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Abstract—Assurance cases (ACs) are convincing arguments,
supported by a body of evidence and aiming at demonstrating
that a system will function as intended. Producers of systems can
rely on assurance cases to demonstrate to regulatory authorities
how they have complied with existing industrial standards (e.g.,
ISO 26262, DO-178C). Defeaters are arguments that challenge
the effectiveness of assurance cases. Their presence in assurance
cases could compromise the reliability of these assurance cases
and make them inadequate for verifying a system’s capabilities
(e.g., safety, and security). This may lead to system failure, which
could have severe outcomes, including loss of life. Therefore,
identifying and mitigating defeaters is key to improving assurance
cases robustness and reliability. In this paper, we focus on the
identification of defeaters. Thus, we rely on GPT-4 Turbo, a
Large Language Model developed by OpenAI, to automate the
generation (identification) of defeaters in assurance cases. Our
approach uses the Eliminative Argumentation (EA) notation
to represent assurance cases. Besides, we leverage the Chain
of Thought prompting technique to improve GPT-4 Turbo’s
reasoning capabilities. We conducted experiments on various
reference assurance case fragments from the nuclear and aviation
domains to evaluate the ability of GPT-4 Turbo to automatically
generate defeaters. Although the quality of our experiments
results is relatively moderate, the analysis of these results still
provides valuable insights on the effectiveness of GPT-4 Turbo
in generating defeaters.

Index Terms—Large Language Models, Assurance Cases, As-
surance Deficits, Defeaters, System Certification

I. INTRODUCTION

The concept of assurance case refers to: “a reasoned and
compelling argument, supported by a body of evidence, that
a system, service or organisation will operate as intended
for a defined application in a defined environment.” [16].
The main purpose of an assurance case is to demonstrate
that a particular system sufficiently supports its intended non-
functional requirements [2], [13], [18]. Such requirements
include security, reliability, and safety [2], [13], [18]. Assur-
ance cases can be represented using various textual notations
such as unstructured text [18], and semi-structured text [19].
Still, it is pretty common to visually represent assurance
cases by relying on visual (diagrammatic) notations such as

GSN (Goal Structuring Notation) [16] and EA (Eliminative
Argumentation) [15].

Flawed reasoning, inaccuracies, or incomplete evidence can
lead to the introduction of defects referred to as defeaters in
safety arguments [31]. Such assurance deficits can result in an
overestimation of system reliability and a tolerance for certain
faults, which may ultimately contribute to failures in system
safety [31]. Detecting and mitigating defeaters in assurance
cases is crucial since they undermine the trust in the assurance
of a system, potentially hindering the verification of mission-
critical system capabilities [39].

Some approaches (e.g., [17], [33], [45], [50]) allow identi-
fying defeaters in assurance cases [21]. However, only some
of them are automatic. Thus, the other ones usually require
significant manual intervention and expertise in identifying
and mitigating defeaters in assurance cases. By integrating
the strengths of automation with the nuanced understanding of
human experts, a semi-automatic approach holds the promise
of significantly improving the effectiveness of defeater identi-
fication, paving the way for a more robust certification process.

To bridge that gap, we use Large language models (LLMs)
to automatically generate defeaters in assurance cases repre-
sented using Eliminative Argumentation. LLMs are advanced
AI models that have progressively become prominent in nat-
ural language processing (NLP) [34]. Such models include
GPT-4 Turbo. The latter exhibits an increased efficiency in
producing responses and is more deterministic [36].

This work extends our previous research (i.e., [41]) which
evaluated the effectiveness of using GPT-4 Turbo for creating
defeaters, demonstrating excellent proficiency. Consequently,
in this paper, we continue to rely on GPT-4 Turbo to generate
defeaters.

The contributions of our paper are the following:
• Contribution 1: we refine the approach we introduced in

[41] by crafting a set of predicate-based rules that allow
leveraging GPT-4 Turbo to automate the generation of
defeaters. This is critical for identifying and mitigating
potential argument weaknesses.



• Contribution 2: We leverage the Chain of Thought
(CoT) prompting technique for prompting our GPT-4
Turbo model. This allows for the explicit delineation of
reasoning steps involved in problem-solving processes i.e.
in the defeater identification.

• Contribution 3: We conduct four distinct experiments to
assess how contextual information and examples in the
prompts influence the GPT-4 turbo’s effectiveness.

We further describe our work in the remainder of this paper.

II. BACKGROUND

A. Assurance Cases (ACs)

Assurance cases are structured as a hierarchy of claims,
with lower-level claims drawing on concrete evidence (e.g.,
formal reviews, simulations), and also serving as evidence to
justify claims higher in the hierarchy [12]. The purpose of
an assurance case is to demonstrate that a system or service
meets specific non-functional requirements such as safety,
security, and reliability [2], [13], [18]. This allows verifying
that mission-critical systems’ capabilities are correctly imple-
mented and therefore prevents system failure. The latter may
result in loss of life, severe injuries, large-scale environmental
damage, property destruction, and major economic loss. The
use of assurance cases also helps verify that systems comply
with industrial standards (e.g., ISO 26262, DO-178C) [12],
[26]. Depending on the non-functional requirements they
target, assurance cases can be categorized into several types:
safety cases [3], security cases [11], dependability cases [4],
reliability cases [52], etc.

B. Eliminative Argumentation (EA)

Eliminative Argumentation (EA) is a graphical notation for
representing assurance cases. It builds on the notion of de-
feasible reasoning [10], [15]. The latter supports the recursive
challenging of claims to iteratively present and mitigate de-
featers to increase the confidence in the assurance cases [10],
[15]. Eliminative Argumentation notation employs a directed,
non-cyclic graph to outline the structure of an argument [15].
A distinguishing feature of this notation is that it can capture
and represent “doubts” or defeaters regarding the reliability of
claims, evidence, or the derived logical conclusions [9].

According to Goodenough et al. [15], an eliminative argu-
ment consists of five primary components: Claims (C), which
are statements needing further argumentative support to es-
tablish credibility; Evidence (E), encompassing observations,
data, or artifacts; Inference Rules (IR), which are guidelines
for logically integrating multiple claims or defeaters to support
a higher-level claim; Defeaters, which challenge the validity
of claims, evidence, or inference rules; and Strategies (S),
which outline the method for organizing a group of claims
or defeaters. Moreover, it is optional to use a Context (CX)
element to elaborate on a primary element.

The most common categories of defeaters are [10], [15]:
• Those that present doubts about Claims: they are known

as Rebutting defeaters (R)

Fig. 1. Fragment of EA assurance case adapted from [10]

• Those that present doubt about Evidence: they are called
Undermining defeaters (UM)

• Those that present doubt about inference rules: they are
referred to as Undercutting defeaters (UC).

Eliminative Argumentation also proposes two argument termi-
nators [15]: 1) the Assumed OK terminator, which indicates
that no additional argument or evidence is needed for a
defeater; and 2) the Is OK terminator that applies to an
inference rule, signifying that it has no undercutting defeaters.

Figure 1 illustrates a fragment of an assurance case comply-
ing with the Eliminative Argumentation notation and created
for a chemical reactor.

C. Large language models (LLMs)
Large language models (LLMs) are artificial intelligence

systems that have become prominent in natural language
processing (NLP) because they are trained on vast datasets,
which allows them to answer queries with very high accuracy
[25], [34]. In this paper, we have decided to leverage GPT-4
Turbo, an LLM developed by OpenAI. This choice is guided
by the high performance of this model, as well as its ability
to produce outputs that are more deterministic [35].

Prompting involves providing a language model with a
carefully designed query or instruction to elicit a specific
response, serving as a critical technique for leveraging the
capabilities of LLMs in various tasks [46]. Chain of Thought
(CoT) prompting enhances reasoning by structuring complex
problems into smaller, manageable sub-tasks [46], [51]. Zero-
shot prompting, where a model attempts to solve tasks with-
out any prior examples, benefits from CoT by prompting
models to articulate their reasoning steps explicitly [22]. K-
shot prompting, which provides models with k examples
to learn from, also sees benefits from incorporating CoT
strategies [14]. Moreover, the roles within the OpenAI API,
distinguish between “system”, “user”, and “assistant”. The
“system” role provides high-level instructions, the “user” role
presents queries or prompts, and the ”assistant” is the model’s
response [8].

III. RELATED WORK

A. Approaches using LLMs to support the automation of
Software Engineering tasks

Several approaches have focused on the use of Large
Language Models to automatically support various software-



related activities such as [48], [47], [41], [5], [30], and [7].
For instance, Weyssow et al. [48] addressed the difficulty
of creating metamodels, which establish intricate connections
among concepts within Model-Driven Engineering (MDE).
The researchers suggest a methodology that employs Deep
Learning, particularly leveraging pre-trained language mod-
els, to offer suggestions of pertinent domain concepts to
metamodel creators. By educating a model with an extensive
collection of metamodels to assimilate both structural and
lexical characteristics, the study demonstrates the model’s
capability to deliver precise suggestions for concept renaming
instances.

Kang et al. [20] examined the ability of GPT-3.5 in
pinpointing the location of code faults, observing that the
Large Language Model frequently succeeded in identifying
the erroneous method at the initial attempt. Li et al. [24]
implemented a combined approach using differential testing
alongside ChatGPT to improve its capacity for generating
test cases that reveal faults in programs with bugs. Chen et
al. [6] leveraged GPT-4 to support requirements engineering
activities. More specifically, they relied on GPT-4 capability to
generate models aligned with the Goal-oriented Requirement
Language (GRL). Their research emphasized the profound
grasp GPT-4 possesses regarding goal modeling. Sivakumar
et al. [43] gauged GPT-4 ability to understand GSN and to
generate GSN elements. They also explored the use of GPT-4
to automatically generate safety cases. Our approach adapts
the work of Chen et al. [6] as well as the one of Sivakumar
et al. [43].

B. Approaches to Identify Defeaters in Assurance cases

Shahandashti et al. [21] notably surveyed approaches to
identify defeaters. For instance, Groza et al. [17] introduce an
approach based on description logic (DL) reasoning for pin-
pointing defeaters in Goal Structuring Notation. Their method
has two steps: initially, they utilize hybrid logic to verify if
the evidence nodes in the GSN diagram are confirmed against
the Kripke model. Following this, through DL reasoning,
they identify which objectives in the GSN framework lack
supporting verified evidence. Furthermore, Murugesan et al.
[33] advocate for semantic analysis to detect defeaters. Muram
and Javed [32] present ATTEST, a framework based on natural
language processing (NLP) for assurance. This framework
initially processes textual information through several NLP
techniques and then develops rules that capture both the syn-
tactic knowledge derived from NLP activities and the semantic
insights from model frameworks and their interactions. These
rules are then applied to assess argument validity, confirm their
soundness, evaluate their sufficiency, spot potential defeaters,
and choose counter-evidence. Yuan et al. [50] investigate the
automatic detection of defeaters through a predicate-based
framework. They create an ontology comprising constant sym-
bols, function symbols, and predicate symbols, establishing the
lexicon for GSN node expressions. Some of these approaches
are manual, which may make the identification of defeaters
time-consuming, error-prone and tedious.

Viger et al. [45] introduced a novel approach that aims at
leveraging GPT-4 to automatically identify defeaters in assur-
ance cases to enhance their reliability. However, their work
is still preliminary. Besides, Viger et al. have not carried out
yet experiments to validate their work. In [41], we extended
the work of Chen et al. [6] and Sivakumar et al. [43] to
assess GPT-4 Turbo efficiency. Our results revealed its ex-
cellent proficiency in understanding and applying Eliminative
Argumentation notation. Consequently, in this paper, we aim
to use GPT-4 Turbo for identifying defeaters within assurance
cases.

Noteworthy, in our previous work i.e. [41], our goal was
to enhance the verification and reliability of assurance cases
by devising a novel method aiming at automating defeater
identification and mitigation. We therefore proposed a 3-phase
approach consisting in utilizing GPT-4 Turbo for identifying
and mitigating defeaters in assurance cases represented using
Eliminative Argumentation notation. Figure 2 provides a high-
level overview of that approach. We have completed Phase I
of that approach in [41]. That Phase consisted in extracting
structural and semantic rules from Eliminative Argumenta-
tion, and deriving structural and semantic-based questions
from these rules. Table I reports these rules. Phase I also
consisted in relying on these structural and semantic-based
questions together with generation-based ones, to evaluate
GPT-4 Turbo’s proficiency in Eliminative Argumentation. Our
evaluation showed that GPT-4 turbo demonstrates an excellent
proficiency in Eliminative Argumentation.

As we explained in [41], Phase II of the proposed approach
centers around applying GPT-4 Turbo to identify defeaters.
That phase consists of guiding GPT-4 Turbo through the Chain
of Thought prompting techniques to clarify the reasoning be-
hind defeater identification. This is possible by: 1) integrating
the reasoning steps into the examples at hand; or 2) asking the
LLM to provide a detailed explanation of the thought process
[22], [46]. This phase also consists in using predicate-based
structural rules since LLMs can effectively encode rule-based
knowledge [49]. This phase also aims at involving experts
(e.g., two experts) to review and/or refine the defeaters GPT-4
Turbo generated. This allows ensuring the validity as well as
the applicability of the defeaters GPT-4 turbo generated.

As we further explained in [41], Phase III aims at lever-
aging GPT-4 Turbo to support the mitigation of the various
defeaters generated in Phase II. Noteworthy, in [41], Phases
II and III were still at the proposal stage i.e. we did not
detailed nor implemented both phases in [41]. In this paper,
we extend the work we proposed in [41] by further detailing
Phase II and carrying out experiments to validate that phase.
We will implement Phase III in future work.

IV. FORMALIZATION OF PREDICATE-BASED STRUCTURAL
RULES

To carry out Phase II of our approach (i.e. defeater iden-
tification), we proposed in [41] to rely on predicate-based
rules for illustrating EA elements and their connections. The
integration of predicate-based rules into the prompting process



TABLE I
THE SET OF STRUCTURAL AND SEMANTIC RULES WE PROPOSED IN [41]

Category Name Structural rules Semantic rules

EA Element Claim Connected to: Context, Rebutting Defeater A claim is stated as a predicate, a true or false statement.
EA Element Evidence Connected to: Rebutting defeater, Undermining defeater,

Undercutting defeater, Inference rule, Evidence
Evidence is in the form “[Noun phrase] showing P” with P asserting an
interpretation of data relevant to the argument.

EA Element Context Connected to: Claim It gives additional information about the content of a fundamental element
and is optional.

EA Element Inference
Rule

Connected to Rebutting defeater, Undermining defeater,
Undercutting defeater, Claim, Evidence

They are predicates (P → Q), where either P or Q (but not both) is an
eliminated defeater.

EA Element Undercutting
Defeater

Connected to: Inference Rule Is a doubt about the validity of an inference rule (P → Q), preceded by
“Unless”

EA Element Undermining
Defeater

Connected to Evidence Is a predicate associated with evidence, preceded by ”But”. It challenges
the validity of the data comprising the evidence.

EA Element Rebutting
Defeater

Connected to: Claim Is a predicate associated with a claim, preceded by “Unless”

Argument
Terminator

Assumed
OK

Attached to Rebutting defeater, Undermining defeater,
Undercutting defeater, Claim, Evidence

It asserts that some defeater is (assumed to be) false.

Argument
Terminator

Is OK Attached to Inference Rule, Claim, Evidence It applies to inference rules, indicating no undercutting defeaters due to
the rule being a tautology.

Fig. 2. Overview of the approach we introduced in [41]

of AI language models has been a focus of recent research. As
Yang et al. demonstrated in [49], LLMs can effectively encode
rule-based knowledge into their parameters through a method
known as rule distillation. Their work not only enhances the
efficiency of the models compared to example-based learning
but also improves their generalization capabilities. Similarly,
Zhu et al. [53] introduced the Hypotheses-to-Theories (HtT)
framework, which underscores the significance of learning a
rule library for reasoning with LLMs. Their method involves
an induction stage for generating and verifying rules and a
deduction stage for applying these rules, leading to substantial
improvements in the model’s accuracy and reasoning abilities.

The aforementioned studies underscore the potential and

TABLE II
TABLE OF EA DEFEATERS AND THEIR PREDICATE-BASED RULES

Defeater Type Predicate-Based Rule

Rebutting Defeater (R) R#({{TEXT}},C(s)#)
Undercutting Defeater (UC) UC#({{TEXT}}, IR(s)#)
Undermining Defeater (UM) UM#({{TEXT}},E(s)#)

effectiveness of applying predicate-based rules in guiding
the prompting process, thereby enhancing the reasoning
capabilities and accuracy of AI language models. This is
crucial because prompting methods relying on an LLM’s
implicit knowledge are prone to “hallucinations” [28]. Such
hallucinations usually occur when the model generates
answers that are incorrect or even repetitive [28]. To tackle
that issue in [41], we proposed to rely on predicates to create
various predicate-based rules from the structural rules EA
embodies. Our aim was to leverage these predicate-based
rules to prompt GPT-4 Turbo in a way that enables it to
generate defeaters more effectively. In accordance with that
proposal, we now introduce in this paper the following
general predicate-based rule for EA elements:

ELEMENT#({{TEXT}},CONNECTEDELEMENT(S)#)

An ELEMENT can be any of the following EA elements:
Claims (C), Evidence (E), Inference Rules (IR), Rebutting
Defeater (R), Undercutting Defeater (UC), or Undermining
Defeater (UM). The CONNECTEDELEMENT(S) represents a
list of possible EA elements that are connected to ELEMENT.
The # symbol indicates the unique number for each element.

Utilizing the general predicate-based rule and the semantic
and structural rules outlined in Table I, we derived specific
predicate-based rules for generating defeaters. These rules, as
detailed in Table II, guide the prompting process. According to
these predicate rules, a Rebutting Defeater (RD) is exclusively
connected to Claim(s) (C), an Undercutting Defeater (UC) is
linked only to Inference Rule(s) (IR), and an Undermining
Defeater (UM) is associated solely with Evidence(s) (E).



V. EXPERIMENTAL SETUP

A. Research Question

The objective of this preliminary study is to answer the
following research question (RQ):

RQ: Is GPT-4 Turbo able to generate defeaters in EA
notation? To investigate that research question, we conducted
4 distinct experiments designed to evaluate the effectiveness
of GPT-4 Turbo in accurately generating defeaters using the
defined predicate-based rules and Chain of Thought prompting
technique. We designed these experiments to investigate the
effectiveness of including examples and contextual informa-
tion about the system. In our work, the context refers to any
information about the system that was mentioned in the paper
describing that system and its assurance case.

• Experiment 1: Zero-shot without Context - This ex-
periment evaluates GPT-4 Turbo’s ability to generate de-
featers using a zero-shot approach, where the model is not
provided with any specific examples. In this experiment,
we do not provide any contextual information about the
system.

• Experiment 2: One-shot without Context - This exper-
iment incorporates a one-shot learning approach, where
the model is given a single example to guide its response,
still without any contextual information about the system.

• Experiment 3: Zero-shot with Context - This ex-
periment also applies a zero-shot methodology. Unlike
Experiment 1, it provides the model with context about
the system.

• Experiment 4: One-shot with Context - Building upon
the previous experiments, this test combines one-shot
learning with some contextual information about the
system.

B. Dataset

Our dataset consists of 9 partial assurance cases (assurance
case fragments) that we selected from two assurance cases
complying with EA and documented in the literature. Our
selection strategy aimed to focus on assurance cases from
diverse sectors, including nuclear and aviation, to validate the
versatility and domain independence of our approach. The
remainder of this section describes our dataset.

1) CERN LHC Machine Protection System: Constructed
by CERN (European Organization for Nuclear Research), the
Large Hadron Collider (LHC) stands as the most signifi-
cant particle accelerator globally [29]. Its Machine Protection
System (MPS) monitors operations to prevent damage from
unstable particles. The MPS integrates four key sub-systems:
the Beam Loss Monitoring System (BLMS), Beam Interlock
System (BIS), Beam Dumping System (BDS), and Safe Ma-
chine Parameter Controller (SMPC). The assurance case of
the MPS complies with EA. That assurance case comprises
509 nodes and is accessible publicly [1]. That assurance case
focuses on the nuclear domain, and comprises 105 potential
defeaters. That assurance case is very large and is therefore
represented by several fragments (i.e. partial assurance cases)

in [1]. We randomly collected eight of these assurance case
fragments. We refer to them as Cases 1, 2 3, 4, 5, 6, 7, and
8, respectively. For illustration purposes, we describe Case 1.

Case 1: Figure 3 illustrates this fragment. The latter breaks
down claim C0030. That claim asserts that ”The BIS will
effectively communicate a beam permit loss to the BDS within
a timeframe of under 100 microseconds”. The decomposition
of that claim occurs through Strategy S0654, which examines
potential failure scenarios that might obstruct, postpone, or
hinder the BIS’s ability to send a beam dump request to
the BDS. The defeaters D0031, D0036, D0438, and D0512
symbolize these failure scenarios. These defeaters present
doubt about the claim, so one can consider them rebutting.

2) Air Traffic Control System: This systems falls in the
domain of aviation. Referenced from [9], the associated
assurance case complies with EA notation and originates from
Raytheon Canada’s experience in developing a safety case for
Nav Canada’s air traffic management system. This safety case
focuses on scenarios where the same discrete SSR (Special
Service Request) code, a unique aircraft identifier from air
traffic control, is assigned to multiple aircrafts in the same
airspace. Such duplications, serving as a ”primary key” in air
traffic systems, risk hazardous situations like incorrect radar
data association, and endangering aircraft separation. Given
the nature of our problem, i.e. defeater identification, we were
only able to collect the following fragment from that assurance
case:

Case 9: Figure 4 illustrates a fragment of the assurance
case in [9]. That fragment contains a claim called C0001. The
latter argues that discrete SSR codes assigned to aircraft in
the controlled airspace are unique over a tolerable interval of
X seconds. Two defeaters (i.e. D0003 and D004) defeat that
claim.

Table III reports each case’s defeaters (with original names).

C. Data pre-processing

After collecting the nine assurance case fragments (i.e. cases
1-9) we first pre-processed them as follows:

• In EA, inference rules are a more structured version of
GSN strategies [15]. For the sake of simplicity and to
foster data reduction, we, therefore, removed strategies
from the analyzed fragments. This also allows obtaining
assurance case fragments that align with the structural
and semantic rules we extracted from EA.

• Defeaters’ names all start with “D”. Hence, they seem
generic. Thus, we renamed these defeaters based on
their categories to better label them. Thus, the names
of rebutting, undermining, and undercutting defeaters
respectively start with “R”, “UM”, and “UC”.

• Originally, the nine assurance case fragments were repre-
sented in EA -a visual notation. We therefore converted
these fragments into the textual form (compliant with
the predicate rule) i.e. structured prose complying with
EA. That textual format is suitable for GPT-4 turbo
processing.

.



TABLE III
SUMMARY OF THE DATASET

Case ID Name Category Content of the defeater

Case 1 1 D0031 Rebutting Unless the beam loop is damaged in a way that interferes with the transmission of the loss of the beam permit.
2 D0036 Rebutting Unless transmission of the withdrawal of the beam permit is too slow (i.e. not less than 100 microseconds)
3 D0438 Rebutting Unless the BIC power fails and thus the beam permit withdrawal signal is not sent or received by the BIC loop.
4 D0512 Rebutting Unless the Beam Loss Signal is not received by a Beam Interlock Controller within 70 microseconds of the BLMS

detecting high beam loss.
Case 2 1 D0121 Rebutting Unless the Surface Electronics fails to withdraw the user permit to enable a ’dump signal’ to the BIC.

2 D0252 Rebutting Unless the Combiner Card fails to combine signals from Beam Energy Tracker, Beam Permit and Surface Card Dump
Signal, Thus preventing a notification of a beam dump being required to the BIC.

Case 3 1 D0380 Undermining Unless a malfunction, either in the MKB magnets themselves or their connection to the power supply, causes them to fail
to activate.

Case 4 1 D0305 Undermining Unless a malfunction, either in the MKB itself or its connection to the power supply, causes the MKD to fail to activate
Case 5 1 D0078 Rebutting Unless the MKD loses connection to its power supply.

2 D0107 Rebutting Unless the generated electromagnetic field is not within its specified tolerance.
3 D0551 Rebutting Unless the generated electromagnetic field is not within its specified tolerance.

Case 6 1 D0685 Undercutting Unless communications between the subsystems fails.

2 D0686 Undercutting Unless undiagnosed events led to a spurious beam dump.

Case 7 1 D0431 Rebutting Unless the critical components have a misleading connection status and appear to be online and operational.
2 D0432 Rebutting Unless the BIC’s signal transmission hardware is damaged and communication to the BDS compromised.

Case 8 1 D0521 Rebutting Damage or Compromised signal transmission pathways between the Beam Loss Monitors and their respective Beam
Interlock Controllers.

2 D0522 Rebutting Incorrect integration of signals at AND gates, which lead to a Beam Dump Permit not being produced when required.
3 D0523 Rebutting A Beam Permit is produced by the BIS, but damage or compromised signal transmission pathways from the BIS to the

BDS impedes the transmission of the Beam Dump Permit.
Case 9 1 D0003 Rebutting Unless an aircraft with an in-use SSR code enters the airspace and its code is not re-assigned within X seconds.

2 D0004 Rebutting Unless a communications error occurs when the SSR code is transmitted that is not corrected within X seconds.

Fig. 3. Case 1 (adapted from [29])

D. GPT-4 Turbo Setting

To interact with the GPT-4 Turbo model when performing
our experiments, we relied on the OpenAI API1. Setting the
seed parameter is critical to support the generation of more
reproducible outputs from GPT-4 Turbo when feeding it with
identical inputs [36]. To ensure outputs are predominantly
consistent across API calls, it is possible to set a specific
integer for the seed parameter and consistently use this same
value for any requests where you’re aiming for deterministic
results [37]. Additionally, maintaining identical settings for

1https://openai.com/api/. To make sure we get more deterministic responses
from the model, we set the value of the seed parameter in the API

all other parameters, like the prompt or temperature, is crucial
for achieving this consistency. However, it’s important to bear
in mind that slight variations in determinism can still occur
due to occasional necessary updates OpenAI makes to the
model configurations. To aid in tracking these updates, the
system fingerprint field is made available [38].

E. Prompting Process: on the use of the Chain of Thought
prompting technique

OpenAI’s guide2 has proposed several best practices to
support prompt engineering. We followed these practices when
interacting with GPT-4 Turbo. For this purpose, we carefully

2https://platform.openai.com/docs/guides/prompt-engineering



Fig. 4. Case 9 (adapted from [9])

crafted both ‘system’ and ‘user’ prompts to effectively guide
the model. In this regard, the ‘user’ prompts consist in the
direct questions asked to the model, and designed to retrieve
either specific information or analysis. The main purpose of
the ’system’ prompts was to orient GPT-4 Turbo appropriately,
to make sure it was aware of its role as an assistant when
processing our inquiries.

We also leveraged the CoT (Chain of Thought) prompting
technique. The latter is a technique used in natural language
processing to enhance the problem-solving capabilities of
language models [46]. It involves prompting the model to
generate intermediate steps or reasoning paths when tackling
complex questions or tasks [46]. CoT usually improves the
performance of language models on tasks that require reason-
ing, such as arithmetic calculations, common sense reasoning,
and text-based problem-solving [44].

The different prompts we used in our various experiments
are available on GitHub3. In the following, we discuss the user
and system prompt templates that we used for experiment 4
since it is a more complex experiment. We annotated each part
of the prompt and discussed each part separately.

• System Prompt:

You are an assistant who helps me to identify de-
featers in Eliminative Argumentation notation. Elim-
inative Argumentation consists of 7 elements (i.e.,
Claim (C), Context (CX), Evidence (E), Inference
Rule (IR), Undermining Defeater (UM), Undercut-
ting Defeater (UC), Rebutting Defeater (R)) and 2
terminators (i.e., Assumed Ok (ASSUMED OK), Is
Ok (OK)) .1 As input, you are given an assurance
case in Eliminative Argumentation delimited by
@@@. Moreover, we provided some context about the
case in the input after CONTEXT. 2 For modeling
an assurance case in Eliminative Argumentation, we
use the following structure which shows the connec-
tions between Eliminative Argumentation notation:

– ELEMENT can be any of the 7 elements of

3https://github.com/kimixz/GPT4-Turbo-AC/tree/main

Eliminative Argumentation.
– CONNECTEDELEMENTS is a list of possi-

ble eliminative argumentation elements that is
connected to the ELEMENT.

– # indicates the unique number for each element.
– {{TEXT}} indicates descriptive text for each

element that can be in the form of a noun-
phrase, verb-phrase, or predicate.

The general structure is: ELEMENT#({{TEXT}},
CONNECTEDELEMENTS#) 3
There are 3 types of defeaters for which we have
defined semantic and structural rules:

1) Element: Undercutting Defeater (UC),
Semantic Rule: An undercutting defeater (UC)
is a doubt about the validity of an inference
rule (P → Q), preceded by “Unless”.
Structural Rule notation:
UC#({{TEXT}},IR#)

2) Element: Undermining Defeater (UM),
Semantic Rule: An undermining defeater (UM)
is a predicate associated with evidence, pre-
ceded by ”But”. It challenges the validity of
the data comprising the evidence.
Structural Rule notation: UM#({{TEXT}},E#)

3) Element: Rebutting Defeater (R),
Semantic Rule: A rebutting defeater (R) is a
predicate associated with a claim, preceded by
“Unless”.
Structural Rule notation: R#({{TEXT}},C#) 4

Using these rules, try to identify defeaters for each
element in the input.5 Now, I will provide you with
an example so you can understand the process better:
For example, C1(Light turns on) means a Claim
element with a unique number of 1 and the TEXT of
Light turns on which does not have any connected
element. R1(Unless the bulb is defective, C1) means
a Rebutting Defeater element that is a defeater for
the C1 Claim. Now, I want you to think through
each step of this process. Begin by examining each
element. Then, for each element, determine if it
can have any defeater and categorize each one as
either rebutting (it can be only for a Claim (C)),
undermining (it can be only for an Evidence (E)),
or undercutting (it can be only for an inference rule
(IR)). Provide the output in the same structure as the
input with the correct numbering in the modeling
rules explained above. 6

1) In this section of the prompt, the model is explicitly
defined as an assistant, setting clear expectations
for its role in facilitating the analysis of argu-
ments within EA. By providing definitions for the
seven elements and two terminators, the prompt
establishes a comprehensive context, ensuring that
the model understands and adheres to the specific



terminologies and structure required for accurately
identifying the defeaters.

2) By specifying that the input is an assurance case
in EA, enclosed within the delimiters @@@, this
section of the prompt demarcates the boundaries of
the user-provided data, ensuring precise extraction
and processing by the model. Moreover, context sig-
nifies any relevant information about the system we
are discussing. We typically present this information
right after the section labeled “CONTEXT”, in the
input when it pertains to experiments 3 and 4.

3) In this section of the prompt, we describe the
general predicate-based rule for EA elements as
described in section IV.

4) In this section, we describe different types of de-
featers and their structural and semantic rules as
defined in Table II.

5) In this section, we specify the task of the model
which is identifying the defeaters in the assurance
case.

6) In this section, we are prompting the model using
the CoT technique to think step by step and also
specify how it should structure the output. If we
use the zero-shot technique with CoT such as Ex-
periment 1 and 3, we do not provide any example.
However, we provide an example for experiments 2
and 4 as shown in the current prompt.

• User Prompt: The user prompt in the 4 experiments
are the partial assurance cases we described in Section
V-B in the format of the general predicate-based rule.
The following is an example of the user prompt for
case 1. Context signifies any relevant information about
the system we are discussing. We typically present this
information right after the section labeled “CONTEXT”,
in the input when it pertains to experiments 3 and 4.
The context that we used in the prompts is available on
Github4.

@@@
C1(The BIS will transmit loss of the beam permit to the
BDS in less than 100 microseconds)
IR1(Argue over a set of foreseeable failure modes for the
transmission of beam dump request from the BIS to the
BDS in less than 100 microseconds, C1)
@@@
CONTEXT:

F. Assessment Measures

To assess our experiment results, we rely on two criteria.
1) Ground-truth Similarity: it evaluates the lexical and se-

mantic similarity between defeaters generated by GPT-4 Turbo
and the defeaters in the reference assurance cases (ground-
truths). The scripts for assessing ground-truth similarity are
available on GitHub5. We rely on three measures to assess it:

4https://github.com/kimixz/GPT4-Turbo-AC/tree/main
5https://github.com/kimixz/GPT4-Turbo-AC/tree/main

• Exact match or string matching measure (using fuzzy
logic). That measure quantifies the similarity between
two texts, considering partial matches and minor differ-
ences [42]. The score typically ranges from 0 to 1, where
0 indicates no similarity and 1 indicates a perfect or near-
perfect match, including partial similarities. We rely on
a Python library called fuzzywuzzy [40] to assess it.

• Bleu score: The Bleu score quantifies the similarity
between the machine-generated text and the reference
text. That score varies between 0 and 1, where 0 indicates
no overlap (completely different or irrelevant text) and 1
indicates a perfect match (the generated text is identical to
the reference text). We rely on sacrebleu (Python library)
to compute BLEU scores.

• Semantic similarity: as in [43], we use the cosine
similarity to assess the semantic alignment between the
reference defeaters within the assurance case and those
produced by GPT-4 Turbo. The cosine similarity value
ranges from -1 to 1, where -1 denotes complete dissim-
ilarity and 1 indicates exact similarity. To compute the
cosine similarity, we rely on scikit-learn, a Python library.

2) Reasonability: This measure is used in [6] and [43].
Reasonable means the GPT-4 turbo generated EA “element
could reasonably be in the ground-truth but is not” [6].
Two assessors with at least two years of experience in EA
manually rate the reasonability of the defeaters GPT-4 turbo
generated. For this purpose, the two assessors rely on a linear
scale: 1=Totally reasonable; 2=Mostly reasonable; 3=Mod-
erately reasonable; 4=Slightly reasonable; 5=Unreasonable.
For testing the interrater reliability, we used Cohen’s Kappa
measure [27]. The value of that measure varies between - 1
to 1. When the value of the Cohen’s Kappa measure is close
to 1, this indicates a strong level of agreement between raters.
When the value of the Cohen’s Kappa measure is lower than
0, this indicates that there is no agreement between raters. To
compute the value of that measure, we relied on the sklearn,
a Python library.

VI. RESULTS

A. Ground-truth similarity results
1) Exact match or string matching results: Table IV shows

the averages of fuzzy similarity scores. Based on the mean
similarity scores, we can conclude that Experiments 1 and
2 outperform Experiments 3 and 4. This suggests that for the
specific task of generating defeaters with GPT-4 Turbo, provid-
ing contextual information about the system may not always
lead to better outcomes. It is particularly interesting to note
that the one-shot approach did not significantly outperform the
zero-shot approach when context is not provided, but it did
improve performance when context is included, even though
it did not reach the effectiveness of the zero-shot scenarios
without context.

2) BLEU score: Table V presents the averages of BLEU
scores for the experiments. The analysis underscores the
significant role of example-based learning (one-shot) in en-
hancing the model’s ability to generate defeaters that closely



Experim. 1 Experim. 2 Experim. 3 Experim. 4
0.57 0.56 0.39 0.49

TABLE IV
AVERAGES OF FUZZY SIMILARITY SCORES

match the ground truth. Surprisingly, the addition of context
in Experiments 3 and 4 did not lead to the anticipated
improvements in performance, unless it was combined with
example-based guidance, as evidenced by the superior results
in Experiment 4. This observation illustrates the importance
of providing a single, impactful example over supplying
contextual information. The highest performance achieved in
Experiment 4, where both context and one-shot learning were
utilized, suggests that integrating contextual information with
carefully chosen examples presents a more effective strategy
for optimizing defeater generation tasks.

Experim. 1 Experim. 2 Experim. 3 Experim. 4
0.30 0.46 0.34 0.48

TABLE V
AVERAGES OF BLEU SCORES

3) Semantic similarity results: Table VI presents the cosine
similarity scores. The analysis illustrates that Experiment 2,
which includes one-shot learning without context, slightly
outperforms Experiment 1, indicating a subtle yet positive
effect of example-based guidance on model performance.

Experim. 1 Experim. 2 Experim. 3 Experim. 4
0.63 0.64 0.57 0.60

TABLE VI
AVERAGES OF COSINE SIMILARITY SCORES

The analysis of ground-truth similarity values reveals nuanced
insights into GPT-4 effectiveness for each experimental setup.
Experiment 2, which utilized a one-shot approach with CoT
and predicate-based rules without context, consistently showed
higher performance. This indicates that minimal guidance (a
single example) can significantly impact the model’s ability to
generate defeaters closely aligned with the expected ones.

B. Reasonability results

As stated above, two assessors independently reviewed the
defeaters GPT-4 generated and rated their reasonability. The
corresponding value of the Cohen’s Kappa measure is 0.54
which indicates a moderate agreement level between the two
raters. Table VII reports the average of the reasonability
results for the four experiments we performed on the 9
assurance case fragments. Experiment 1, with the highest
mean score of 4.72, indicated that defeaters were mostly
viewed as “Unreasonable,” marking it as the least effective
in generating reasonable defeaters. Conversely, Experiments 3
and 4 displayed a shift towards “Slightly reasonable” outputs,
signaling improvements but still not reaching the ideal levels
of reasonability. Noteworthy, Experiment 2 yields the best

results, with a mean score of 2.94. Hence, it yields defeaters
that are “Moderately reasonable”.

Experim. 1 Experim. 2 Experim. 3 Experim. 4
4.72 2.94 4 3.89

TABLE VII
AVERAGE OF REASONABILITY SCORES

The analysis of the mean scores across all experiments suggest
that, when provided with one example and no context, GPT-4
turbo can generate “Moderately reasonable” defeaters.

VII. THREATS TO VALIDITY

Our dataset consists of nine assurance case fragments i.e.
cases 1-9 (see Section V-B). The work of Millet et al. [29]
documents cases 1-8 and was published in 2023 by the
SafeComp conference. Furthermore, the work of Diemert et
al. [9] documents case 9 and was also published in 2023.
Since the cut-off date of GPT-4 turbo is quite recent (i.e.
20236), it may be possible that part of our dataset was already
present in the training set of GPT-4 turbo. This may impede
the generalization of our findings to new data. To mitigate that
issue, we have pre-processed the data (i.e. cases at hand). This
means that GPT-4 turbo has never seen most of the resulting
pre-processed fragments. Still, to tackle that issue in future
work, we will sample more recent data (i.e. assurance case
fragments) that is not publicly available.

Our dataset consists in an unbalanced mix of assurance
cases, with eight cases (assurance case fragments) from one
domain (i.e. nuclear domain) and only one from another (i.e.
aviation domain). Additionally, our dataset consists of isolated
cases and does not leverage the potential interdependence
of these cases, which is also a threat to the validity of our
work. Both of these issues stem from the scarcity of publicly
available data, which is largely due to the sensitive and critical
nature of the information that assurance cases represent. This
sensitivity often restricts the availability of such cases, limiting
the diversity and quantity of data that one can comprehensively
analyze.

Another threat to the validity of our work is the manual
translation of assurance cases into a predicate-based textual
format compliant with EA. This process necessitates manually
inputting key information from an EA model into a predicate-
based textual prompt. Such manual intervention carries the
risk of introducing errors, particularly because predicate-based
textual representations in EA lack syntax highlighting. We plan
to tackle this threat to validity in future work.

VIII. CONCLUSION AND FUTURE WORK

In previous work, we introduced an approach to identify
and mitigate defeaters embedded in assurance cases. In this
paper, we have refined that approach by proposing a set of
predicate-based rules that leverage GPT-4 Turbo to automate
the generation of defeaters embedded in assurance cases. To
achieve this, we relied on the Eliminative Argumentation

6https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo



notation to represent assurance cases and their defeaters. We
have also conducted experiments to evaluate the extent to
which contextual information and examples in the prompts
influence GPT-4 turbo’s effectiveness in generating defeaters.
The quality of our experiments results is moderate. Still, the
analysis of these results provides some key insights on the
effectiveness of GPT-4 Turbo in generating defeaters.

In future work, we plan to incorporate into our approach
a module that will automate the translation of assurance
cases into a predicate-based textual format compliant with
Eliminative Argumentation. This will make our approach less
error-prone. Additionally, we will conduct further experiments
on a broader set of assurance cases that comply with EA. Fur-
thermore, we intend to explore the use of additional techniques
(e.g., Retrieval Augmented Generation [23]) to improve the
quality of our results.
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