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ABSTRACT
To improve software reliability, many rule-based techniques have
been proposed to infer programming rules and detect violations
of these rules as bugs. These rule-based approaches often rely on
the highly frequent appearances of certain patterns in a project to
infer rules. It is known that if a pattern does not appear frequently
enough, rules are not learned, thus missing many bugs.

In this paper, we propose a new approach—Bugram—that lever-
ages n-gram language models instead of rules to detect bugs. Bu-
gram models program tokens sequentially, using the n-gram lan-
guage model. Token sequences from the program are then assessed
according to their probability in the learned model, and low prob-
ability sequences are marked as potential bugs. The assumption
is that low probability token sequences in a program are unusual,
which may indicate bugs, bad practices, or unusual/special uses of
code of which developers may want to be aware.

We evaluate Bugram in two ways. First, we apply Bugram on the
latest versions of 16 open source Java projects. Results show that
Bugram detects 59 bugs, 42 of which are manually verified as cor-
rect, 25 of which are true bugs and 17 are code snippets that should
be refactored. Among the 25 true bugs, 23 cannot be detected by
PR-Miner. We have reported these bugs to developers, 7 of which
have already been confirmed by developers (4 of them have already
been fixed), while the rest await confirmation. Second, we further
compare Bugram with three additional graph- and rule-based bug
detection tools, i.e., JADET, Tikanga, and GrouMiner. We apply
Bugram on 14 Java projects evaluated in these three studies. Bu-
gram detects 21 true bugs, at least 10 of which cannot be detected
by these three tools. Our results suggest that Bugram is comple-
mentary to existing rule-based bug detection approaches.

CCS Concepts
•Software and its engineering → Automated static analysis;
Software testing and debugging;
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1. INTRODUCTION
Software bug detection techniques have been shown to improve

software reliability by finding previously unknown bugs in mature
software projects [13, 16]. Rule-based bug detection approaches
infer likely programming rules from source code [1, 4, 6, 8, 23, 24,
42, 45, 46, 54], version histories [4, 19, 53], and source code com-
ments [43,44]. These approaches detect violations of these rules as
potential bugs.

Frequent itemset mining techniques were used to mine rules that
capture the co-occurrence of methods and variables. Violations of
these rules are reported as bugs [4, 6, 23]. Along this line, more
complex graph models are combined with frequent itemset mining
techniques, which focus on mining programming rules that capture
both method order and control flow information to detect violations
of these complex rules [10, 32, 49, 50].

Let ABC denote a sequence of calls to the methods A, B, and
C. Imagine a contrived program that includes 98 occurrences of the
sequence ABC, two occurrences of ABD, and a single occurrence
of EFG. Existing rule-based bug detection approaches, such as
PR-Miner [23], JADET [50], Tikanga [49], and GrouMiner [32]
infer rules based on the conditional probabilities of method calls,
for example, the conditional probability P (C|AB) which denotes
the likelihood of seeing a call to method C after the sequence of
calls AB. In our example, P (C|AB) = 98

98+2
= 98%. This

probability is higher than the threshold used by PR-Miner, which
is 90%, and therefore, the potential rule that C should appear after
AB, denoted as {AB => C}, is selected as a high-probability
rule. The confidence of this rule is its conditional probability, which
is 98%. Given this rule, the sequence ABD is flagged as a bug,
because C instead of D is expected to follow AB.

It has recently been demonstrated that n-gram language mod-
els [7] can capture the regularities of software source code [15,36].
To take advantage of the n-gram language model, which provides
us with a Markov model for tokens, we propose an n-gram lan-
guage model based bug detection technique, called Bugram. The
assumption is that low probability token sequences in a program
are unusual, which may indicate bugs, bad practices, or unusu-
al/special uses of code of which developers may want to be aware.

While existing studies leverage n-grams for detecting clone
bugs [17], localizing faults [30,57], and code search [20], including
some that use the term n-gram models [17, 20], these studies do
not leverage n-gram models. Instead, they use n-grams, which are
token sequences, while n-gram models are Markov models built
on n-grams. On the other hand, n-gram models have been used for
code completion and suggestion [12, 31, 37], fault localization [5],
and coding style checking [2, 14]. The focus of this paper is
leveraging n-gram models for bug detection, which has its own
challenges and requires a different design, as detailed in Section 3.
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Figure 1: Bugs detected by Bugram versus bugs detected by rule-based
techniques in the latest version of Hadoop

Instead of using conditional probabilities, Bugram highlights
suspicious call sequences based on their absolute probabilities in
the program. So in the example above, our approach evaluates the
absolute probability P (ABC) of the full sequence ABC, which is
in contrast to PR-Miner which evaluates the conditional probability
of P (C|AB). The two sequences with the lowest probabilities in
the program are EFG and ABD, which have a probability that is
markedly lower than that of ABC. By selecting sequences with
low absolute probabilities, Bugram is able to recognize that ABD
and EFG are both suspicious sequences. Notably, EFG is not
recognized as a suspicious sequence by PR-Miner, despite having
only a single occurrence in the program, because there are no rules
with high confidence related to EFG. In addition, it is known that
even if a rule exists, but the rule pattern does not appear frequently
enough, the rule cannot be learned, thus missing many bugs [8,23].

More broadly, rule-based approaches detect bugs from common
program patterns, while Bugram detects sequences which are over-
all uncommon in the program. These two approaches target dif-
ferent types of program abnormalities, and will ultimately detect
different types of bugs, as illustrated in Figure 1. The curve shows
the probabilities of sequences in the Java project Hadoop sorted as-
cendingly. The bars depict examples of bugs that can be detected
by our n-gram-based approaches, while circles represent examples
of bugs that can be detected by rule-based approaches.

In this paper, we study whether our n-gram-based approach can
detect bugs in real-world software that rule-based approaches can-
not find. In addition, we study whether Bugram is more precise
than rule-based approaches, i.e., whether Bugram reports a smaller
portion of false bugs than rule-based approaches.

1.1 A Motivating Example
Existing rule-based techniques detect potential bugs by using

mined rules with enough confidence and support (the number of
occurrences) to avoid generating a large number of false bugs.
For example, PR-Miner [23] requires the confidence of a method
call sequence to be over 90% and the support larger than 15 to be
identified as a rule, missing opportunities to detect many bugs.
For example, Figure 2 shows a real bug detected by our tool in
the latest version of Pig, which has already been confirmed by
Pig developers. The code snippet in Figure 2(a) contains a bug:
for the purpose of logging, the code snippet should convert the
object value to a string by calling the toString method, but
it does not. The method call sequence of the buggy code snippet
is [isDebugEnabled, debug, indent, stringify],
which appears only once in the program. A similar but correct
code snippet with a method call sequence [isDebugEnabled,

(a) Method call sequence from a buggy code snippet (ap-
pears once): [isDebugEnabled(), debug(), indent(),
stringify()]

1 if (LOG.isDebugEnabled()) {
2 LOG.debug(indent(depth)+"converting from
3 Pig " + pigType + " " + value +
4 " using " + stringify(schema));
5 }

(b) A similar but correct method call sequence (appears
three times): [isDebugEnabled(), debug(), indent(),
toString())]

1 if (LOG.isDebugEnabled()) {
2 LOG.debug(indent(depth)+"converting from
3 Pig " + pigType + " " +

toString(value) +
4 " using " + stringify(schema));
5 }

Figure 2: A motivating example from the latest version 0.15.0 of the
project Pig. Bugram automatically detected a real bug in (a), which
has been confirmed and fixed by Pig developers after we reported it.

debug, indent, toString] appears three times. One of
the appearances is shown in Figure 2(b).

Using rule-based bug detection approaches such as PR-Miner, a
potential rule that may detect this bug is [isDebugEnabled,
debug, indent => toString]. Since PR-Miner
groups method calls into a set, which means it ignores
the order of method calls for example, all other rules that
can potentially detect this bug are [debug, indent
=> toString], [isDebugEnabled, indent =>
toString], [indent => toString], [debug =>
toString], [isDebugEnabled, debug => toString],
and [isDebugEnabled => toString]. The confidence of
each potential rule is only 75%, considering only these four code
snippets. If we consider the entire Pig project, the confidences of
these rules are even lower, ranging from 19.5% to 28.8%. Since
PR-Miner requires rules to have confidences at least 90% (to avoid
detecting too many false bugs), it filters out all these potential
rules, thus missing this real bug. While it is possible to reduce the
confidence requirement, the bug detection precision will likely be
too low given that already 40–86% of bugs reported by PR-Miner
are false bugs with the confidence 90% [23].

Different from these rule-based bug detection approaches, Bu-
gram does not use programming rules. Instead, it detects potential
bugs by reporting method call sequences of low probabilities in
a project. We detect the real bug shown in Figure 2, because
the method call sequence [isDebugEnabled, debug,
indent, stringify] has a low probability of 2.855× 10−5,
which is the 13th lowest probability of all 31,204 sequences of
length five using a 3-gram model.

1.2 Contributions
In this paper, we propose Bugram to leverage n-gram models

to detect real-world software bugs. Experimental results show
that Bugram complements existing rule-based bug detection ap-
proaches. The contributions of this work are:
• We propose a new bug detection approach, called Bugram,

that leverages n-gram models. Bugram learns a probability
distribution of method call sequences with control flow and
uses the probability distribution to detect bugs.
• We evaluate Bugram on the latest versions of 16 open source

projects. The results show that Bugram detects 59 bugs, 42
of which are manually verified as correct, 25 of which are
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Figure 3: Overview of Bugram

true bugs and 17 are code snippets that should be refactored.
Among the 25 true bugs, 23 cannot be detected by PR-Miner.
The detection precision is 71.2%, higher than PR-Miner and
other related work. We have reported these bugs to devel-
opers, 7 have been confirmed by developers (4 of them have
already been fixed), while the rest await confirmation.
• We compare Bugram with three additional graph- and rule-

based techniques, i.e., JADET, Tikanga, and GrouMiner.
Specifically, we apply Bugram on the 14 projects evaluated
by the three studies. Bugram detects 21 true bugs, at least
10 of which cannot be detected by these three tools. Since
the 14 projects are not the latest versions, we did not report
the bugs to developers. Instead, we have checked that 16 of
the 21 true bugs have already been fixed in a later version.
Since JADET is publicly available, we have also applied
JADET on the 16 projects evaluated above. JADET reported
0 true bugs, while Bugram detected 25 true bugs. Our
results suggest that Bugram is complementary to existing
rule-based bug detection approaches.
• Our results show that 3-gram models are the most effective

for bug detection among all n-gram models with gram sizes
from two to ten.

2. BACKGROUND
The n-gram language model has been widely used in modelling

natural language [7] and solving problems such as speech recogni-
tion [3], statistical machine translation, and other related language
problems [38]. The n-gram language model typically has two com-
ponents, words and sentences, where each sentence is an ordered
sequence of words. A dictionary D contains all possible words of a
language, and each word is represented as w. The language model
can build a probabilistic distribution over all possible sentences in
a language using Markov chains. The probability of a sentence in
a language is estimated by generating the sequence word by word.
The probability of each word in a sentence is only determined by
the conditional probabilities of the previous n− 1 tokens. Given a
sentence s = w1w2w3 · · · wm, its probability is estimated as:

P (s) =

m∏
i=1

P (wi|hi−1) (1)

where the sequence hi = wi−n · · · wi is the history. In the n-
gram model, the probability of the next word wi depends only on
the previous n − 1 words. For example, if the sequence length m
is four, the probability of the sequence s = w1w2w3w4 using a
4-gram model is:

P (s) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w1w2w3) (2)

If we use a 3-gram model, the probability of token w4 depends
only on the previous two tokens, and the probability of s is:

P (s) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w2w3) (3)

In this work, we build n-gram models to learn probabilities of us-
ing a method given different contexts. With the learned probability
distribution, we further calculate the possibility of each token se-
quence and flag low probability token sequences as potential bugs.

3. APPROACH
Figure 3 shows the overview of Bugram. In this section, we

first describe how to parse a project to convert it into tokens (Sec-
tion 3.1), and then use the tokens to build n-gram models for the
project (Section 3.2). Finally, we present how to leverage the n-
gram models to detect bugs in the project (Section 3.3).

3.1 Tokenization
To build n-gram models, we need to tokenize the source code

of a given project. A main challenge is selecting a suitable level
of granularity for tokens when building the n-gram models. Ex-
isting work builds n-gram models at the syntactic level using low-
level tokens to suggest the next tokens for code completion and
suggestion [12,15]. For example, after seeing “for (int i=0;
i<n;”, it suggests the tokens “i++) {”. Building n-gram mod-
els at this level is likely to only detect syntactic errors, e.g., missing
“;” or “i++” in a for loop, which will be caught by a compiler.

To detect bugs at the semantic level, we need to build n-gram
models at a semantic level. Bugram selects high-level tokens
that represent the structure and context of the code using a
succinct semantic representation. Take the loop “for (int
i=0; i<n; i++) { foo(i); }” as an example. Bugram
will represent it with the following high-level tokens [<FOR>,
foo(), <END_FOR>].

As reported in existing work [49,50], control flow information is
important for the accuracy of bug detection. Inspired by the above
work, during the tokenization process, Bugram also considers the
control flow information of source code by adding the control flow
elements into the token sequences.

Therefore, we focus on method calls and control flow which are:
method calls, constructors, and initializers; if/else branches;
for/do/while/foreach loops; break/continue
statements; try/catch/finally blocks; return state-
ments; synchronized blocks; switch statements and
case/default branches, and assert statements.

A method call methodA() is resolved to its fully qualified
name org.example.Foo.methodA() to prevent unrelated
methods with an identical name from being grouped together. In
addition, the type of exception in the catch clauses are consid-
ered as they provide important context information to help us infer
more accurate contextual information of method sequences.

Bugram uses the Eclipse JDT Core1 to tokenize the source files,
construct the abstract syntax trees (ASTs), and resolve the type
information for the tokens. In this work, we consider both method
and control flow as tokens.

3.2 N-gram Model Building
In this work, we use n-gram models to learn a probability distri-

bution over token sequences using all extracted sequences. For ev-
ery sequence extracted from a method we add all its subsequences
to the model. For example, given a token sequence ABC extracted
from a method, we add all of its ordered subsequences, i.e., A, B,
C, AB, BC, and ABC, to the model. Note that we ignore incon-
tinuous subsequences, such as AC in this example.

1https://eclipse.org/jdt/core/index.php
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Smoothing is a common process for n-gram models to help with
handling unknown sequences. However, since the entire source
code of a project is being used, we have the complete language of
all possible sequences. This means smoothing is unnecessary since
there are no unknown sequences.

When building n-gram models, one important parameter is Gram
Size (details are in Section 3.3.1), which defines the length of con-
sidered token sequences. N-gram models assume that each token
depends only on the previous n − 1 tokens. To leverage n-gram
models to generate probabilities of token sequences, given a spe-
cific gram size n, we build a set of internal probabilities. For ex-
ample, the probability of a token sequence ABC calculated by a
3-gram model is P (ABC) = P (A) · P (B|A) · P (C|AB). We
refer to P (A), P (B|A), and P (C|AB) as internal probabilities.
These internal probabilities can be reused to calculate the proba-
bilities of sequences that shared common subsequences. Thus, we
store internal probabilities to cut down the probability calculation
time for building n-gram models of different gram sizes. After ob-
taining all the internal probabilities for an n-gram model, we use
them to calculate the probabilities of token sequences.

Previous studies that leverage n-gram models for code comple-
tion [15, 37, 47] found that 3-gram, 4-gram, 5-gram, and 6-gram
models generated reasonable results. However, the appropriate n-
gram size for detecting bugs is unknown. To answer this question,
we build n-gram models with gram size from two to ten to study
the impact of gram size on the effectiveness of bug detection. The
algorithm that we use to build the n-gram model is standard, which
is described in Section 2.

3.3 Bug Detection
Bugram detects potential bugs by calculating and ranking the

probabilities of all sequences. After obtaining the probabilities of
all sequences, Bugram ranks them based on their probabilities in
descending order, then reports sequences with the lowest probabil-
ities as potential bugs.
3.3.1 Configurations

A few important factors affect the effectiveness of Bugram, i.e.,
the number of bugs Bugram can find. The four main factors are
as follows. Section 4.2 describes the setup, tuning, and impact of
these parameters.
• Gram Size - The size of an n-gram model.
• Sequence Length - The length of token sequences to be con-

sidered when building n-gram models and detecting bugs.
• Reporting Size - The number of sequences, in the bottom of

the ranked list, which will be reported as bugs.
• Minimum Token Occurrence - The minimum number of

times a token must occur in the software to be included in an
n-gram model.

Gram Size n. As described in Section 2, the gram size is the
size n in an n-gram model. The probability of a sequence is esti-
mated by generating the sequence token by token, and the proba-
bility of each token is determined by the conditional probabilities
using a history of up to n − 1 tokens. For example, given a token
sequence S = ABCD, a 2-gram model considers the probabili-
ties of each two sequential tokens, and will calculate its probabil-
ity with P (S) = P (A) · P (B|A) · P (C|B) · P (D|C). While a
4-gram model considers the probabilities of each four sequential
tokens, and calculates its probability as P (S) = P (A) · P (B|A) ·
P (C|AB) · P (D|ABC). In this work, we build n-gram models
with gram size from two to ten to find an appropriate gram size for
detecting bugs.

Sequence Length l. For building n-gram models, token se-
quences are extracted from all methods of a project. The length

1 String q[] = qqf.bestQueries("body",20);
2 for (int i=0; i<q.length; i++) {
3 System.out.println(newline+
4 formatQueryAsTrecTopic(i,q[i],null,null));
5 }

Figure 4: The filtering based on Minimum Token
Occurrence can help Bugram avoid reporting this false
bug from the latest version of Lucene.

of token sequences extracted from different methods varies, which
can be as small as one, and as large as 200. Breaking these long
token sequences into many small sequences may help us obtain
fine-grained method usage scenarios and detect more bugs. In this
work, we evaluate the impact of different sequence lengths on the
performance of Bugram.

Reporting Size s. Different from rule-based bug detection tech-
niques, Bugram detects bugs by identifying token sequences of low
absolute probabilities. Thus, an important question is how to set an
appropriate threshold to separate sequences that indicate bugs from
common sequences that are not bugs. We use this parameter to de-
termine the bottom s sequences in the ranked list and report them
as bugs. In general, a larger s allows Bugram to find more bugs
at the cost of examining more sequences that potentially indicate
bugs. We expect that as the probabilities increase in the ranked
list, the percentage of true bugs decreases. An appropriate s should
help Bugram find as many bugs without losing much precision of
bug detection.

The task of selecting the parameter s in Bugram is the coun-
terpart of selecting a rule probability threshold in rule-based bug
detection approaches, such as PR-Miner [23]. As described in Sec-
tion 1, rule-based approaches select a high-probability rule based
on the conditional probability of tokens. For example, if the proba-
bility P (C|AB) is higher than the threshold, {AB => C} will be
selected as a rule, and occurrences of the sequence AB followed
by a call other than C is reported as a bug. According to the defini-
tion of conditional probability, P (C|AB) = P (ABC)/P (AB),
meaning that rule-based techniques consider the probability of
the sequence ABC and compare it to the background probability
of AB. However, when the rule {EF => G} is evaluated, the
background probability is now that of the sequence EF since
the conditional probability is P (G|EF ). To achieve optimal
performance, rule-based methods should ideally find the individual
correct threshold for each background probability. This is of course
not practically feasible, which is the reason a single threshold is
used in practice. In Bugram, we avoid this problem by directly
evaluating the probability of the entire sequence. In this case, it is
more theoretically sound to select a single threshold.

Minimum Token Occurrence y. After performing the tok-
enization process described in Section 3.1, Bugram keeps only
tokens with occurrences greater than y in the project. Filter-
ing out uncommon tokens is a standard technique for natural
language processing (NLP) techniques [26]. In this paper, the
rationale is that some methods are generally not well used,
or too unique, making them corner-cases that are harder to
evaluate on a statistical basis. As such, their inclusion leads to
generating false bugs. Take the code snippet in Figure 4 as an
example. Using a 3-gram model, the sequence [bestQueries,
println, formatQueryAsTrecTopic] is ranked at the
bottom of all token sequences by their probabilities. However,
this token sequence is not a bug. It has a low probability because
it uses two infrequent private methods bestQueries and
formatQueryAsTrecTopic, each of which is used only once
in the whole project.
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To avoid reporting the above false bug, Bugram performs a token
level filtering. It filters out all tokens that appear fewer than a
given y. Such process can help Bugram avoid reporting many token
sequences with low probabilities that are not bugs.

3.3.2 Pruning False Bugs
Bugram identifies token sequences with low probabilities as po-

tential bugs. However, some low probability token sequences are
unusual/special uses of code and are not bugs, they are false bugs
for the purpose of bug detection. To filter out false bugs, we re-
duce the number of reported bugs (also called candidate bug set) by
keeping only token sequences at the bottom of at least two ranked
lists generated by different n-gram models with different sequence
lengths. The rationale is that if a bug can be detected by multiple
ranked lists, there is a higher chance that it is a true bug. Remember
that given a specific gram size, we generate multiple n-gram models
of different sequence lengths ranging from two to ten. Therefore,
we only report token sequences that are at the bottom of at least
two different n-gram models with the same gram size but different
sequence lengths.

For example, if both sequences ABCDE and BCD are
ranked at the bottom of the list of 5-token-sequences and 3-token-
sequences respectively, Bugram identifies them as an overlap (two
sequences contain a common substring) and reports ABCDE
and BCD as one bug. More formally, we obtain a new candidate
bug set using the following formula:

C(n, t) =
⋃

∀i,j∈M,i 6=j

(Bottom(n, t, i) ∩Bottom(n, t, j)) (4)

where C(n, t) is the candidate bug set generated by an n-gram
model with the reporting size of t. M is the set of sequence length,
and i and j are two different sequence lengths. n is the gram size.
Bottom(n, t, i) is the bottom t token sequences generated by an
n-gram model with sequence length of i. Note that ∩ denotes the
overlaps that are at the bottom of the two different n-gram models,
and

⋃
denotes the union of the overlaps.

4. EXPERIMENTAL SETUP
We evaluate Bugram in terms of the number of detected bugs

and detection precision, and explore appropriate parameters for Bu-
gram. All our experiments are conducted on a 4.0GHz i7-3930K
desktop with 64GB of memory.

4.1 Evaluated Software
We evaluate Bugram on 16 widely-used open source Java

projects ranging from 36 thousand lines of code (KLOC) to almost
one million lines of code (MLOC). Table 1 lists their versions,
numbers of files, lines of code (LOC), and numbers of methods.
We used the latest version of each project.

4.2 Parameter Setting and Sensitivity
To build n-gram models and detect bugs effectively, we need

to tune these parameters proposed in Section 3.3.1. We use three
widely-used and representative projects from Table 1, i.e., Pig,
Hadoop, and Solr, to study the impact of different parameters on
the performance of Bugram. Specifically, we tune three of the
four parameters, i.e., 9 different gram sizes, 9 different sequence
lengths, and 5 different reporting sizes. For minimum token
occurrence, we remove any token that appears fewer than three
times [26]. In total, there are 9*9*5 = 405 possible combinations
of the four parameters. Note that, for each combination, we need
to manually examine the reported bugs for each project, which is
prohibitively expensive. To save efforts, we only pick the three

Table 1: Projects evaluated in our experiments

Project Version Files LOC Methods
Elasticsearch 1.4 3,130 272,261 28,950
GeoTools 13-RCI 9,666 996,800 89,505
jEdit 5.2.0 543 110,744 5,548
Proguard 5.2 675 69,376 5,919
Vuze 5500 3,514 586,510 37,939
Xalan 2.7.2 907 165,248 8,965
Hadoop 2.7.1 4,307 596,462 46,104
Hbase 1.1.1 1,392 465,456 42,948
Pig 0.15.0 948 121,457 9,323
Solr-core 5.2.1 1,061 146,749 9,938
Lucene 5.2.1 2,065 293,825 18,078
Opennlp 1.6.0 603 36,328 2,954
Struts 2.3.24 2,022 157,499 15,254
Zookeeper 3.5.0 492 61,708 5,034
Nutch 2.3.1 409 198,560 2,309
Cassandra 2.2.0 1,616 280,716 15,233

Figure 5: Impact of the gram size on the number of true bugs detected

representative projects to tune the four parameters (in total we need
to manually examine the reported bugs of 405*3 combinations) in
this work. In practice, if users can afford more time, they can tune
on more projects to obtain an optimal parameter combination of
Bugram to detect bugs more effectively.

Setting Gram Size. Different gram sizes enable Bugram to use
different internal probabilities to calculate the probabilities of token
sequences. We build n-gram models for each project, and the gram
size ranges from two to ten. To evaluate the performance of n-
gram models of different gram sizes, we calculate the probabilities
of all token sequences and rank them based on their probabilities in
descending order, then we examine the bottom 10, 20, 30, 50, and
100 sequences from each n-gram model respectively, and manually
verify whether a token sequence contains a bug or not.

For each n-gram model, we count the number of real bugs de-
tected in the three projects. Figure 5 shows the results of the three
projects combined. The results show that Bugram finds the most
number of true bugs with a 3-gram model. Thus, in this paper, we
build 3-gram models for Bugram to detect bugs.

Setting Sequence Length. As described in Section 3.3, we
break long sequences extracted from a function into small sub-
sequences. Different sequence lengths enable Bugram to capture
different program scenarios and further affect the performance of
Bugram. To evaluate the impact of different sequence lengths, we
perform Bugram with sequence length ranges from two to ten. For
each sequence length, we build a 3-gram model, then calculate
probabilities of all sequences. Based on generated probabilities,
we rank all sequences. We examine the bottom 50 sequences with
low probabilities to check how many true bugs are detected.

Table 2 shows the results of detected true bugs in the bottom
50 sequences with different sequence lengths. As we can see, se-
quence length can significantly affect the performance of Bugram.
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Table 2: Detected true bugs in the bottom 50 token sequences
with different sequence lengths

Sequence Length
Project 2 3 4 5 6 7 8 9 10
Pig 0 1 1 3 2 3 1 1 1
Hadoop 0 3 4 7 3 3 2 0 0
Solr 0 1 1 1 2 0 0 0 0

Figure 6: Probabilities distribution of all token sequences in
Hadoop, Solr, and Pig

N-gram models, with sequence length ranges from three to eight,
enable Bugram to detect bugs effectively. For example, when the
sequence length is equal to five, we find seven true bugs on Hadoop,
three on Pig, and one on Solr. When the sequence length is quite
low (e.g., two) or quite big (e.g., nine, and ten), Bugram detects
no bugs in two of the three examined projects. Thus, in this paper,
sequence length ranges from three to eight.

Setting Reporting Size. In this work, we use this parameter
to limit the number of sequences in the bottom of ranked sequence
list to be reported as bugs. An appropriate reporting size might help
us identify many true bugs with a small number of false positives.
For each examined project, we build 3-gram models with sequence
length ranges from three to eight.

We first examine the probabilities of all sequences, to explore
whether there has a clear cutoff between low probability sequences
and high probability sequences. We normalized the probabilities
of all sequences in a project, since the range of sequence proba-
bility distribution varies in different projects, e.g., in Hadoop the
sequence probability range is [1.0× 10−11 5.4× 10−4], while this
range for pig is [2.84×10−5 2.7×10−3]. Figure 6 shows the nor-
malized probabilities of all sequences (ranked by probability), the
X-axis is the number of sequences in different projects. As we can
see, the probability curves are quite smooth at the bottom ten thou-
sand sequences. However, it is prohibitively expensive to examine
all these sequences.

Next, we narrow down the reporting size by only looking at the
bottom 100 sequences. Specifically, for each project, we examine
how many true bugs are detected when the reporting size is equal to
10, 20, 30, 50, and 100, which means we only examine the bottom
10, 20, 30, 50, and 100 sequences in the ranked list. In practice, if
developers can afford more time, they can examine more sequences
to find more bugs. The number of detected true bugs and detection
precisions of the three projects are shown in Figure 7a, Figure 7b,
and Figure 7c. As we can see with the increasing of reporting
size, the number of detected bugs increases, while corresponding
detection precision declines sharply. When the reporting size is
equal to 100, the corresponding detection precision is smaller than
20%. In this study, we set reporting size equal to 20, which could
enable us to detect 13 true bugs with an average detection precision
of 49% on the three examined projects.

Setting Minimum Token Occurrence. This parameter is the
minimum number of times a token is required to appear in a pro-
gram to be included in sequences. An appropriate value of this
parameter helps filter out token sequences that use unusual/special
methods, thus have low probabilities, but are not bugs.

In this study, we remove any token that appears fewer than three
times. This is a common practice in NLP research, aimed at im-
proving system performance [26].
4.3 Comparison with Existing Techniques

We compare Bugram with five existing graph- and rule-based
approaches. First, we choose the most closely related work, PR-
Miner [23]. While comparing with PR-Miner allows us to compare
Bugram with an existing approach as is, we also want to study the
sole impact of using n-gram models. In addition to using n-gram
models, the differences between Bugram and PR-Miner include
(1) Bugram uses control flow information, but PR-Miner does not,
and (2) Bugram preserves the token order, while PR-Miner ignores
the token order. As discussed in Section 3, we use control flow
information because it has been shown to be beneficial for bug
detection techniques [6, 50]. Therefore, our second approach for
comparison is identical to PR-Miner except that it considers both
the order of tokens and control flow information. Since PR-Miner
is not publicly available, we have reimplemented our own version
of it. We refer to our implementation of PR-Miner as FIM, which
stands for Frequent Itemset Mining. We call our implementation
of the second approach described above FSM, which stands for
Frequent Sequence Mining, because FSM mines rules with order
preserved, which is what frequent sequence mining does.

To implement PR-Miner, we follow each step described in [23],
we first parse the source code and extract variables, method calls,
classes in a function. After that, we hash selected elements into
numbers. Next, each function is mapped to an itemset. Then, using
these itemsets, we perform frequent itemset mining, as provided
by Weka [11] to mine frequent itemsets with a specific support and
confidence. Finally, these frequent itemsets are treated as rules, and
violations of these rules are identified as bugs.

Note that, FIM does not consider the order of tokens. Therefore,
given a frequent itemset ABC, FIM may generate many rules, e.g,
{A => BC}, {B => AC}, {AB => C}, {AC => B},
{C => AB}, and {BC => A}. Any violations of these rules
will be reported as potential bugs. While FSM considers the order,
thus given the same frequent itemset ABC, FSM generates at most
two rules, i.e., {A => BC} and {AB => C}. The more rules
are inferred, the more potential bugs are likely to be reported. Thus,
in practice, both the number of generated rules and the number of
reported bugs of FIM are significantly larger than those of FSM.

To reduce false positives, PR-Miner set the support threshold to
15 and the confidence threshold to 90%. With these thresholds,
PR-Miner reports many potential bugs, e.g., PR-Miner reported
1,447 potential bugs in the Linux kernel [23]. To save effort, they
examined only the top 60 potential bugs ranked by confidence.

These thresholds are only evaluated on three C projects. We find
that these thresholds produce poor results on the Java projects used
in this paper, e.g., we find 0 true bugs in the top 60 ranked bugs
in the three Java projects, i.e., Hadoop, Solr, and Pig. Therefore,
to set appropriate support and confidence thresholds for FIM and
FSM, we have explored FIM and FSM with different combinations
of support and confidence on the three projects. For FIM, we find
that when the support is equal to seven and the confidence is larger
than 75%, it performs the best on the three projects when examining
the top 80 sequences ranked by confidence (we have examined up
to the top 100, and found the top 80 gives the highest precision
and recall). For FSM, when the support is equal to five and the
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(a) Results of Hadoop (b) Results of Pig (c) Results of Solr

Figure 7: Detection precision and number of detected bugs in the overlaps of bottom s token sequences with low probability

confidence is larger than 85%, it performs the best on the three
projects. For a fair comparison, we tune all four parameters of
Bugram on the same three projects and apply the best parameters
on the rest of the evaluated projects.

Second, we compare Bugram with three graph- and rule-based
bug detection approaches, i.e., JADET [50], Tikanga [49], and
GrouMiner [32]. These three approaches leverage graph models
and frequent itemset mining techniques to mine rules that capture
both method order and control flow information to detect bugs.
Different from PR-Miner that was evaluated on C projects, all these
three approaches were evaluated on open source Java projects.
Thus, Bugram can be applied to these projects directly. Since,
two of these three tools, i.e., Tikanga and GrouMiner, are not
publicly available, to compare with these three approaches, instead
of implementing our own versions, we perform Bugram on the
14 projects evaluated by these three approaches, and compare
our detection results with the results from these three studies.
In addition, since JADET is an open source tool, we also apply
JADET on projects listed in Table 1, and compare its detection
results with Bugram.

4.4 Evaluation Measures
We manually examine the reported potential bugs and catego-

rize the bugs into three types: True Bugs, Refactoring Opportu-
nities, and False Positives. True bugs are faults and can be fixed
by altering the code and correcting its behaviour. Refactoring op-
portunities are bad practices and can be fixed by refactoring the
infrequent code snippets to make them more regular. Any reported
bugs that do not fit into the above two groups are considered to be
false positives. We refer to the number of true bugs and refactoring
opportunities as True Positives.

To evaluate the performance of a bug detection approach, we
use three measures: standard precision, relative recall [40], and
F1. Note that we use relative recall not standard recall, because
it is not practical to know all bugs in a project. The precision is:
(True Positive)/(Reported Potential Bugs); To calculate the rela-
tive recall, we first define the Relative Ground Truth [40] as all
the unique true positives reported by Bugram, FIM, and FSM. For
each of the three approaches, we calculate its relative recall as:
(True Positive)/(Relative Ground Truth); F1 is the harmonic mean
of the precision and relative recall.

4.5 Manual Examination of Reported Results
Following prior work [4, 6, 10, 23, 35, 46, 49, 50], we manually

check whether the bugs reported by Bugram are true positives. For
manual evaluation, a token sequence was only considered buggy
if both the first author and a non-author graduate student agreed.
Given a reported buggy sequence, we consider it a bug if it meets
one of the following conditions:
• It has obviously incorrect project specific function calls. For

example, the true bug in Figure 2: for the purpose of log-

ging, developers should convert the object value to a string
by calling a local method toString, without such conver-
sion, the logged information is the memory address of the
object value, not its textual information. This bug has al-
ready been confirmed and fixed by PIG developers.
• It violates common API usages, e.g., exception-handling API

usages2 and log-related API usages3. For exception handling
APIs, we detect several true bugs that violate their usages,
e.g., in the true bug in Figure 8(b), developers did not han-
dle all potential exceptions that might be thrown by method
waitForCompletion, which may crash the system if any of
these exceptions are thrown. For log-related APIs, one com-
mon usage is that the checked log level and the used log level
should be the same. Several of our detected true bugs violate
this usage, e.g., in the true bug in Figure 8(c): before calling
the method info() to log messages, instead of checking
whether the log level info is available, developers checked
whether debug is available, which is incorrect.

We consider a reported buggy sequence a refactoring issue based on
principles of code smells proposed in [27], e.g., duplicated code—
when two code fragments look almost identical. Duplicated code
could hinder maintenance because developers need to track and
modify each repeating fragment. Developers could refactor the
duplicated code by extracting it into a function.

5. EXPERIMENTAL RESULTS
This section presents the results of detected bugs (Section 5.1

and Section 5.2) including the comparison with existing graph- and
rule-based techniques, detected bug examples (Section 5.3), and
the execution time of Bugram (Section 5.4).

5.1 Comparison with FSM and FIM
Table 3 shows the number of bugs detected by Bugram, FSM,

and FIM on each evaluated project. In total, Bugram reported 59
potential bugs, 42 of which are correct and useful—25 true bugs,
and 17 refactoring opportunities. We have reported these true bugs
to developers, 7 of which have already been confirmed by devel-
opers, while the rest await confirmation. The results suggest that
Bugram is effective in finding real bugs in widely-used mature soft-
ware projects to improve software reliability.

As described in Section 4.4, the relative recall shows the ability
of a technique in finding new bugs, while the precision indicates
the ability of a technique in avoiding reporting false bugs. F1 is
the harmonic mean of the precision and recall. The relative recall
of Bugram is 54.5%, which is higher than FIM’s relative recall of
40.3% and FSM’s relative recall of 26.0%. The detection precision
of Bugram is 71.2%, which is higher than FIM’s precision of 2.4%
2https://docs.oracle.com/javase/tutorial/essential/exceptions
3https://logging.apache.org/log4j/1.2/manual.html
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Table 3: Bug detection results. Reported is the number of reported bugs, TBbugs is the number of true bugs, and Refs is the number of refactoring
opportunities. We manually inspect all reported bugs except for FIM whose ‘Inspected’ column shows the number of bugs inspected. Numbers in
brackets are the numbers of true bugs detected by Bugram that are detected by neither FIM nor FSM.

Bugram FSM FIM
Project Reported TBugs Refs Reported TBugs Refs Reported Inspected TBugs Refs
Elasticsearch 3 1(1) 0 0 0 0 987 80 0 2
GeoTools 4 2(2) 1 4 0 2 1,203 80 1 2
JEdit 3 0 1 0 0 0 451 80 0 2
Proguard 1 1(1) 0 1 1 0 665 80 1 0
Vuze 2 0 2 0 0 0 435 80 0 4
Xalan 3 2(2) 0 0 0 0 378 80 0 0
Hadoop 13 7(6) 4 13 3 0 869 80 2 3
Hbase 1 1(1) 0 10 2 3 774 80 1 0
Pig 9 3(2) 4 6 0 2 605 80 1 3
Solr-core 5 3(3) 1 0 0 0 787 80 0 1
Lucene 2 0 0 10 2 2 676 80 1 0
Opennlp 6 2(2) 2 3 0 0 806 80 0 2
Struts 5 1(1) 2 9 1 0 232 80 0 0
Zookeeper 0 0 0 3 0 0 442 80 0 1
Nutch 2 2(2) 0 1 0 1 253 80 1 1
Cassandra 0 0 0 7 0 1 324 80 0 2
Total 59 25(23) 17 67 9 11 9,887 1,280 8 23
Relative Recall 54.5% 26.0% 40.3%
Precision 71.2% 29.9% 2.4%
F1 61.7% 27.8% 4.5%

and FSM’s precision of 29.9%. The F1 of Bugram is 61.7%, again
higher than FIM’s F1 of 4.5% and FSM’s F1 of 27.8%. The re-
sults suggest that Bugram can find more bugs than examined rule-
based approaches and is more precise than them, suggesting Bu-
gram complements existing rule-based bug detection techniques.

In addition, as shown in Table 3, among the 25 true bugs detected
by Bugram, only two can also be detected by FIM and FSM. The
majority (23) of the true bugs can only be detected by Bugram,
showing that Bugram can find real bugs in real-world software that
examined rule-based approaches cannot find. In comparison, FIM
detected eight true bugs, and 23 refactoring opportunities. FSM
reported 67 potential bugs, and nine of which are true bugs, and 11
are refactoring opportunities. Since six true bugs are detected by
both FIM and FSM, a total of 11 unique true bugs are detected by
these two approaches, nine of which cannot be detected by Bugram.
In total, there are 77 unique true positives generated by the three
approaches.

Since FSM considers both the control flow and order of tokens,
both the numbers of rules and bugs discovered by FSM are much
smaller than those of FIM. Table 3 shows that FIM reported a total
of 9,887 potential bugs, while FSM only reported 67 potential bugs.

As we described in Section 1, Bugram and FIM detected bugs
based on different probability distributions of token sequences. Bu-
gram identifies token sequences with absolute low probability as
bugs, while FIM and FSM identify token sequences with relatively
low probability as bugs. A relatively low probability token se-
quence might have a high absolute probability with a high rank
in all token sequences extracted from a project. Thus, our results
suggest that Bugram and rule-based bug detection techniques
complement each other to detect more bugs.

5.2 Comparison with JADET, Tikanga, and
GrouMiner

As described in Section 4.3, we also compare Bugram with three
graph- and rule-based bug detection approaches, i.e., JADET [50],
Tikanga [49], and GrouMiner [32]. These approaches have been
evaluated on Java projects, and their authors have presented the
number of detected potential bugs and manually identified true
bugs. Since JADET, Tikanga, and GrouMiner each reported
many potential bugs for the evaluated projects, to save effort, the

Table 4: Comparison with JADET, Tikanga, and GrouMiner. ‘Fixed’
denotes the number of true bugs detected by Bugram that have already
been fixed in later versions. * denotes the number of unique true bugs
detected by Bugram that the tools in comparison failed to detect.

Graph-based tools Bugram
Project JADET Reported TBugs Fixed
AZUREUS 2.5.0 1 8 4 4
columba-1.2 0 4 1* 1
aspectj-1.5.3 2 5 0 0

3 17 5 5
Project Tikanga Bugram
aspectj-1.5.3 9 5 0 0
tomcat-6.0.18 0 13 4* 2
argouml-0.26 1 3 1 1
Vuze_3.1.1.0 0 8 0 0
columba-1.4 1 6 1 1

11 35 6 4
Project GrouMiner Bugram
columba-1.4 1 6 1 1
ant-1.7.1 1 3 1 1
log4j-1.2.15 0 7 2* 2
aspectjrt-1.6.3 1 12 2 1
axis-1.1 0 6 3* 1
jedit-3.0 1 5 1 1
jigsaw-2.0.5 1 1 1 1
struts-1.2.6 0 8 0 0

5 48 11 8

authors of the three tools manually verified a subset of reported
potential bugs, i.e., top 10 in JADET, top 25% in Tikanga, and
top 15 in GrouMiner. For a fair comparison, we apply Bugram
on the projects that are evaluated by these approaches, and use
the same Bugram parameters that are used in the comparison with
PR-Miner, meaning that Bugram parameters are not tuned for
these projects. JADET was evaluated on five projects, Tikanga was
evaluated on six projects, and GrouMiner was evaluated on nine
projects. We exclude four projects which are not publicly available
anymore. In total, 16 projects (14 unique) are available (Table 4).

Table 4 shows the detection results of Bugram and these three
bug detection approaches. JADET detected three true bugs on the
three projects. Bugram detected five true bugs on the same projects,
at least one of which cannot be detected by JADET. Since these pa-
pers did not report the full list of detected bugs, we do not know if
the bugs detected by JADET and Bugram overlap. However, since
JADET detected 0 true bugs in columba, while Bugram detected
one bug, we know that Bugram detected one bug that JADET can-
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not detect. We also found that all five true bugs detected by Bugram
are fixed in a later version by developers. For the same reason as
above, we do not know if the bugs detected by JADET have been
fixed in a later version. Tikanga detected 11 true bugs on the five
projects, while Bugram detected six true bugs on the same projects,
four of which are unique to Bugram (detected in tomcat). Four
of the six true bugs have already been fixed. GrouMiner detected
five true bugs on the eight projects, while Bugram detected 11 true
bugs on the same projects, five of which are unique to Bugram (de-
tected in log4j and axis). Eight of the 11 true bugs have already
been fixed. In total, the three approaches detected 19 true bugs in
the 14 projects, while Bugram detected 21 true bugs, and we have
manually checked that 16 of them have already been fixed in a later
version. In addition, at least 10 of the 21 true bugs cannot be de-
tected by these three tools.

Since JADET is an open source tool, we further apply JADET
(with recommended parameters) on the projects listed in Table 1.
Results shown that JADET did not detect any true bugs, the top
10 potential bugs detected by JADET are missing method calls of
JAVA library classes, e.g., Map, List, Iterator, etc. JADET,
Tikanga, and GrouMiner are based on object usage graph models,
so rules generated by them are method usages of classes (both li-
brary classes and project specified classes). For example, one of
JADET’s representative rules is the method Iterator.next()
should always follow the method Iterator.hasNext(). Vio-
lations of this rule will be flagged as potential bugs. However, it is
not necessary to use both the two methods in every scenario. Thus,
it is possible for JADET to report large numbers of false positives
related to the Java library classes listed above. The comparison re-
sults show that Bugram is complementary to these graph- and
rule-based approaches.

In addition, the detection precision of Bugram is better than these
three techniques. JADET [50] reported that three of the 30 potential
bugs detected in the three projects listed in Table 4 are true bugs.
Thus, JADET has a detection precision of 10.0%, while Bugram
achieves a precision of 29.4% on the same projects. Tikanga’s
authors manually examined 118 potential bugs on the five projects,
11 of which are true bugs [49], indicating a detection precision of
9.3%. While Bugram achieves a precision of 17.1% on the same
five projects. Similarly, GrouMiner has a detection precision of
4.2% on the eight projects [32], while Bugram achieves a precision
of 22.9% on the same projects.

5.3 Examples
Example Bugs. We show some of the detected true bugs in

Figure 8. Specifically, Figure 8 shows three examples of detected
true bugs in ProGuard and Nutch that are detected by our tool.
FIM and FSM fail to detect them. We reported the three bugs to
the ProGuard and Nutch developers, and all of them have been
confirmed as true bugs. In addition, the bugs in Figure 8(a) and
Figure 8(c) have already been fixed by developers.

The bug in Figure 8(a) is caused by an incorrect API usage.
Specifically, the instantiation of ConfigurationWriter
(writer) should be closed in a finally block instead of a
try block. To fix this bug, instead of closing the writer in
the try block, developers added a finally block, and closed
the writer in it. Figure 8(b) also shows a true bug. The
method waitForCompletion might throw several exceptions,
e.g., ClassNotFoundException and IOException, while in
this case, developers used this function without handling these
potential exceptions. To fix this bug, developers should either use
a catch block to handle the exceptions or raise the exceptions to
be handled by the calling functions. Figure 8(c) shows another

(a) A confirmed and fixed true bug from ProGuard (BugID: 582).

1 try{
2 ConfigurationWriter writer = new

ConfigurationWriter(file);
3 writer.write(getProGuardConfiguration());
4 writer.close();}
5 catch (Exception ex){...}}

(b) A confirmed true bug from Nutch (BugID: NUTCH-2076).

1 try {
2 currentJob.waitForCompletion(true);
3 } finally { ...
4 }}...}

(c) A confirmed and fixed true bug from Nutch (BugID: NUTCH-
2256).

1 if (LOG.isDebugEnabled()) {
2 LOG.info("Crawl delay for queue: "...);}

Figure 8: True bug examples from version 5.2 of ProGuard (a) and
version 2.3.1 of Nutch (b and c)

1 byte dt1 = bb1.get();
2 byte dt2 = bb2.get();
3 switch (dt1) {
4 case BinInterSedes.BIGINTEGER:{
5 if{
6 int sz1 = readSize(bb1, bb1.get());
7 int sz2 = readSize(bb2, bb2.get());} }
8 ...}

Figure 9: A refactoring bug example from version 0.15.0 of Pig

true bug. This bug is caused by the inconsistency between the
checked log level (debug) and the used log level (info). To
fix this bug, developers replaced the method info() with the
method debug() to make it consistent with the checked log
level. Example Refactoring Opportunities. Figure 9 shows an
example of refactoring opportunity detected by our tool from Pig
project. In this example, developers first define two variables dt1,
and dt2 to keep data via method call get() of objects bb1 and
bb2. Next, in the switch block, one of the case branch needs
data from objects bb1 and bb2, while such data already kept
in variables dt1 and dt2. Without reusing these two variables,
developers call get() of objects bb1 and bb2 to obtain data
again. This costs extra memory and time and should be refactored
by using variables dt1 and dt2 directly in lines 6 and 7.

Some of our detected bugs may appear to be simple, but many
(7) of them have been confirmed or fixed (4 confirmed and fixed,
2 confirmed with patches proposed, 1 confirmed) by the devel-
opers of these projects, suggesting the value of our approach.

5.4 Execution Time and Space
We collect the time and space costs for all the 16 projects listed

in Table 1, and details are presented in Table 5. We can see that
the total execution time for tokenization, model building, and bug
detection varies from 50 to 878 seconds. Our largest evaluated
project, GeoTools, uses 2GB of memory. As shown in the table,
most of the time is spent building ASTs with type information with
a fraction of the time on building n-gram models and detecting
bugs. The results demonstrate Bugram’s practical value.

6. THREATS TO VALIDITY
Implementation of PR-Miner. To compare Bugram with

rule-based bug detection approaches, we have reimplemented
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Table 5: Execution time in seconds
Project Total Tokenization Model Building and

Bug Detection
Elasticsearch 162 160 2
GeoTools 878 872 6
jEdit 86 85 1
Proguard 61 60 1
Vuze 312 310 2
Xalan 80 79 1
Hadoop 447 443 4
Hbase 151 149 2
Pig 93 91 2
Solr-core 97 95 2
Lucene 206 203 3
Opennlp 50 49 1
Struts 223 220 3
Zookeeper 42 41 1
Nutch 36 35 1
Cassandra 157 155 2

a rule-based approach PR-Miner [23], since PR-Miner is not
publicly available. The PR-Miner paper reported higher precision
than what we reported with our implementation of PR-Miner in
this paper. One possible reason is that PR-Miner has only been
evaluated on C projects. Its false positive pruning approach,
recommended threshold values of support and confidence may
only be effective on C projects, while in this study we evaluate
on Java projects. However, for our implementation of PR-Miner,
we have tried our best to tune parameters, e.g., threshold values
of support and confidence, to obtain the best results. This is our
best effort given that PR-Miner is not publicly available. Our
comparison is fair since both Bugram and PR-Miner are tuned and
evaluated on the same projects.

Bugs are verified by the authors. Following prior work [4, 6,
10,23,35,46,49,50], we manually check whether the potential bugs
reported by the tools are true positives. Although this approach is
a common practice, this process contains bias since the authors of
this paper are not the developers of these projects. We mitigate this
threat by sending the bugs to developers for further confirmation,
which can take a long time. So far, 7 have already been confirmed
as true bugs by developers.

7. RELATED WORK
Statistical language models. Statistical language models have

been successfully used for tasks including code completion [37,51],
fault localization and coding style consistency checking [2, 14].
Hindle et al. [15] leveraged n-gram language models to show that
source code has high repetitiveness. Han et al. [12] presented an al-
gorithm to infer the next token by using a Hidden Markov Model.
Pradel et al. [34] proposed an approach to generate object usage
specifications based on a Markov Model. Yusuke et al. [33] lever-
aged n-gram models to generate pseudo-code from software source
code. Ray et al. [36] used n-gram models to study language statis-
tics of buggy code, which showed that software buggy lines are
more unnatural than non-buggy lines. They also proposed a defect
prediction model based on n-gram models. Specifically, they built
n-gram models on an old version of a software project, and then
used entropy from the n-gram models to estimate the naturalness
of the source code lines in a later version. Source code lines with
higher entropy values are flagged as buggy lines. There are three
main differences between their approach and Bugram. First, given
a software project, Bugram directly builds n-gram models on it and
detect bugs in this project, while their tool requires an old version
of this project as training data. Second, they build n-gram models
at the token level, while we build n-gram models at a higher level
(e.g., statements, method calls, and control flows) (Section 3.1)
aiming to detect semantic bugs more effectively. Third, their ap-
proach leverages entropy while Bugram uses probability to detect
bugs. Using probability and entropy to rank token sequences are

two different approaches [26]. The entropy used in [36] combines
probability and sequence length. It may worth comparing using
entropy versus probability for detecting bugs in the future.

White et al. [51] and Raychev et al. [37] investigated the effec-
tiveness of language models, i.e., n-gram and deep learning mod-
els, for code completion. Movshovitz-Attias et al. [29] leveraged
n-gram models to predict class comments for program source file
documents. Campbell et al. [5] built n-gram models with historical
correct source code to locate the cause of syntax errors.

Some studies used n-gram token sequences instead of n-gram
models to solve software engineering tasks. Nessa et al. [30] and
Yu et al. [57] leveraged n-gram token sequences to help software
fault localization. Hsiao et al. [17] proposed to use n-gram token
sequences and tf-idf-style measures to detect code clone and related
bugs. In contrast, Bugram is not limited to detecting clone bugs.

Rule mining and defect detection. Many techniques have been
developed for programming rule mining and bug detection [1, 4,
6, 8–10, 16, 18, 19, 21–23, 25, 28, 39, 41–43, 45, 46, 48–50, 52–56].
Engler et al. [8] shown that checking the inconsistent program-
mers’ beliefs can be an effective approach to detect real bugs.
Li et al. [23] developed PR-Miner to mine programming rules
from C code and detect violations of these rules. Chang et al. [6]
proposed an approach to mine rules for detecting neglected condi-
tions. Wasylkowski et al. [50] proposed JADET which combined
frequent itemset mining and object usage graph models to detect
object usage anomalies. Gruska et al. [10] extended JADET by
mining object usages from over 6000 projects. Wasylkowski et
al. [49] proposed Tikanga which combined JADET with model
checking and concept analysis to learn and check operational
preconditions. Nguyen et al. [32] extended JADET by mining
the usage patterns of multiple objects. Different from existing
rule-based bug detection tools, Bugram detects bugs by calculating
and ranking the probabilities of token sequences based on the
probability distribution of tokens in a project.

8. CONCLUSIONS AND FUTURE WORK
This paper introduces Bugram, that leverages n-gram models to

detect bugs. Bugram detects potential bugs via calculating and
ranking the probabilities of program tokens based on the proba-
bility distribution of program tokens in a project. Low probability
token sequences are flagged as potential bugs. We evaluate Bugram
in two ways. First, we compare it with two rule-based bug detec-
tion approaches on 16 projects. Results show that Bugram detects
25 true bugs, and 23 of which cannot be detected by PR-Miner.
Second, we further apply Bugram on 14 projects evaluated in three
graph- and rule-based tools, i.e., JADET, Tikanga, and GrouMiner.
Bugram detects 21 true bugs, at least 10 of which cannot be de-
tected by these three tools. Our results suggest that Bugram is
complementary to existing rule-based bug detection approaches.

In the future, we plan to build n-gram models from multiple
projects to perform cross-project bug detection, which may help us
find more bugs more accurately. We also plan to explore different
approaches to segment sequences when building n-gram models.
Currently, Bugram breaks a token sequence from a method into se-
quences of fixed lengths. It would be promising to break sequences
at the boundaries of code’s semantic blocks. In addition, we plan
to extend Bugram to C/C++ projects, and combine Bugram with
rule-based approaches to detect more bugs.
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