
EECS 3311 3.00: Software Design
Winter 2024

Instructor
– Song Wang (http://www.eecs.yorku.ca/~wangsong)

– Contact: wangsong@yorku.ca

– Lecture Times: 16:00 PM – 17:30 PM, Mondays and Wednesdays;

– Office Hours: 14:00 PM – 16:00 PM, Mondays; or by Appointments.

Prerequisites
– General Prerequisites: A cumulative grade point average (GPA) of 4.50 or better

over all previously completed Major EECS courses. The GPA computation excludes
all EECS courses that have a second digit 5, or are Co-Op/PEP courses.

– LE/EECS 2011 3.00

– LE/EECS 2031 3.00

– SC/MATH 1090 3.00

Course Description
A study of design methods and their use in the correct construction, implementation,
and maintenance of software systems. Topics include software life cycles, software
design, software implementation, software testing, documentation needs and standards,
support tools. Students design and implement components of a software system.

This course focuses on design techniques for both small and large software systems.
Techniques for the design of components (e.g., modules, classes, procedures, and exe-
cutables) as well as complex architectures will be considered. Principles for software
design and rules for helping to ensure software quality will be discussed. The tech-
niques will be applied in a set of small assignments, and a large-scale project, where
students will design, implement, and maintain a non-trivial software system.

Three lecture hours and 1.5 lab hours, weekly.

1

http://www.eecs.yorku.ca/~wangsong
mailto:wangsong@yorku.ca

Course Learning Outcomes
Upon completion of the course, students are expected to be able to:

Clo1 Implement specifications with designs that are correct, efficient, and
maintainable.
Clo2 Develop systematic approaches to organizing, writing, testing, and de-

bugging software.

Clo3 Develop insight into the process of moving from an ambiguous problem
statement to a well-designed solution.

Clo4 Design software using appropriate abstractions, modularity, information
hiding, and design patterns.

Clo5 Develop facility in the use of an IDE for editing, organizing, writing,
debugging, documenting designs, and the ability to deploy the software in an
executable form.
Clo6 Describe software specifications via Design by Contract, including the

use of preconditions, postconditions, class invariants, as well as loop variants and
invariants.
Clo7 Write precise and concise software documentation that also describes

the design decisions and why they were made.

Reference Textbooks
1 Title: Design Patterns: Elements of Reusable Object-Oriented Software

Author: Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
Publisher: Addison Wesley, 1994.
Edition: First Edition
ISBN-10: 0201633612
ISBN-13: 978-0201633610

2 Title: UML Distilled: A Brief Guide to the Standard Object Modeling Language
Author: Martin Fowler
Publisher:Addison-Wesley, 2003.
Edition: Third Edition
ISBN-13: 9780321193681

3 Title: Domain Driven Design: Tackling Complexity in The Heart of Software
Author: Eric Evans
Publisher: Addison-Wesley, 2014.
Edition: First Edition
ISBN-13: 9780321125217

2

4 Title: Clean Architecture: A Craftsman’s Guide to Software Structure and Design
Paperback
Author: Robert Martin
Publisher: Pearson, 2017.
Edition: 1st Edition
ISBN-13: 9780134494166

Labs
– Lab Sec. 01

10:00 am – 11:30 am on Mondays
Venue: Lassonde Building (LAS) 1006 [D5/19 on the Keele Campus Map]

– Lab Sec. 02

17:30 pm – 19:00 pm on Wednesdays
Venue: Lassonde Building (LAS) 1006 [D5/19 on the Keele Campus Map]

Attendance
– The range of topics covered in this course is extensive, and due to the limited lecture

and lab time, these topics are covered in an intensive manner. Therefore, attendance
at both lectures and labs are necessary in order for you to keep up and perform well.

– Students are responsible for attending all classes and lab sessions, arriving on time,
and coming fully prepared to discuss the assigned readings and exercises.

Lab Tests
– In chosen lab sessions, you will be required to complete programming tasks (using

an IDE) or writing tasks. These tests are designed to test your understanding of the
taught concepts, as well as your mastery of using the programming tool to develop
working solutions to given problems.

– These tests are based on lecture materials and lab exercises. For your preparation,
instructions of the lab test will be distributed in advance.

– For your submission to be assessed, you must submit compilable source code. We will
use auto marking tool to examine your written code, so you receive very low marks by
submitting code that does not compile.

– Lab test to be done individually in the lab.

3

https://acmaps.info.yorku.ca/files/2021/06/KEELE_Map_Colour-2018.pdf?x56546
https://acmaps.info.yorku.ca/files/2021/06/KEELE_Map_Colour-2018.pdf?x56546

Academic Integrity
– On default, all labs are to be completed individually: no group work is allowed.

– All lab and project submissions will be check automatically via plagiarism checkers:
suspicious submissions will be reported to Lassonde for a formal investigation.

– To protect yourself from ending up a submission that is suspiciously similar to someone
else’s, you want to avoid:

• Discussing code-level details about labs/project with anyone.
• Discussing concrete steps about your solution or someone’s solution.
• Sharing any part(s) of your solutions.
• Giving or receiving instructions about what exactly you should type for a fragment

of code.
• It is acceptable to ask about how to solve a question in general (i.e.,

how to write a loop in general), but unacceptable to ask about how to
write code specifically for solving a problem.

Quizzes
– We have around four quizzes. A quiz will be released every other week on Fridays

and they cover topics introduced in the lectures in between two quizzes.

– Quizzes are open-booked.

– Each quiz will be opened for its submission for 24 hours.

– Each quiz will consist of around 10 questions with a variety of forms (e.g., multiple
choice, matching answers, true/false, or written questions).

– There is only one single attempt allowed for the quiz.

– All quizzes are on https://eclass.yorku.ca/eclass/.

Late Submission Policy for Projects
We accept late submissions of the projects, the policy is as follows:

– Submitted on time before the deadlines (or extended deadlines): Whatever mark it
gets from the Rubric.

– Within the next 24hours: 10% penalty.

– Within the next 48hour: 50% penalty.

4

Grading Scheme (tentative)

Component Out Due Percentage

Lab Test 1 the week of Feb. 5th - 5%

Lab Test 2 the week of March. 11th - 7%

Lab Test 3 the week of April. 1st - 8%

Project Deliverable 1 Jan. 16th Feb. 18th 10%

Project Deliverable 2 - March. 18th 10%

Project Deliverable 3 - April. 1st 15%

Quiz 1 Jan. 26th in 24 hours 2.5%

Quiz 2 Feb. 9th in 24 hours 2.5%

Quiz 3 March. 8th in 24 hours 2.5%

Quiz 4 March. 22nd in 24 hours 2.5%

Final Exam TBD - 35%

5

Letter Grades and their Interpretations

Letter Grade Grade Point Interpretation

A+ 9 Exceptional

A 8 Excellent

B+ 7 Very Good

B 6 Good

C+ 5 Competent

C 4 Fairly Competent

D+ 3 Passing

D 2 Marginally Passing

E 1 Marginally Failing

F 0 Failing

6

Tasks in Weekly Lab Sessions (topics are tentative)

Week Date Task

Week 1 Jan. 8th Basic tools: Eclipse, Github, Junit

Week 2 Jan. 15th Class Diagrams

Week 3 Jan. 22nd Class Diagrams

Week 4 Jan. 29th Lab Test 1

Week 5 Feb. 5th Design Patterns

Week 6 Feb. 12th Design Patterns

Reading Week (Feb. 18th – 24th)

Week 8 Feb. 26th Software Architecture Design

Week 9 March. 4th Lab Test 2

Week 10 March. 11th Code Smell

Week 11 March. 18th DBC

Week 12 March. 25th DBC

Week 13 April. 1st Lab Test 3

7

Tentative Course Calendar

Week Topics

1
Introduction; Basic OOP Design Principles

Junit

2
UML

UML

3
SOLID Principles

Design Pattern (Creational Design Pattern)

4

Pattern (Structural Pattern)

Design Pattern (Structural Pattern)

5
Design Pattern (Behavioral Patterns)

Architectural Patterns

6
Architectural Patterns

Process Models

8

Winter Reading Week: Feb. 17th – 23rd

Week Topics

7
TDD

Test Case

8
Input Space For Tests

Input Space For Tests

9
Test Automation

Testing Management

10
Code Smells/Refactoring

Code Smells/Refactoring

11
Static Analysis

Static Analysis

12
Static Tools

JML Supported DbC

13 Wrap-Up & Review

Winter Study Day: April. 9th

Exam Period: April. 10th – 27th

9

