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Abstract—Explaining the results of software defect prediction
(SDP) models is practical but challenging. Jiarpakdee et al.
proposed using two model-agnostic techniques (i.e., LIME and
BreakDown) to explain prediction results. They showed that
model-agnostic techniques can achieve remarkable performance
and that the generated explanations can assist developers in
understanding the prediction results. However, the fact that they
examined these model-agnostic techniques only under a specific
SDP setting calls into question their reliability on SDP models
under various settings.

In this paper, we set out to investigate the reliability and sta-
bility of model-agnostic-based explanation generation approaches
on SDP models under different settings, e.g., different data
sampling techniques, machine learning classifiers, and prediction
scenarios used when building SDP models. We use model-agnostic
techniques to generate explanations for the same instance under
various SDP models with different settings and then check the
stability of the generated explanations for the instance. We
reused the same defect data and experiment configurations from
Jiarpakdee et al. in our experiments. The results show that
the examined model-agnostic techniques generate inconsistent
explanations under different SDP settings for the same test
instances. Our user case study further confirms that inconsistent
explanations can significantly affect developers’ understanding
of the prediction results, which implies that the model-agnostic
techniques can be unreliable for practical explanation generation
under different SDP settings. To conclude, we urge a revisit of
existing model-agnostic-based studies in software engineering and
call for more research in explainable SDP toward achieving stable
explanation generation.

Index Terms—Software bugs, static detection, machine learn-
ing libraries

I. INTRODUCTION

Software Defect Prediction (SDP) models have been ac-
tively studied to allocate testing resources efficiently to reduce
development costs. Most SDP models use various code and
development metrics as features to classify a target code
fragment as buggy or not. However, a major issue they face is
lacking actionable messages for the developers to act upon [1],
making it very difficult for practical usage.

To address this issue, studies investigating explainable ar-
tificial intelligence (XAI) in the domain of SDP have been
explored recently [2]–[5] but most of these approaches target a
global explanation, which summarizes a prediction of a whole
model (i.e., the relationship between SDP features and the
bug proneness). Since the global explanation does not provide
a detailed interpretation of each prediction result, Jiarpakdee
et al. [6] proposed to use the model-agnostic methods, i.e.,
LIME [7] and BreakDown [8], [9] to generate an instance

explanation to explain the prediction of each target code
fragment. Note that Jiarpakdee et al. [6] also reported that
LIME can generate different explanations when re-generating
explanations of the same instance because of its randomness,
they further proposed an improved variant of LIME, i.e.,
LIME with Hyper Parameter Optimisation (LIME-HPO). The
explanation is defined as a list of ordered features. Their
experiments and user case studies showed that both LIME-
HPO and BreakDown achieve promising performance and
the generated explanations can assist developers by showing
actionable guidance for practical usage.

However, in Jiarpakdee et al. [6], LIME-HPO and Break-
Down were only examined on a single SDP setting which
leaves unanswered the more directly relevant question: Are
model-agnostic techniques stable under SDP models with
different settings? The answer to this question is critical.
First, many studies conduct SDP under different settings.
The explanations generated by model-agnostic techniques are
expected to be consistent across different settings to make
them stable and reliable. Second, we have seen many studies
follow Jiarpakdee et al. [6] to use model-agnostic techniques
for other tasks, e.g., defective line prediction [3], online
buggy commit prediction [10], and software quality assurance
planning [11]. Understanding the stability of model-agnostic
techniques will help confirm the findings from inline studies
and benefit future research.

In this study, we investigate the reliability and stability of
model-agnostic techniques (i.e., LIME-HPO and BreakDown)
on SDP models under different settings. Specifically, we con-
sider three different settings when building SDP models, i.e.,
data sampling techniques, machine learning (ML) classifiers,
and prediction scenarios. Data sampling techniques are used in
SDP studies [12]–[14] to solve the data imbalance issue. In this
work, we experiment with five widely used sampling methods
(details are in Section III-C). Various ML classifiers, e.g.,
Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), etc., have been used to build SDP models [15]–[18]. In
this work, following Jiarpakdee et al. [6], we experiment with
six common ML classifiers (details are in Section III-D). For
training SDP models, one can choose different versions of
historical data as the training data, i.e., cross-version defect
prediction [19]. In this work, we also examine the reliability
and stability of LIME-HPO and BreakDown when using
different versions of data to build the SDP model.



For our analysis, we reuse the same dataset from Jiarpakdee
et al. [6], which contains 32 versions of defect data from
nine large-scale open-source Java projects. We follow the
experiment settings described in Jiarpakdee et al. [6] to run our
experiments for generating explanations under SDP settings
and then we use two metrics, i.e., hit rate and rank diff
from [6], to evaluate the consistency of two explanations for
the same instance. Our experimental results show that expla-
nations generated by both LIME-HPO and BreakDown are
significantly inconsistent when different settings are applied,
which makes them unreliable to use in practice. Our user
case study further confirms that inconsistent explanations can
significantly affect developers’ understanding of the prediction
results, which implies that the model-agnostic techniques
can be unreliable for practical explanation generation under
different SDP scenarios. Overall, with this study, we urge
to revisit other explainable software analytic studies that
adopt model-agnostic techniques and call for more research
in explainable SDP towards achieving consistent explanation
generation across different SDP settings.

This paper makes the following contributions:
• We perform the first study to analyze the reliability and

stability of state-of-the-art model-agnostic explanation
generation techniques, i.e., LIME-HPO and BreakDown
on SDP models with three typical settings, i.e., data sam-
pling techniques, ML classifiers, and prediction scenarios.

• We show neither LIME-HPO nor BreakDown can gener-
ate consistent explanations and the generated explanation
under different SDP settings. In addition, our user case
study further confirms that inconsistent explanations can
significantly affect developers’ understanding of the pre-
diction results.

• We release the source code and the dataset of this work
to help other researchers replicate and extend our study1.

We organized the rest of this paper as follows. Section II
presents the background and motivation of this study. Sec-
tion III shows the experimental setup. Section IV presents the
evaluation results. Section V discusses open questions related
to our study. Section VI shows our user case study. Section VII
presents the threats to the validity of this work. Section VIII
presents the related studies. Section IX concludes this paper.

II. BACKGROUND AND MOTIVATION

This section introduces the background of SDP models and
the explanation generation techniques studied in Jiarpakdee et
al. [6] and our motivation example.

A. File-level SDP Models Studied in Jiarpakdee et al. [6]

The objective of a file-level SDP model is to determine risky
files for further software quality assurance activities [20]–[25].
A typical release-based file-level SDP model mainly has three
steps. The first step is to label the files in an early version
as buggy or clean based on post-release defects for each file.
Post-release defects are defined as defects that are revealed

1https://github.com/shinjh0849/stability of XDP.git

within a post-release window period (e.g., six months) [21],
[26]. One could collect these post-release defects from a Bug
Tracking System (BTS) via linking bug reports to its bug-
fixing changes. Files related to these bug-fixing changes are
considered buggy. Otherwise, the files are labeled as clean.
The second step is to collect the corresponding defect features
to represent these files. Instances with features and labels are
used to train ML classifiers. Finally, trained models are used
to predict files in a later version as buggy or clean.

Following Jiarpakdee et al. [6], this paper also focuses on
file-level SDP.

B. Model-agnostic Explanation Generation Techniques

Model-agnostic techniques were originally introduced to
explain the prediction of black-box AI/ML algorithms by iden-
tifying the contribution that each metric has to the prediction
of an instance according to a trained model [27]. LIME [7]
and BreakDown [8], [9] are two state-of-the-art model-agnostic
explanation techniques.

LIME [7] mimics a black-box model it aims to explain.
To generate an explanation of an instance, LIME follows four
major steps. First, it creates synthetic instances around the
instance to be explained. Then, it generates predictions of all
the synthetic instances generated in the step above. After that,
it creates a local regression model with the synthetic instances
and their predictions made in the step above. Finally, using
the regression model, LIME ranks the contribution of each
metric to the predictions aligning with the black-box model.
Since LIME randomly generates instances to construct local
regression models, the generated explanations are different
when they re-generate explanations for the same instance. To
mitigate this limitation, Jiarpakdee et al. [6] proposed LIME-
HPO, which uses a differential evolution algorithm to find an
optimal value of the number of randomly generated instances
for the local regression models of original LIME. LIME-
HPO was shown to generate stable explanations for the same
instances when re-generating explanations. BreakDown [8],
[9] measures the additive contribution of each feature of
an instance sequentially, summing up to the final black-box
prediction result. In our study, we used the ag-break version
of the BreakDown technique, which works for non-additive
models following Jiarpakdee et al. [6].

Jiarpakdee et al. [6] are the first to leverage model-agnostic
techniques to generate explanations of a prediction, which
refer to an explanation of why the SDP model predicts each
file as a defective file. The techniques define explanations as
a list of ordered features. The authors explore the usefulness
of explanations generated by these techniques in answering
three types of why questions, i.e., Property-contrast questions
(e.g., why file A is defective rather than clean?), Object-
contrast questions (e.g., why file A is defective, while file
B is clean?), and Time-contrast questions (e.g., why was
file A not classified as defective in version 1.2, but was
subsequently classified as defective in version 1.3?). In this
work, we empirically evaluate the reliability and stability of

https://github.com/shinjh0849/stability_of_XDP.git


(a) Explanation with LR-based SDP model (b) Explanation with DT-based SDP model

Fig. 1: Explanations from LIME-HPO for a buggy file “ActiveMQConnection.java” in activemq-5.0.0 on two models.

model-agnostic explanation techniques (i.e., LIME-HPO and
BreakDown) on SDP models under different settings.

C. Motivation Example

In this section, we introduce an example to illustrate the
challenge of explanations generated by a model-agnostic tech-
nique, i.e., LIME-HPO, which motivates us to further explore
the reliability and stability of these techniques.

Figure 1 shows the explanations generated by LIME-HPO
for file “ActiveMQConnection.java” with different SDP mod-
els (i.e., LR in Figure 1(a) and DT in Figure 1(b)) from version
5.0.0 of project ActiveMQ. The figures list the ranking of
features that contribute to the prediction, i.e., explanations of
the prediction. Figures on the left side are the probability
and explanation of features that contribute to a prediction.
On the right side, the figure depicts the actual value of the
feature. For example, in Fig. 1(a), “COMM” contributes 0.39
buggy-prone because the value is 11, which is over 3. The
orange color shows that a feature contributes to predicted as
buggy and blue shows it contributes to predicted as clean.
Although under both SDP models, the file is predicted as
buggy, the generated explanations are significantly different.
Specifically, among the ten features selected by LIME-HPO
on the LR-based SDP model, only two were also selected on
the DT-based SDP model, i.e., “DDEV” and “MaxCylomatic”.
However, “DDEV” and “MaxCylomatic” have different ranks.
Such different explanations can affect users’ understanding of
the answers to the three types of why questions described
in II-B. In this work, we use hit rate and rank diff proposed
in [6] (details are in Section III-F) to evaluate the stability of
the generated explanations.

Motivated by this example, in this work, we perform a
comprehensive assessment and in-depth analysis of the state-
of-the-art model-agnostic explanation generation techniques,
i.e., LIME-HPO and BreakDown on SDP models with different
settings. Note that the goal of this study is to evaluate the
stability of a model-agnostic technique against itself under
different SDP settings, not to evaluate the accuracy of the gen-
erated explanations or compare one model-agnostic technique
against another.

III. EMPIRICAL STUDY SETUP

This section describes our experiment method for evaluating
the reliability and stability of model-agnostic explanation

generation techniques, i.e., LIME-HPO and BreakDown, on
SDP models in various settings. Note that, to remove potential
bias, we conduct our experiments by strictly following the
experiment process described in Jiarpakdee et. al [6], including
using a fixed random seed for LIME (i.e., LIME-HPO), apply-
ing AutoSpearman to mitigate collinearity, tuning parameters
of the examined ML algorithms with AUC, etc. By dropping
irrelevant and correlated features using AutoSpearman and
using the top-10 features, we can say that the comparison of
generated features is in regards to the strong features which
intuitively should be more stable than the weak features.
A. Research Questions

To achieve the mentioned goal, we have designed experi-
ments to answer the following research questions regarding the
reliability and stability of each studied model-agnostic expla-
nation generation technique (i.e., LIME-HPO and BreakDown)
under different SDP settings:
RQ1: Are the generated explanations from the same technique
consistent under different data sampling techniques?
RQ2: Are the generated explanations from the same technique
consistent under different ML classifiers?
RQ3: Are the generated explanations from the same technique
consistent under cross-version SDP scenarios?

In RQ1, we investigate whether a model-agnostic technique-
based explanation technique can generate consistent explana-
tions for instances under the SDP model with applied different
data sampling techniques. In RQ2, we examine whether a
model-agnostic explanation technique can generate consistent
explanations for instances under the SDP model trained with
different ML classifiers. Following Jiarpakdee et al. [6], we
examine six widely used ML classifies (details are in Sec-
tion III-D). In RQ3, we explore whether a model-agnostic
explanation tool can generate consistent explanations for the
instances under the SDP models trained on different history
releases from the same project, i.e., prediction of fixed target
version with different versions as a training set.

B. Experiment Data

In this paper, to avoid potential bias introduced by experi-
ment data, we reuse the same defect data from Jiarpakdee et
al. [6], which comprises 32 releases that span 9 open-source
software systems. Table I shows the statistical information of
the dataset. We also reuse the same software metrics used in
Jiarpakdee et al. [6] for building SDP models. In total, 65



TABLE I: Subjects studied in this work

Project #Files #KLOC Bug rate Studied Releases
ActiveMQ 1.8K-3.4K 142-299 6%-15% 5.0,5.1,5.2,5.3,5.8
Camel 1.5K-8.8K 75-383 2%-18% 1.4,2.9,2.10,2.11
Derby 1.9K-2.7K 412-533 14%-33% 10.2,10.3,10.5
Groovy 0.7K-0.9K 74-90 3%-8% 1.5.7,1.6.0.b1,1.6.0.b2
HBase 10K-18K 246-534 20%-26% 0.94,0.95.0,0.95.2
Hive 14K-27K 287-563 8%-19% 0.9,0.10,0.12
JRuby 0.7K-16K 105-238 5%-18% 1.1,1.4,1.5,1.7
Lucene 0.8K-28K 101-342 3%-24% 2.3,2.9,3.0,3.1
Wicket 16K-28K 109-165 4%-7% 1.3.b1,1.3.b2,1.5.3

software metrics along 3 dimensions are used, i.e., 54 code
metrics (describe the relationship between properties extracted
from source code and software quality), 5 process metrics
(describe the relationship between the development process
and software quality), and 6 human metrics (describe the
relationship between the ownership of instances and software
quality). Note that, Jiarpakdee et al. [6] have applied Au-
toSpearman [28] to remove irrelevant and correlated metrics
before experiments. As a result, only 22-27 of the 65 metrics
were used in the experiments. We follow the same process
in this study to avoid any potential bias introduced by data
pre-processing.

C. Studied Data Sampling Techniques

In this study, we examine the consistency of an explanation
generation tool under five widely used data sampling methods,
which are shown as follows.

• Cluster Centroids [29]: performs an under-sampling by
using centroids as the new majority samples made by
k-means clusters.

• Repeated Edited Nearest Neighbors (RENN) [30]:
applies the nearest-neighbor algorithm to edit the sam-
ples by removing instances that are not similar to their
neighbors.

• Random under-sampling (RUS) [31]: randomly picks
samples from the majority class to match the minority
class.

• Random over-sampling (ROS) [32]: over-samples the
minority class by picking random samples with replace-
ment.

• SMOTE [32], [33]: is the synthetic minority over-
sampling technique (SMOTE). This method creates syn-
thetic examples of the minority class rather than over-
sampling with replacements.

Researchers have widely used all the above data sampling
techniques in software defect prediction tasks to solve the data
imbalance issue in SDP datasets [34]–[40]. In this work, we
use the implementations of these data sampling techniques
from the widely used imbalanced-learn Python library [41].

D. Studied SDP Models

Jiarpakdee et al. [6] showed that the model-agnostic tech-
niques can be applied to many ML classifiers for explanation
generation tasks. In this study, we use the same six ML
classifiers mentioned in Jiarpakdee et al. [6] to build the SDP

models, i.e., Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), Averaged Neural Network (AVNNet),
Gradient Boosting Machine (GBM), and Extreme Gradient
Boosting Tree (xGBTree). In this work, we used the imple-
mentation of the above six ML classifiers developed in the
Scikit-learn library [42] and xgboost2 as the implementation
of Jiarpakdee et al [6] were not publicly available. Note that we
have also tuned each of the six classifiers with its parameters
and used the ones that can achieve the best AUC values to
build prediction models in our experiments, results show that
we can achieve similar performance as reported in Jiarpakdee
et al [6].

E. Studied SDP Scenarios

For building SDP, one can choose different history versions
as the training data, which we call cross-version SDP [43]–
[45]. In this study, we also investigate the consistency of
explanations generated by the same approach under the cross-
version SDP scenario. Specifically, to perform a cross-version
SDP scenario, for each project, we use its latest version
as the test version and randomly select two earlier versions
as the training data to build SDP models respectively. We
then compare the generated explanations for the test data by
using the two SDP models built on the two different training
datasets.

F. Evaluation Measures

In this work, given a model-agnostic explanation generation
technique (i.e., LIME-HPO and BreakDown), we use the
following two metrics to evaluate the consistency of two
explanations generated by it under two different SDP models,
i.e., hit rate and rank diff, which are proposed in [6].
Hit rate is the percentage of features that match between

the two explanations (i.e., a set of ranked features). Jiarpakdee
et al. [6] leveraged the top-10 features ranked by model-
agnostic techniques as the explanation to interpret the pre-
diction results. If N (N >= 0 and N <= 10) out of the ten
features are found in two explanations generated under two
different SDP models, the value of hit rate between these
two explanations is N

10 . Hit rate indicates how similar the
two explanations are without considering the ranking orders
of features in the explanations. The higher the hit rate, the
better the consistency of an explanation generation technique
is. In our experiments, we use the top-10 features for LIME
and BreakDown to calculate the hit rate as used in Jiarpakdee
et al. [6].

Since the hit rate does not consider the order of features
in the explanations, we also use rank diff (introduced in
Jiarpakdee et al. [6]), which compares two explanations by
using the orders of features in the explanations. Specifically,
rank diff measures the average difference of feature rankings
between two explanations. For instance, if a feature is ranked
M th and Hth in two different explanations, the ranking
difference of it is abs (M −H). rank diff is reported as the

2https://xgboost.readthedocs.io/en/latest/python/index.html
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TABLE II: Average hit rate and rank diff of techniques
with and without applying data sampling techniques.

Data sampling
techniques

LIME-HPO BreakDown
hit rate rank diff hit rate rank diff

Cluster Centroids 0.577 5.564 0.655 4.725
Repeated Edited NN 0.608 5.328 0.692 4.292

Random under-sampling 0.574 5.655 0.686 4.382
Random over-sampling 0.641 4.892 0.769 3.505

SMOTE 0.632 4.948 0.762 3.577
Average 0.606 5.277 0.713 4.096

average ranking difference of all features in two explanations.
If a feature is not in the ranking, the difference is set to top-
N. Higher rank diff means more different the explanations
are by rankings. The range of the rank diff is from zero
(all features match all ranking orders) to the number of total
features considered in the explanation, i.e., 10 (all features
don’t appear in the top 10). The smaller the rank diff, the
more consistent an explanation generation technique is.

IV. RESULTS AND ANALYSIS

A. RQ1: Explanation Consistency Under Different Data Sam-
pling Techniques

Approach: To investigate the consistency of the generated
explanations of a model-agnostic technique under different
data sampling approaches, we rebuild the SDP models (i.e.,
each of the classifiers listed in Section III-D in the within-
version SDP scenario) from Jiarpakdee et al. [6] with apply-
ing different data sampling techniques on the training data.
Following Jiarpakdee et al. [6], we also use the out-of-sample
bootstrap validation technique to create the training and test
data on each version of each project listed in Table I. On the
same test dataset, we run both LIME-HPO and BreakDown
on SDP models with and without applying data sampling
techniques to generate explanations for each test instance. We
use the hit rate and rank diff to evaluate the consistency
of explanations generated by a model-agnostic technique. In
total, we have 60 runs on each project, i.e., 6 classifiers * 5
data sampling * 2 options (with or without sampling), for both
LIME-HPO and BreakDown. We report the average values of
hit rate and rank diff of explanations generated by the same
model-agnostic technique under SDP models with or without
different data sampling techniques applied.
Result: Table II shows the average hit rate and rank diff
of explanations generated from the same model-agnostic tech-
nique with and without applying each data sampling technique.
We take Cluster Centroids as an example to illustrate the de-
tailed distributions of hit rate and rank diff on each project,
which is shown in Figure 2. Overall, as we can see from
the figure, explanations generated by both LIME-HPO and
BreakDown are inconsistent on SDP models with and without
applying Cluster Centroids, we have also observed a similar
trend in other data sampling techniques. Specifically, the
average hit rate values of LIME-HPO and BreakDown range
from 0.574 (using Random under-sampling) to 0.641 (using
Random over-sampling) and 0.655 (using Cluster Centroids)

(a) hit rate of LIME-HPO (b) rank diff of LIME-HPO

(c) hit rate of BreakDown (d) rank diff of BreakDown

Fig. 2: The distributions of hit rate and rank diff on each
project before and after applying Cluster Centroids.

to 0.769 (using Random over-sampling), respectively, which
implies almost 40% and 29% of the features in the generated
explanations of LIME-HPO and BreakDown are different with
and without data sampling techniques applied.

Regarding rank diff, on average, 5 out of the 10 features
in the explanations from LIME-HPO and 4 out of 10 features
from BreakDown have different ranks, which implies on
average 50% and 40% of features in the explanations generated
by LIME-HPO and BreakDown have a different order under
SDP models with and without data sampling applied.

In addition, we have also checked that for both LIME-HPO
and BreakDown, 100% of test instances have different feature
orders with and without applying data sampling techniques.
From these observations, we can see that explanations gen-
erated by LIME-HPO and BreakDown are inconsistent when
data sampling is applied, which makes them unstable.

Both LIME-HPO and BreakDown are inconsistent when
data sampling is applied. On average, 40% of the expla-
nations from LIME-HPO and 29% from BreakDown have
different rankings. In addition, around 50% and 40% of
explanations by LIME-HPO and BreakDown have different
orders.

B. RQ2: Explanation Consistency Under Different Classifiers

Approach: Following Jiarpakdee et al. [6], we use six widely-
used ML classifiers as our experiment subjects (details are in
Section III-D). Note that, to avoid potential bias, we do not
apply any data sampling technique in RQ2. For each classifier,
we reuse the process described in Jiarpakdee et al. [6] to create
the training and test data. We use the Logistic Regression (LR)
based SDP model as the baseline as suggested in [6] for the
comparison. On the same test dataset, we run a model-agnostic
technique on both the baseline (LR-based SDP model) and
each of the other five examined classifiers, i.e., AVNNet, DT,



TABLE III: Average hit rate and rank diff of the expla-
nations generated by LIME-HPO and BreakDown with SDP
models with different classifiers.

Classifier LIME-HPO BreakDown
hit rate rank diff hit rate rank diff

AVNNet 0.613 5.325 0.681 4.339
DT 0.515 6.185 0.609 5.241
GBM 0.559 5.714 0.638 4.826
RF 0.557 5.712 0.649 4.739
XGB 0.570 5.564 0.641 4.778
Average 0.563 5.700 0.644 4.785

GBM, RF, and xGBTree, to generate explanations for test
instances. When different ML models are applied, prediction
results of the same instance vary as buggy or clean. So, we
only consider instances that have the same predicted results
in both compared defect predictors for a fair comparison. To
measure the consistency, we use hit rate and rank diff to
evaluate LIME-HPO and BreakDown on different classifiers.
We report the average values of hit rate and rank diff across
all the experiment projects when comparing two classifiers.
Result: Table III shows the average hit rate and rank diff
of the two explanation generation tools on different ML
classifiers. Overall, both LIME-HPO and BreakDown generate
inconsistent explanations between different ML classifiers. For
LIME-HPO, the average hit rate on these projects ranges
from 0.515 (i.e., DT) to 0.613 (i.e., AVNNet), which means
around 44% of the features in LIME-HPO’s explanations
are different when a different ML classifier is applied for
SDP compared to LR based SDP model. BreakDown has
a slightly higher hit rate, around 36% of the features in
BreakDown’s explanations are different when different ML
classifiers are applied. In addition, all the rank diff values
of LIME-HPO and BreakDown are higher than 4 and our
analysis further reveals that on average there are more than
5 and 4 features in the explanations generated by LIME-
HPO and BreakDown that have different ranks under SDP
models with different classifiers, which indicates 50% and
40% features in the generated explanations have different
orders. Note that, because of the space limitation, we only
show the results of experiments whose base model is LR,
we have also used each of the studied ML classifiers as the
base model, and we observe similar findings, which indicate
LIME-HPO and BreakDown consistently generate inconsistent
explanations when different classifiers are applied.

Both LIME-HPO and BreakDown generate inconsistent
explanations under SDP models with different classifiers.
Specifically, 44% of the features in LIME-HPO and 36%
of the features in BreakDown’s explanations are different
when different ML classifiers are applied. In addition, more
than 50% and 40% of the features in the explanations
generated by LIME-HPO and BreakDown have different
orders when different ML classifiers are applied.

(a) hit rate of LIME-HPO (b) rank diff of LIME-HPO

(c) hit rate of BreakDown (d) rank diff of BreakDown

Fig. 3: The detailed distributions of hit rate and rank diff of
LIME-HPO and BreakDown on each project under the cross-
version SDP scenario.

C. RQ3: Explanation Consistency Under the Cross-Version
Scenario

Approach: To investigate the consistency of the generated
explanations of a model-agnostic technique under a cross-
version SDP scenario, for each experiment project listed in
Table I, we use its latest version as the test data, and we
then randomly select two different versions from the same
project as the training data to train two different SDP models.
We run a model-agnostic technique under both models to
generate explanations for test instances. We use the hit rate
and rank diff to evaluate the consistency of explanations
generated by the model-agnostic technique. Note that, in
this study, we use six different classifiers (details are in
Section III-D) and examine two model-agnostic techniques,
i.e., LIME-HPO and BreakDown.

Result: Table IV shows the average hit rate and rank diff of
LIME-HPO and BreakDown under the cross-version prediction
scenario. Figure 3 shows the detailed distributions of hit rate
and rank diff. As we can see from the results, the hit rate
values of both LIME-HPO and BreakDown are higher than
0.4 on each project. On average, the hit rate is 0.518 across
all the projects for LIME-HPO, which means around 50% of
the generated explanations of LIME-HPO are different under
cross-version SDP. For BreakDown, we can see that its average
hit rate is 0.591, indicating that 41% of the generated ex-
planations are different under cross-version SDP. In addition,
we have further checked that the rank diff of both LIME-
HPO and BreakDown on most projects is higher than 5, which
indicates around 50% of features in the generated explanations
of both LIME-HPO and BreakDown have different orders
under SDP models built on different versions.



TABLE IV: Average hit rate and rank diff of the explana-
tions generated by LIME-HPO and BreakDown under different
SDP scenario.

Prediction
Scenario

LIME-HPO BreakDown
hit rate rank diff hit rate rank diff

Cross-Version 0.518 6.172 0.591 5.213

TABLE V: Studied JIT SDP data used in.

Project Training Data Testing Data
#commits buggy rate #commits buggy rate

Openstack 9,246 11% 3,963 16%
Qt 19,312 8% 8,277 6%

Both LIME-HPO and BreakDown generate inconsistent
explanations under cross-version SDP scenarios. Overall,
50% of features in the generated explanations of LIME-
HPO and 41% of BreakDown are different. In addition,
around 50% of features in the generated explanations of
LIME-HPO and BreakDown have different orders under
the cross-version SDP scenario.

V. DISCUSSION

A. Stability of Explanations for Just-In-Time Defect Prediction

Recently, Jiarpakdee et al. [10] proposed PyExplainer, i.e.,
a local rule-based model-agnostic technique for explaining
the prediction result of Just-In-Time (JIT) SDP models. Py-
Explainer has been proven to be more effective than LIME
on data from two open-source projects, which is shown in
Table V. In this paper, we have also conducted experiments
to examine the stability of explanations generated by PyEx-
plainer. To remove potential bias, we used the replication
package provided by PyExplainer to run our experiments. Note
that, since PyExplainer was only evaluated on code commits
from two open-source projects, some of the SDP settings we
examined for file-level SDP do not apply to PyExplainer, i.e.,
the cross-version SDP scenario. Thus, we only examine the
stability of the generated explanations of PyExplainer under
two SDP settings, i.e., different data sampling techniques
(details are in Section V-A1) and different prediction classifiers
(details are in Section V-A2).

Our experiment shows that PyExplainer achieves a consider-
able hit rate in their generated explanations, however, suffers
to maintain the stability in the ranking order of the generated
explanations, i.e. more than 4 ranking differences in the top-10
generated explanations. Details are as follows.

1) Explanation Consistency under Different Data Sampling
Techniques: To investigate the consistency of the generated
explanations of PyExplainer under different data sampling
approaches, we rebuild the two types of SDP models used
in Jiarpakdee et al. [10], i.e., RF-based and LR-based SDP
models, by applying different data sampling techniques on the
training data. On the same test dataset, we run PyExplainer
on SDP models with and without applying data sampling
techniques to generate explanations for each test instance.
In this work, we examine the five data sampling techniques

TABLE VI: Average hit rate and rank diff of the explana-
tions generated by PyExplainer under SDP models with and
without applying data sampling techniques.

Data sampling
techniques

PyExplainer
hit rate rank diff

Cluster Centroids 0.791 4.253
Repeated Edited NN 0.807 4.063

Random under-sampling 0.799 4.228
Random over-sampling 0.795 4.328

SMOTE 0.810 4.102
Average 0.800 4.195

listed in Section III-C. We use the hit rate and rank diff
to evaluate the consistency of explanations generated by a
PyExplainer. In total, we have 20 runs on each project,
i.e., 2 classifiers * 5 data sampling * 2 options (with or
without sampling), for PyExplainer. We report the average
values of hit rate and rank diff of explanations generated
by PyExplainer under SDP models with or without different
data sampling techniques applied.

Table VI shows the average hit rate and rank diff of
explanations generated from PyExplainer with and without
applying each data sampling technique. Overall, the hit rate
and rank diff values of PyExplainer under different data
sampling techniques are around 0.8 and 4.2 respectively.
Compared to LIME and BreakDown, PyExplainer is more
stable regarding hit rate, one of the possible reasons is the
number of features in JIT SDP data is less than that of file-
level SDP data, i.e., after applying AutoSpearman, the feature
reduces from 28 to 15 on the JIT SDP dataset, and from 65
to 27 on the file-level SDP dataset respectively.

PyExplainer generates inconsistent explanations when data
sampling is applied. On average, almost 20% of the fea-
tures in the explanations are different when data sampling
techniques are applied. In addition, around 42% of features
in the explanations have different orders under any data
sampling technique.

2) Explanation Consistency under Different Classifiers:
Jiarpakdee et al. [10] examined two classifiers, i.e., RF and
LR, when evaluating the performance of PyExplainer. To
avoid potential bias, we reuse the same two classifiers for the
replication package of PyExplainer in this experiment. Specif-
ically, we use the LR-based SDP model as the baseline for the
comparison. On the same test dataset, we run PyExplainer on
both the baseline (LR-based SDP model) and RF-based SDP
model, to generate explanations for test instances. We consider
instances that have the same predicted results in both compared
SDP models for a fair comparison. To measure the consistency,
we use hit rate and rank diff to evaluatePyExplainer on
these two different classifiers. We report the average values
of hit rate and rank diff across the two experiment projects
when comparing classifiers.

Table VII shows the average hit rate and rank diff of
explanations generated from PyExplainer with LR-based and



TABLE VII: Average hit rate and rank diff of the explana-
tions generated by PyExplainer under different SDP models.

Classifier PyExplainer
hit rate rank diff

RF 0.776 4.503

RF-based SDP models. The hit rate and rank diff are 0.776
and 4.503 respectively suggesting around 22% feature differ-
ence and 45% feature ranking difference in the explanations
generated by PyExplainer under the two different classifiers.
Similar to the results shown in Section V-A1, compared to
LIME-HPO and BreakDown, PyExplainer has better perfor-
mance under different classifiers, which can be caused by
the significantly different number of features in the JIT SDP
dataset and file-level SDP dataset.

PyExplainer generates inconsistent explanations under dif-
ferent classifiers. On average, almost 22% of the features
in the explanations are different and around 45% of the
features in the explanations have different orders.

VI. USER CASE STUDY

Our experiment results in Section IV show that model-
agnostic techniques generate different explanations for the
same instance under different SDP scenarios. Yet, little is
known about whether the difference in the generated expla-
nations can affect developers’ perception of the prediction of
an instance, i.e., the reason for the prediction.

Specifically, we conducted a survey study of 14 practitioners
(i.e., four PhD students and ten Master students) to investigate
their perceptions of instance explanations generated by model-
agnostic techniques under different SDP scenarios that are con-
sistent. The years of their experience in software development
based on Java varied from two to five years. Following [6],
we conducted this survey as follows:

Survey objectives: The survey aimed to investigate whether
instance explanations generated by model-agnostic techniques
under different SDP scenarios and answer the why-questions
(i.e., Property-contrast, Objective-contrast, and Time-contrast)
affect developers’ perceptions of prediction.

Survey design: We follow [6] to use instances from the
releases 2.10.0 and 2.11.0 of the Apache Camel project as
the experimental subjects to generate instance explanations.
In addition, we also investigate three types of explanations
examined in [6], i.e., Property-contrast explanation (e.g., the
reason that a file was predicted as defective), Object-contrast
explanation (e.g., why file A was predicted as buggy, while
file B was predicted as clean?), and Time-contrast explanation
(e.g., why a file was predicted differently in two subsequent
versions?). Note that, for our case study, we randomly selected
10 files from both releases 2.10.0 and 2.11.0 for each of
the three objectives. For each file, we randomly pick one
explanation from each of the four SDP scenarios in Section IV.
We also collect the default explanations generated in [6].
Thus, in total, each file has five different explanations. The

survey consists of three sets of questions with respect to
the three objectives of the study. All questions are closed-
ended questions. For each file, we present its five different
explanations and ask participants to label the level of impact
caused by the difference between an explanation from four
SDP scenarios (see Section IV) and the original explanation
from [6]. Given a pair of explanations, participants were
asked to answer the question: to what degree do you think
your understanding of the prediction is the same based
on the two different explanations? We labeled each level
of the ordinal scales with words as suggested in [46], i.e.,
strongly disagree, disagree, neutral, agree, and strongly agree.
The survey takes approximately 1 hour to complete and is
anonymous.

Result analysis: To analyze the data, we first checked the
completeness of the collected data (i.e., whether all questions
were appropriately answered). We then summarised and pre-
sented key statistical results. Our analysis shows that 85.7%,
78.5%, and 71.4% of the participants disagree that their
understanding of a prediction of a file based on the ex-
planations generated by model-agnostic techniques under
different SDP scenarios is consistent regarding Property-
contrast explanation, Objective-contrast explanation, and
Time-contrast explanation. We conclude that model-agnostic
techniques can dramatically impact users’ understanding of the
generated explanations when different scenarios are applied to
SDP models.

VII. THREATS TO VALIDITY

Internal Validity. The main internal threat of our study is the
limited number of model-agnostic techniques (i.e., LIME and
BreakDown) that we explored. Due to this limitation, we can’t
generalize our results to all model-agnostic techniques in the
file-level SDP discipline. However, in our future studies, we
will explore more techniques and compare the results to LIME
and BreakDown. Furthermore, in this paper, we described a
detailed methodology and setup of the experiment and the
data set used, allowing other researchers to contribute to our
study or further explore the other unexplored techniques.
External Validity. Even though the data sets used in this
work are well labeled based on ground truths, the number
of the data sets is limited and makes it hard to generalize our
results to other data sets and domains. Future work needs to
further investigate the study on other data sets. Besides, all
the experiment projects are Java projects, although they are
popular projects and widely used in existing SDP studies, our
findings may not be generalizable to commercial projects.
Construct Validity. To measure the consistency of explana-
tions generated by the same model agnostic technique (i.e.,
LIME and BreakDown) under different SDP settings, we use
the top-10 features in the explanations to calculate metrics
hit rate and rank diff following Jiarpakdee et al. [6]. With a
different number of features used, the hit rate and rank diff
of the two explanations can be different, which could affect
our findings. However, we find that LIME and BreakDown



generate inconsistent explanations regardless of the number
of features used.

VIII. RELATED WORK

Many efforts have been made to build explainable SDP
models [2]–[4], [6], [47], [48]. Jiarpakdee et al. [5] conducted
a qualitative survey that investigates developers’ perceptions
of SDP goals and their explanations. The results of their exper-
iments showed that the majority of the respondents believed
that SDP is very important and useful and LIME and Break-
Down are ranked as the top two approaches among a list of
explanation generation approaches, in terms of the usefulness,
quality, and insightfulness of the explanations. Humphreys and
Dam [2] proposed an explainable deep learning SDP model
that exploits self-attention transformer encoders. By using
self-attention transformer encoders, the model can disentangle
long-distance dependencies and benefit from its regularizing
effect. Jiarpakdee et al. [6] used LIME and BreakDown to gen-
erate explanations on file-level SDP models that show which
metrics are associated with buggy predictions. Khanan et al.
[4] proposed an explainable JIT-DP framework, JITBot, that
automatically generates feedback for developers by providing
risks, and explaining the mitigation plan of each commit. They
used a random forest classifier for risk-introducing commit
prediction and leveraged model-agnostic technique, i.e., LIME,
to explain the prediction results. Pornprasit and Tantithamtha-
vorn [47] proposed JITLine, which ranks defective lines in
a commit for finer granularity. With JITLine, they are able
to predict both defect-introducing commits and identify lines
that are associated with the commit. They exploit Bag-of-
Token features extracted from repositories and apply them to
machine learning classifiers to calculate the defect density of
each commit. Then, they use defect density scores to rank
different lines of the commit as risky. Recently, Jiarpakdee et
al. [10] proposed PyExplainer, i.e., a local rule-based model-
agnostic technique for explaining the prediction result of Just-
In-Time SDP models. Wattanakriengkrai et al. [3] proposed
a framework called LINE-DP, which applies LIME on a
file-level prediction model trained with code token features.
The explanation generated from LIME will show which code
tokens are introducing bugs in the file. Then they use these
explanations to identify a line buggy if the line contains
bug-prone tokens. Lundberg and Lee [48] proposed SHAP
which is a model-agnostic technique that works similarly to
BreakDown, however instead of using the greedy strategy, it
uses game theory to calculate the contribution probability of
each feature to the final prediction of the prediction model.

Reem [49] conducted the first study to manually check
whether the explanations generated by LIME and BreakDown
are the same as the root causes of the bugs for change-
level SDP models. Their results showed that both LIME
and BreakDown fail to explain the root causes of predicted
buggy changes. Roy et al. [50] investigated and compared
the disagreement of the explanations generated from LIME
and SHAP. They investigated 10 different ML predictors

when comparing the explanation techniques. In this work,
we conduct an empirical study to analyze the reliability and
stability of model-agnostic explanation generation techniques,
i.e., LIME and BreakDown on SDP under various settings at
file-level SDP. Note that our work doesn’t focus on comparing
generations from different explanation models such as [50], but
compares the generated results that use different SDP settings,
i.e., ML classifiers, data sampling, and prediction scenarios.

IX. CONCLUSION

In this paper, we investigate the reliability and stability of
model-agnostic explanation generation techniques, i.e., LIME-
HPO and BreakDown, under different SDP settings. Our
experiments on 32 versions of SDP data from nine open-source
projects show that neither LIME-HPO nor BreakDown can
generate consistent explanations under different SDP settings.
Our user case study further confirms that inconsistent expla-
nations can significantly affect developers’ understanding of
the prediction results, which implies that the model-agnostic
techniques can be unreliable for practical explanation genera-
tion under different SDP settings. Overall, with this study, we
urge a revisit of existing model-agnostic techniques in software
engineering and call for more research in explainable SDP
toward achieving stable explanation generation.

In the future, we plan to examine the reliability and stability
of model-agnostic techniques used in other software engineer-
ing tasks and explore more reliable explanation generation
techniques for prediction tasks in the software engineering
domain.
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