.5 21.9 49.3 22.5 2.603

Table 3: RQ2 Ablation study on the multi-pass deliberation and evaluation model.

Variants JCSD PCSD
BLEU-1/2/3/4 ROUGE-L METEOR CIDEr BLEU-1/2/3/4 ROUGE-L METEOR CIDEr

DECOM w/o Multi-pass Deliberation 38.9 28.5 23.5 20.8 43.1 18.8 2.274 43.5 29.3 23.8 20.4 47.5 21.1 2.424
DECOM w/o Evaluation Model 39.5 29.3 24.3 21.5 43.7 19.0 2.338 44.6 30.3 24.3 20.6 48.6 21.6 2.478

DECOM 40.4 30.2 25.2 22.3 44.5 19.6 2.442 45.6 31.4 25.5 21.9 49.3 22.5 2.603

first retrieves the most similar code snippet, and treats the corre-
sponding comment as a prototype. Then, it combines the pattern
in the prototype and semantic information of the input code to
generate the target comment.

4.1.2 Results. Table 2 shows the comparison results between the
performance of DECOM and other baselines, and the best perfor-
mance is highlighted in bold. Overall, our approach achieves the
best performance on all evaluation metrics, followed by Rencos, Ed-
itSum, and Re2com. On the Java dataset, DECOM achieves 22.3, 44.5,
19.6, and 2.442 points on BLEU-4, ROUGE-L, METEOR, and CIDEr.
Compared with the best baseline (Rencos), DECOM improves the
performance of BLEU-4, ROUGE-L, METEOR, and CIDEr by 8.3%,
6.0%, 13.3%, and 10.5%, respectively. On the Python dataset, DECOM
achieves 21.9, 49.3, 22.5, and 2.603 points on BLEU-4, ROUGE-L,
METEOR, and CIDEr. Compared with the best baseline (Rencos),
DECOM also achieves 5.8%, 3.8%, 6.6%, and 6.3% improvements on
BLEU-4, ROUGE-L, METEOR, and CIDEr, respectively .

AnsweringRQ1:DECOMoutperforms the state-of-the-art base-
lines in terms of all seven metrics on both two datasets. Compared
to the best baseline Rencos, DECOM improves the performance
of BLEU-4, ROUGE-L, METEOR, and CIDEr by 8.3%, 6.0%, 13.3%,
and 10.5% on JCSD dataset, by 5.8%, 3.8%, 6.6%, and 6.3% on PCSD
dataset, respectively.

4.2 RQ2: Component Analysis
4.2.1 Variants. To evaluate the contribution of core components,
we obtain two variants: (1) DECOM w/o Multi-pass Delibera-
tion, which removes the multi-pass deliberation and adopts the
one-pass process to generate comments. (2) DECOM w/o Evalu-
ation Model, which removes the evaluation model and takes the
comment generated by the last (𝐾𝑡ℎ) deliberation model as the
result. We train the two variants with the same experimental setup
as DECOM and evaluate their performance on the test sets of JCSD
and PCSD, respectively.

4.2.2 Results. Table 3 presents the performances of DECOM and
its two variants. We can see that, removing the two components
makes the performance degrade substantially. Specifically, when
comparing DECOM and DECOM w/o Multi-pass Deliberation, re-
moving the multi-pass deliberation will lead to a dramatic decrease
in the average BLEU-4 (by 6.8%), ROUGE-L (by 3.4%), METEOR (by
5.2%), and CIDEr (by 6.9%) across both datasets. When comparing
DECOM and DECOM w/o Evaluation Model, we find that remov-
ing the evaluation model will lead to the performance decline in
the average BLEU-4 (by 4.8%), ROUGE-L (by 1.6%), METEOR (by
3.5%), and CIDEr (by 4.5%). We can also observe that, removing the
multi-pass deliberation will lead to a larger degree of performance
decline than removing the evaluation model.

Answering RQ2: Both the multi-pass deliberation and the eval-
uation model components have positive contributions to the perfor-
mance of DECOM, where the multi-pass deliberation component
contributes more to increasing the performance.

4.3 RQ3: Performance for Different Lengths
4.3.1 Methodology. To answer this question, we analyze the per-
formance of DECOM and best three baselines (i.e. Re2com, Rencos,
and EditSum) on different lengths (i.e., number of tokens) of code
and comments. We calculate the BLEU-1 score of each sample on
the test set of both datasets and average the scores by the length of
code and comments, respectively. (Note that, based on our obser-
vations, all the seven evaluation metrics show similar trends. For
simplicity, we show BLEU-1 only).

4.3.2 Results. Figure 5 presents the performance of DECOM and
the three baselines on JCSD and PCSD datasets with code and
comments of different lengths, where the red lines denote the per-
formance of DECOM. Overall, we can observe that the performance
of DECOM generally outperforms the three baselines with different
code and comment lengths on both datasets. Specifically, as the
length of the input code increases, DECOM almost keeps a stable
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Figure 5: BLEU-1 scores for different code and comment lengths.

(a) Naturalness (b) Informativeness (c) Usefulness

Java Python

Figure 6: The results of human evaluation.

improvement over the other three approaches. The performance
of DECOM is nearly the best on all the lengths of Java and Python
code snippets. In particular, DECOM can achieve much higher per-
formance than others when the length of the Java code snippet is
over 200 words. This shows that DECOM can better understand the
semantics of the long code snippets by sharing the information be-
tween deliberation models and the evaluation model. For the output
comments, we can see that when the output comments are becom-
ing complicated with a relatively long length, the performance of
all the approaches decrease, which indicates that the longer the
comment, the harder to generate it completely. However, DECOM
still has a substantial improvement over the other baselines (as
shown in Figure 5(c)), showing that our approach has the ability to
generate long and concise comments.

Answering RQ3: DECOM generally outperforms the best three
baselines on different lengths of the input code snippets and the
output comments, indicating its robustness. In particular for Java,
DECOM can achieve much higher performance than others when
the code snippets and comments are long.

5 HUMAN EVALUATION
Although the evaluation metrics (i.e., BLEU, ROUGE-L, METEOR,
and CIDEr) can measure the lexical gap between the generated
comments and the references, it can hardly reflect the semantic gap.
Therefore, we perform a human evaluation to further assess the
quality of comments generated by different approaches.

5.1 Procedure
We recruited six participants, including three Ph.D. students, one
master student, and two senior researchers, who are not co-authors

of this paper. They all have at least three years of both Java and
Python development experience, and four of them have more than
six years of development experience. We randomly select 100 code
snippets from the test dataset (50 from JCSD and 50 from PCSD).
By applying the best three baselines (i.e., Re2com, Rencos, and Ed-
itSum) and DECOM, we obtain a total of 400 generated comments.
The 400 code-comment pairs are divided into three groups, and
each group is used to create a questionnaire. We randomly list
the code-comment pairs on the questionnaire and remove their
labels to ensure that the participants are not aware of where the
comments are generated from. Each questionnaire is evaluated by
two participants, and the final result of a generated comment is
the average of two participants. Each participant is asked to rate
each generated comment from the three aspects: (1) Naturalness
reflects the fluency of generated comments from the perspective
of grammar; (2) Informativeness reflects the information rich-
ness of generated comments; and (3) Usefulness reflects how can
generated comments help developers. All three scores are integers,
ranging from 1 to 5 (1 for poor, 2 for marginal, 3 for acceptable, 4
for good, and 5 for excellent).

5.2 Results
Figure 6 exhibits the results of human evaluation by showing the
violin plots depicting the naturalness, informativeness, and useful-
ness of different models, and Table 4 shows the statistic results. Each
violin plot contains two parts, i.e., the left and right parts reflect the
evaluation results of models on the JCSD dataset and PCSD dataset.
The box plots in the violin plots present the distribution of data
and the red triangles mean the average scores of the three aspects.
Overall, DECOM is better than all baselines in three aspects. The
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Table 4: The statistic results of human evaluation.

Approach Avg. Median Std.

Naturalness

Re2com 3.7 4.0 1.1
Rencos 3.9 4.0 1.0
EditSum 4.0 4.0 0.9
DECOM 4.1 4.5 0.8

Informativeness

Re2com 2.7 2.5 1.3
Rencos 3.0 3.0 1.3
EditSum 2.6 2.0 1.3
DECOM 3.2 3.0 1.2

Usefulness

Re2com 2.6 2.0 1.4
Rencos 2.9 2.5 1.4
EditSum 2.4 2.0 1.3
DECOM 3.1 3.0 1.3

average score for naturalness, informativeness, and usefulness of
our approach are 4.24, 3.43, and 3.25, respectively, on the JCSD
dataset. On the PCSD dataset, our approach gets the average score
of 4.05, 2.96, and 2.87 in terms of naturalness, informativeness, and
usefulness. We can see that, the comments generated in the PCSD
dataset receive lower scores in human evaluation, while receiving
higher scores in evaluation metrics (see Table 2). This is mainly
because the PCSD dataset contains shorter comments (see Table 1),
thus mistakenly generating fewer keywords may lead to a lower
degree of human satisfaction. While the shorter comments are more
probable with these N-gram matching metrics [44].

Specifically, in terms of naturalness, our approach achieves aver-
age scores above 4 on both JCSD and PCSD datasets, which shows
that DECOM can generate fluent and readable comments. Besides,
in terms of informativeness and usefulness, DECOM is the only
approach with an average score of more than 3 points on the JCSD
dataset. It indicates that the comments generated by DECOM tend
to be more informative and useful than other baselines.

6 DISCUSSION
6.1 Qualitative Analysis
For qualitative analysis of our approach, we present two cases
generated by the best three baselines together with DECOM. The
cases are selected from the test sets of Java and Python datasets
respectively, as shown in Figure 7 . Overall, the comments generated
by DECOM tend to be more accurate and more readable than the
other three baselines. In case 1, the aim of the Java code is to
display the contents of an index. The three baselines mistakenly
predict the keyword “displays” as “locates”, “writes”, and “locates”,
respectively, resulting in the semantics of the generated comments
being different from the ground truth. In contrast, the comment
generated by DECOM is exactly the same as the ground truth,
indicating that our approach can understand the intention of code
concisely. In case 2, we can see that, our approach also performs
better than other baselines, and the comment generated by DECOM
has a high semantic similarity with the ground truth.

We believe that the performance advantage of DECOM mainly
comes from two aspects: (1) DECOM can observe the entire previ-
ously generated comment and leverage its global information to
polish it. While other baselines can only leverage the previously
generated words. (2) DECOM employs an evaluation model that can
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degree of human satisfaction. While the shorter comments are more
probable with these N-gram matching metrics [38].

Specifically, in terms of naturalness, our approach achieves aver-
age scores above 4 on both JCSD and PCSD datasets, which shows
that DECOM can generate fluent and readable comments. Besides,
in terms of informativeness and usefulness, DECOM is the only
approach with an average score of more than 3 points on the JCSD
dataset. It indicates that the comments generated by DECOM tend
to be more informative and useful than other baselines.

6 DISCUSSION
6.1 Qualitative Analysis
For qualitative analysis of our approach, we present two cases
generated by the best three baselines together with DECOM. The
cases are selected from the test sets of Java and Python datasets
respectively, as shown in Table 5. Overall, the comments generated
by DECOM tend to be more accurate and more readable than the
other three baselines. In case 1, the aim of the Java code is to
display the contents of an index. The three baselines mistakenly
predict the keyword “displays” as “locates”, “writes”, and “locates”,
respectively, resulting in the semantics of the generated comments
being different from the ground truth. In contrast, the comment
generated by DECOM is exactly the same as the ground truth,
indicating that our approach can understand the intention of code
concisely. In case 2, we can see that, our approach also performs
better than other baselines, and the comment generated by DECOM
has a high semantic similarity with the ground truth. We believe
that the performance advantage of DECOMmainly comes from two
aspects: (1) DECOM can observe the entire previously-generated
comment and leverage its global information to polish it. While
other baselines can only leverage the previously generated words.
(2) DECOM employs an evaluation model that can determine the
opportunity when the deliberation process should end, as well as
learn the semantic relationship between source code and target
comments. Besides, the evaluation model shares its two encoders
with the deliberation models, which facilitates the information
sharing among these models, and enables DECOM to learn a better
representation for code and comments.

6.2 Parameter Analysis
Figure 7 illustrates the impact of the maximum number of delib-
erations 𝐾 on the performance of DECOM trained on the PCSD
dataset, as well as the time cost (Note that, since the JCSD dataset
has quite similar results to the PCSD dataset, we only exhibit the
results on the PCSD dataset).

We can see that enlarging the maximum number of iterations 𝐾
generally increases the performance of DECOM. When enlarging
𝐾 from 1 to 5, the BLEU-1 score increases by 6.0%. We also note
that DECOM with 𝐾 = 2 substantially outperforms DECOM with
𝐾 = 1 (i.e one-pass model), which indicates that the deliberation
process can greatly improve the comment quality by polishing the
previously generated comment. Moreover, for 𝐾 larger than 3, the
performances slowly increase but the time cost rises exponentially.
For example, when enlarging 𝐾 from 3 to 5, the BLEU-1 score
increases by 1% (0.5 points), while the training time increases by

Table 5: Examples of qualitative analysis.

Case 1 (Java):

public void dumpIndex(boolean showBounds)

throws IOException {

byte ixRecord[]=new byte[SPATIAL_INDEX_RECORD_LENGTH];

int recNum=0;

if (shpFileName == null) {

return;}

else {

recNum++;

int offset=readBEInt(ixRecord,0);

int length=readBEInt(ixRecord,4);}

ssx.close();

}

Ground Truth: displays the contents of this index .
Re2com: writes in the spatial index file for intersections .
Rencos: locates records in the shape file . the spatial index is searched
for intersections.
EditSum: locates records in the shape file .
DECOM: displays the contents of this index .
Case 2 (Python):

@pytest.mark.django_db

def test_make_naive_use_tz_false(settings):

settings.USE_TZ = False

datetime_object = datetime(2016, 1, 2, 21, 52, 25,

tzinfo=pytz.utc)

assert timezone.is_aware(datetime_object)

naive_datetime = make_naive(datetime_object)

assert timezone.is_aware(naive_datetime)

Ground Truth: tests datetimes are left intact if use_tz is not in effect .
Re2com: tests datetimes are made naive configured .
Rencos: tests datetimes are made aware of the configured timezone .
EditSum:tests datetimes are made aware intact if timezones is not in
admin .

DECOM:tests datetimes are left intact if timezones is not in effect .

Figure 7: Performance and time cost in varying themaximum
number of deliberations 𝐾 .

65% (26 hours). Thus, we consider 𝐾 = 3 to be a trade-off choice
between effectiveness and efficiency.

6.3 Threats to Validity
There are three main threats to the validity of our approach.

The first threat to validity is the datasets we use.We only evaluate
DECOM on the Java and Python datasets. However, DECOM uses
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determine the opportunity when the deliberation process should
end, as well as learn the semantic relationship between source code
and target comments. Besides, the evaluation model shares its two
encoders with the deliberation models, which facilitates the infor-
mation sharing among these models, and enables DECOM to learn
a better representation for code and comments.

6.2 Parameter Analysis
Figure 8 illustrates the impact of the maximum number of delib-
erations 𝐾 on the performance of DECOM trained on the PCSD
dataset, as well as the time cost (Note that, since the JCSD dataset
has quite similar results to the PCSD dataset, we only exhibit the
results on the PCSD dataset).

We can see that enlarging the maximum deliberation number 𝐾
generally increases the performance of DECOM. When enlarging
𝐾 from 1 to 5, the BLEU-1 score increases by 6.0%. We also note
that DECOM with 𝐾 = 2 substantially outperforms DECOM with
𝐾 = 1 (i.e one-pass model), which indicates that the deliberation
process can greatly improve the comment quality by polishing the
previously generated comment. Moreover, for 𝐾 larger than 3, the
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Figure 8: Performance and time cost in varying the maxi-
mum number of deliberations 𝐾 .

performances slowly increase but the time cost rises exponentially.
For example, when enlarging 𝐾 from 3 to 5, the BLEU-1 score
increases by 1% (0.5 points), while the training time increases by
65% (26 hours). Thus, we consider 𝐾 = 3 to be a trade-off choice
between effectiveness and efficiency.

6.3 Threats to Validity
There are four main threats to the validity of our approach.

The first threat to validity is that DECOM uses the lexical simi-
larity based method to retrieve the top similar code-comment pair,
which may cause the retrieved comment (initial draft) to be seman-
tically different from the target comment. However, the threats can
be largely relieved as DECOM generates the target comment by iter-
atively polishing the previous comments. Specifically, DECOM can
correct and refine the retrieved comment in subsequent iterations
by leveraging its global information and semantic features of the
source code. Thus, even though the dissimilar comment is retrieved,
DECOM still can guarantee its performance is not affected.

The second threat to validity is the datasets we use. We only
evaluate DECOM on the Java and Python datasets. However, DE-
COM uses language-agnostic features that can be easily extracted
from any programming language. Therefore, we believe that our
approach has good generalizability and can perform well on the
datasets of other programming languages, such as C# and Ruby.

The third threat relates to the suitability of evaluation metrics.
First, recent researchers have raised concern over the use of BLEU
[18], warning the community that the way BLEU is used and inter-
preted can greatly affect its reliability. To mitigate that threat, we
also adopt other metrics, i.e., ROUGE, METEOR, and CIDEr, when
evaluating performance. Second, there is also a threat related to our
human evaluation. We cannot guarantee that each score assigned
to every generated comment is fair. To mitigate this threat, each
comment is evaluated by six human evaluators, and we use the
average score of the two evaluators as the final score.

The fourth threat relates to the errors in the implementation
of baselines. To mitigate this issue, we directly use the publicly
available code of CODE-NN, TL-CodeSum, Hybrid-DRL, Rencos,
and Re2com to implement baselines. However, the code of EditSum
[34] is not available, sowe tried our best to understand the paper and
re-implement the approach carefully. While we have verified our
implementation can achieve similar results as the original EditSum
on the same dataset used in its paper.

7 RELATEDWORK
7.1 Automatic Comment Generation
The automatic comment generation task is now a rapidly-growing
research topic in the community of software engineering and natu-
ral language processing.

Early studies typically utilize template-based approaches and
information retrieval (IR) based approaches to generate comments.
The basic idea of the template-based approach [40, 41, 50] is to
extract the keywords from the code snippets and fill them into
the predefined templates. Due to the limitations of manually de-
signing templates, these methods are usually time-consuming and
have poor generalization. The IR-based approaches [14, 15, 19, 20,
38, 47, 60, 61] aim to use IR techniques to extract keywords from
the source code and compose them into term-based comments for
a given code snippet. For example, Wong et al. [60] generated a
comment for a given code snippet by retrieving the replicated code
samples from software repositories with clone detection techniques.
However, the IR-based approaches ignore the semantic relation-
ship between source code and natural language, so the comments
they generate are poorly readable. Recently, many learning-based
methods have been proposed, which train the neural models from
a large-scale code-comment corpus to automatically generate com-
ments [11, 26–28, 33, 34, 56–58, 64]. Iyer et al. [28] first treated the
comment generation task as an end-to-end translation problem and
introduced NMT techniques into code comment generation. Hu et
al. [26] converted the Java methods into AST sequence to learn the
structural information, and applied a seq2seq model to generate
comments. Wei et al. [58] proposed an exemplar-based comment
generation method that utilized the comment of the similar code
snippet as an exemplar to assist in generating the target comment.
Zhang et al. [64] proposed a seq2seq approach that retrieved two
similar code snippets for a given code to improve the quality of
the generated comment. Further, Li et al. [34] treated the comment
of the similar code retrieved from a parallel corpus as a prototype.
Based on the semantic differences between input code and similar
code, they proposed a seq2seq network to update the prototype
and generate comments.

Different from the existing research, we propose a novel frame-
work for automatic comment generation, which performs multiple
deliberation processes to iteratively polish the generated comments.
DECOM also contains an evaluationmodel that not only determines
whether to end the deliberation process, but also learns the seman-
tic relationship between source code and target comments. The
experimental results also prove the superiority of our approach.

7.2 Deliberation Networks
The Deliberation mechanism aims to refine the existing results for
further improvement. It has been successfully applied to various do-
mains, such as machine translation [17, 21, 35], question generation
[42], image captioning [36], speech recognition [24, 25, 52].

Xia et al. [63] first proposed a deliberation network for sequence
generation tasks, which consists of two decoders: a first-pass de-
coder for generating a draft, and a second-pass decoder for polishing
the generated draft to a better sequence. Geng et al. [17] proposed a
novel architecture to introduce the deliberation mechanism into the
neural machine translation model. It leveraged the policy network
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to determine whether to end the translation process adaptively.
Nema et al. [42] utilized the deliberation network to address the au-
tomatic question generation task. They proposed a novel approach
called Refine Network, which contains two decoders. The second
decoder used dual attention to capture information from both (i)
the original passage and (ii) the question (initial draft) generated
by the first decoder, thereby refining the question generated by
the first decoder to make it more correct and complete. Lian et
al. [36] proposed a universal two-pass decoding framework for
the image captioning task, which contains a drafting model and
a deliberation model. The drafting model first generated a draft
caption according to an input image, and a deliberation model then
refined the draft caption to a better image description. Hu et al.
[25] employed the deliberation network for the speech recogni-
tion task. They combined acoustics and first-pass text hypotheses
for second-pass decoding based on the deliberation network and
obtained significant improvements.

The findings of previous work motivate the work presented in
this paper. Our study is different from the previous work as we focus
on enhancing the performance of the comment generation task by
incorporating its own characteristics into the deliberation network.
Specifically, we combine the two characteristics of the comment
generation task into the deliberation network: (1) since code reuse is
widespread in software development, we use retrieval techniques to
retrieve the most similar comment to provide an explicit hint about
the comment expression; (2) since user-defined identifier names
usually contain semantic information, we extract the keywords
from the source code to strength the semantic features of the source
code. To the best of our knowledge, this is the first work that
treats the comment generation process as the process of writing
and polishing, and utilizes multi-pass deliberation automatically
generate comments.

8 CONCLUSION
In this paper, we propose a novel multi-pass deliberation frame-
work for automatic comment generation, named DECOM, which is
inspired by human cognitive processes. DECOM relies on multiple
deliberation models and one evaluation model to iteratively per-
form the deliberation process. For each process, the deliberation
model refines the previously generated comment into a better one.
The evaluation model estimates the quality of the new generated
comment, and compares its quality score to the previous one to
determine whether to end the iterative process. We use a two-step
training strategy to train our framework. The evaluation results
show that our approach significantly outperforms all other base-
lines on both Java and Python datasets. A human evaluation study
also confirms the comments generated by DECOM tend to be more
readable, informative, and useful. In future work, we plan to incor-
porate the reinforcement learning techniques (e.g. policy network)
into the framework to adaptively choose the suitable deliberation
processes, thereby enhancing the performance.
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