
Using Eiffel Studio (EStudio) for TDD and DbC:

a Bank Example

EECS3311 Software Design
Jackie Wang

Summer 2015
Lassonde School of Engineering, York University

Abstract

This document supplements a series of tutorial videos that demon-
strate the practice of Design by Contract (DbC) and Test Driven Devel-
opment (TDD), using a simple bank account project that is built from
scratch. Each section summarizes the (incomplete) list of topics covered
in a tutorial video. Each section heading links to the associated video
tutorial. You are expected to follow these tutorials, and try to reproduce
the project and illustrations yourself.

Contents

1 Create a New Project and Set Clusters 2

2 Add the ACCOUNT Class 2

3 Add a Class for Testing ACCOUNT 3

4 How a Test Case Fails 5

5 Use Breakpoints and Debugger 6

6 Specify Contracts for Withdraw 7

7 Add Transaction and Date into Context 8

8 Uniform Access of Account Balance 9

1

https://www.youtube.com/playlist?list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=ovBNk6uNQDM&index=1&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=UTUqj719Eas&index=2&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=0yjodqd9q14&index=3&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=vhmO5zv82wg&index=4&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=VrqXYMQJC0w&index=5&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=PzbGYNXDlAo&index=6&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=89ZRcmr242E&index=7&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=-It8A9VsNzk&index=8&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


1 Create a New Project and Set Clusters

• In the file system, create a directory 3311 as the workspace for this course.

• From a terminal, launch EStudio by typing estudio15.01 &

• Create an empty project bank proj under the 3311 workspace.

• From the project setting, we observe that by default EStudio considers
the project directory bank proj as the current directory (i.e., .), and sets
it as the bank proj cluster.

Note. Directories and clusters are different. Each directory refers to a
distinct location in the file system. On the other hand, each cluster points
to the location of some directory. This means that two or more clusters
may refer to the same directory.

• In the file system, create three directories root, bank, and tests.

• In the project setting of EStudio:

– Remove the default bank proj cluster.

– Include references to the three newly-created directories as clusters.

– Now any class that is outside the locations pointed by these three
clusters is considered as non-existent. This is why we get a compila-
tion error saying there is no root class. If you inspect your file system,
the source file application.e is stored outside the three directories
root, bank, and test. To fix this error, we move application.e into
the root directory.

– Recompile, and you succeed with no further errors.

– Add the ES TEST library.

2 Add the ACCOUNT Class

• Add the ACCOUNT class into the bank cluster.

• For documentation, put the developer’s name and the list of informal
requirements in the class header.

• Declare two attributes balance and credit.

• Specify two class-level invariants to constrain the possible combinations
of balance and credit throughout the life time of any object instantiated
from ACCOUNT:

– The account credit is always non-negative.

– The account balance never exceeds its credit.

2

https://www.youtube.com/watch?v=ovBNk6uNQDM&index=1&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS
https://www.youtube.com/watch?v=UTUqj719Eas&index=2&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


• Add a feature make(a credit: INTEGER) that can act as a constructor.

– Add a comment to the make feature.

– In principle, there is no precondition for constructors.

– Specify the postcondtion of make.

– Show contract view.

– This is indeed Design by Contract: even before the body of im-
plementation is written, we already specify what it is supposed to
establish, by specifying its postcondition and invariant.

More valuably, these contracts in Eiffel are Boolean expressions that
can be evaluated at runtime, and they can thus be checked against
at runtime as the implementation body is executed. In the case of
a constructor, nothing will be checked before the ACCOUNT ob-
ject is initialized, but immediately after the constructor’s execution
terminates, the postcondition and invariant are checked against the
resulting state.

– Add the body implementation that establishes the postcondition and
invariant.

• Declare the list of constructors (e.g., make) under the create clause.

• Use the feature keyword to bookmark sections in the program text, so as
to enable us to use the feature browser.

3 Add a Class for Testing ACCOUNT

• Add the TEST ACCOUNT class that inherits from ES TEST into the
tests cluster.

• Add a make feature and declare that as a possible constructor.

• Add a Boolean query test account creation.

– Add a call to the comment feature (inherited from ES TEST ) that
documents the purpose of the test.

Note. The comment feature takes a string argument, which must
have two parts that are delimited by a colon (i.e., :). The first part
is a short name for the test, and the second part is an informative
summary of its purpose.

– To test the ACCOUNT class, we need to create a new object acc (de-
clared as a local variable) by instantiating it. A creation instruction
is needed for achieving this: create {ACCOUNT} acc.make(10).

3

https://www.youtube.com/watch?v=0yjodqd9q14&index=3&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


– As far as a client of the ACCOUNT class is concerned, only fea-
tures that are declared under the create clause (e.g., make) can be
used as a constructor to initialize an ACCOUNT object (e.g., create
{ACCOUNT} acc.make(10)). Calling the same creation instruction
twice,

create{ACCOUNT}acc.make(10) ; create{ACCOUNT}acc.make(20)

means that the variable acc is first assigned to the reference for a
new ACCOUNT object with credit 10, and is then reassigned to the
reference for another new ACCOUNT object with credit 20.

– Features that are declared under the create clause can also be called
(e.g., acc.make(10)) after the object is created (without re-creating
a new object). That is, making the same feature call twice,

{ACCOUNT}acc.make(10) ; {ACCOUNT}acc.make(20)

means that the variable acc remains the reference, throughout the
two calls of acc.make, for the same ACCOUNT object, and its credit
gets first set to 10 and then set to 20.

– If feature make is not declared under create, then it can only be called
just like a normal feature (e.g., acc.make(10)).

– Since test account creation is a Boolean query, a keyword Result is re-
served to denote the return value of this query. This special Boolean
variable is automatically initialized to False and may get re-assigned
multiple times before test account creation terminates: the last as-
signed value of Result upon test account creation’s termination de-
notes its return value.

– When test account creation is used as a test case (by being added as
a Boolean test case in the make constructor of TEST ACCOUNT ),
then a test run is considered as a pass if it returns True; otherwise,
if either it returns False, or some contract violation occurs before it
returns, then it is considered as a failure.

– If the Result is not explicitly assigned, it remains False as its default.

• Up to now, test account creation has not been chosen as a test case to
run.

• Add test account creation as a test case in the make feature of TEST ACCOUNT.

• Similar to the case of ACCOUNT, we declare make as a possible construc-
tor for TEST ACCOUNT.

• Go to the root class APPLICATION, change its parent to ES SUITE, so
that we can add all tests that are defined in TEST ACCOUNT.

We shall anticipate that there will be more test classes to come (e.g.,
TEST TRANSACTION, TEST CUSTOMER, etc.). Each test class is

4



responsible a particular unit (i.e., a class). The APPLICATION being an
ES SUITE allows us to accumulate all tests from all these classes. Each
time there is some change made to the bank project, the entire suite of
tests must be re-run to make sure that the new change does not introduce
a bug. This is called regression testing!

• Write run_espec and show_browser at the end of the make feature of
APPLICATION.

• Run all tests by running the workbench system.

– It fails, because the Result of test account creation is never assigned,
and will thus remain False as its default.

– Let’s try the two extremes, by setting the Result of test account creation
as True (to pass the test) and as False (to fail the test).

• This is indeed Test Driven Development: we have only partially devel-
oped the system (a single constructor of ACCOUNT), but we have already
set up the infrastructure for testing its correctness.

Note. Of course, so far, the tests are not yet meaningful, but they do
illustrate, from the perspective of a client of ACCOUNT, as to how the
provided services can be used (by having compatible argument values in
feature calls).

4 How a Test Case Fails

• It is convenient to group similar mini-test cases in the same test case (e.g.,
test account creation) by reassigning the value of Result multiple times.

• Immediately after each re-assignment, we must use an in-code check asser-
tion to see if that mini-test case passes. If the check assertion fails, then
a contract violation occurs and the test case fails without proceeding to
further mini-test cases. That is, when there are multiple mini-test cases,
the overall test case passes if and only if all of them pass. If check asser-
tions were not placed at each re-assignment of Result, then the results of
all mini-test cases, except for the last one, would be ignored.

• When the Boolean query test account creation is added as a test case,
its returned value (denoted by the keyword Result), may get re-assigned
multiple times in its body of implementation. At runtime:

– When executing the body implementation of test account creation, a
contract violation may occur in one of three ways:

1. An in-code check assertion fails. This means that the assumption
of the supplier of test account creation is not satisfied.

5

https://www.youtube.com/watch?v=vhmO5zv82wg&index=4&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


2. A violation of the precondition of some feature that test account creation
calls (e.g., calling acc.withdraw(10) when acc.credit is not suffi-
cient). This means that the assumption of the supplier of with-
draw is not satisfied (note that satisfying this assumption is the
obligation of test account creation, but benefit of withdraw).

3. A violation of the postcondition of some feature that test account creation
calls (e.g., calling acc.withdraw(10) but the resulting balance of
acc has not been updated properly). This means that the guar-
antee of the supplier of withdraw is not satisfied (note that sat-
isfying this guarantee is the benefit of test account creation, but
obligation of withdraw).

– If there is no contract violation until the end of the execution of
the query’s implementation body, then the test result depends on its
Boolean returned value: if it’s True, then it’s a pass; if it’s False,
then it’s a failure.

5 Use Breakpoints and Debugger

• When the test report on the web browser shows a red bar, set a break
point to each of the failing tests. A break point will cause the execution
of test account creation’s body implementation to pause there:

– We may go one step at a time in the context of test account creation.

– We may step into the context of certain feature that test account creation
calls, then from there we may either go one step at a time or step in
further into some other supplier features, and so on.

• Learn how to read the state snapshot at each step.

– investigate values of variables

– investigate values of expressions

• The use of break points and debugger should help you fix your code, such
that re-running all tests will give you a green bar.

6

https://www.youtube.com/watch?v=VrqXYMQJC0w&index=5&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


6 Specify Contracts for Withdraw

• Add a feature withdraw(a: INTEGER) that withdraws some amount a
from the current account.

– Add the precondition

not too small : a > 0

and postcondition

balance set : balance = old balance− a

– Show the contract view.

– Add a new test query test withdraw to TEST ACCOUNT, add it as
a new Boolean test case in TEST ACCOUNT, and re-run all tests.

– Add the implementation:

balance := balance - a

– The precondition not too small : a > 0 alone is too weak

∗ This is because it allows inputs values that can cause the result-
ing (post-) state to violate the postcondition or invariant.

For example, consider the state where acc.balance = 0 ∧ acc.credit =
10 and we call acc.withdraw(11), then the invariant is violated
upon its termination.

∗ Convert this example into a violation test case using the proce-
dure test withdraw precondition not too weak.

∗ This test case expects a precondition violation, so we will use
add violation case with tag from ES TEST .

∗ Fix: Add another precondition: not too big : a < balance +
credit.

– The new precondition not too big : a < balance + credit is too strong

∗ This is because it disallows legitimate input values that should
not cause the resulting (post-) state to violate the postcondition
or invariant.

For example, consider the state where acc.balance = 0 ∧ acc.credit =
10 and we call acc.withdraw(10), where the expected resulting
balance−10 will not violate the invariant balance not exceeding credit
evaluates to True), but we will get a precondition violation be-
cause 10 < 0 + 10 evaluates to False.

∗ Convert this example into a Boolean test case using the query
test withdraw precondition not too strong.

∗ This test case does not expect a precondition violation, so we will
use add boolean case from ES TEST .

7

https://www.youtube.com/watch?v=PzbGYNXDlAo&index=6&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


Fix: Weaken the precondition: not too big : a ≤ balance +
credit.

– So we end up with the following preconditions for withdraw:

not too small : a > 0
not too big : a ≤ balance + credit

– The postcondition balance set : balance = old balance− a alone is too weak

∗ This is because a wrong implementation from the supplier can
still satisfy it.

∗ For example, consider the state where acc.balance = 0 ∧ acc.credit =
10 and the supplier implements withdraw by

balance := balance - a

if balance < 0 then

credit := -balance

end

This apparently wrong implementation will always satisfy the
postcondition balance = old balance−a (since the postcondition
constrains nothing about credit) and the invariant balance not exceeding credit.

∗ Convert this example into a Boolean test case using a query
test withdraw postcondition not too weak.

∗ We only expect some postcondition violation from a wrong im-
plementation, so we will use add boolean case from ES TEST
(so that when we change back to the correct implementation,
this test case will pass).

∗ Fix: Add a postcondition:

credit set : credit = old credit

– So we end up with the following postconditions for withdraw:

balance set : balance = old balance− a
credit set : credit = old credit

7 Add Transaction and Date into Context

• Add the time library from project setting

• Add the TRANSACTION class:

– attributes value and date

– invariant

– constructor make (postcondition and implementation)

• Extend the ACCOUNT class:

8

https://www.youtube.com/watch?v=89ZRcmr242E&index=7&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


– add attributes deposits and withdrawals

– change make that initializes the deposits and withdrawals (of type
LIST[TRANSACTION])

∗ Use pick and drop to see the descendent classes of LIST

∗ To initialize: create {LINKED LIST[TRANSACTION]} deposits.make

∗ Postcondition: deposits.is empty or deposits.count = 0

– change withdraw that updates the withdrawals

– add command deposit

– add command withdraw on date (a: INTEGER; d: DATE)

∗ Iterate through a LIST

– add query withdraws on (d: DATE): ARRAY[TRANSACTION]

∗ Initialize an empty ARRAY and expand it.

– add query withdraws today: INTEGER which makes use of with-
drawals on

∗ Iterate through an array.

• Extend the TEST ACCOUNT class:

– add a new Boolean test case: test transaction value and date

• Debug

– wrong use of the force feature of ARRAY

– no set up for object comparison for the Result of withdrawals on

– no redefinition of is equal in TRANSACTION

8 Uniform Access of Account Balance

• Uniform Access Principle

• The balance feature, whether implemented by the supplier using compu-
tation (as a function) or storage (as an attribute), means the same to the
client: the net value from the past deposits and withdrawals.

• As far as the client of ACCOUNT is concerned:

– The term acc.balance represents the net value of the account acc as
a consequence of its history of deposits and withdrawals.

– As long as all tests regarding the use of balance pass, how the net
value is calculated is irrelevant.

• As far as the supplier of ACCOUNT is concerned:

9

https://www.youtube.com/watch?v=-It8A9VsNzk&index=8&list=PL5dxAmCmjv_6r5VfzCQ5bTznoDDgh__KS


– How the feature of balance is implemented is a secret that is hid-
den from the clients, and the mechanism of calculation may change
without affecting the clients. This is an example of information
hiding.

– When balance is affected by many other ACCOUNT features, but not
accessed frequently, then the supplier shall implement the balance
feature by computation to avoid the maintenance of storage consis-
tency.

– When balance is accessed frequently and the history lists of deposits
and withdrawals are substantial, then the supplier shall implement
the balance feature by storage to save the cost of computation.

10


	Create a New Project and Set Clusters
	Add the ACCOUNT Class
	Add a Class for Testing ACCOUNT
	How a Test Case Fails
	Use Breakpoints and Debugger
	Specify Contracts for Withdraw
	Add Transaction and Date into Context
	Uniform Access of Account Balance

