
Using Genericity in the

Design of a Collection Class

EECS3311 Software Design
Jackie Wang

Summer 2015
Lassonde School of Engineering, York University

Abstract

This document supplements a tutorial video that demonstrates the
design of a BOOK class, implemented via both a bad design (a book that
stores any records) and a good design (a book whose type of records is
parameterized). You are expected to follow this tutorial to reproduce the
project and illustrations, to complete the contracts and implementations
of both designs, and to write more test cases to be confident that your
software is correct.

Contents

1 A Book of Mixed Record Types 1

2 A Book of a Consistent Record Type 2

1 A Book of Mixed Record Types

From the supplier’s side (i.e., BOOK ):

• All features use the ANY class for the type of records, e.g.,

add(name: STRING; record: ANY)

get(name: STRING): ANY

From the client’s side (e.g., TEST BOOK ):

• Declaration of a BOOK object requires no commitment to the record type,
e.g.,

book: BOOK

1

https://www.youtube.com/watch?v=2nkKWzZJ50g


• It is completely flexible as to store new records in the book (e.g., via add):
a single book can contain, e.g., birthdays, phone numbers, addresses, etc.

• However, manipulating records retrieved from the book requires explicit
cast (why?): e.g.,

if attached DATE book.get("Jim") as jim_birthday then
jim_birthday.make_today

end

2 A Book of a Consistent Record Type

From the supplier’s side (i.e., BOOK[G], which declares a type variable G1):

• All features use the declared type variable G for the type of records, e.g.,

add(name: STRING; record: G)

get(name: STRING): G

From the client’s side (e.g., TEST BOOK ):

• Declaration of a GENERIC BOOK object requires commitment to the
record type, e.g.,

birthday_book: GENERIC BOOK[DATE]

• It is then restricted as to what new records can be stored in the book (e.g.,
via add): a single book can contain only records whose types are consistent
to the one that the client has committed at the point of declaration. For
example, only DATE records may be added to birthday book.

• Due to the restriction imposed on storage operations, manipulating records
retrieved from the book does not require explicit cast (why?): e.g.,

birthday book.get("Jim").make_today

Questions: What compile time and runtime errors, related to the type(s) of
records, might occur in the two designs?

1The name of this type variable can be any other name that has not been used as a class
name.

2


	A Book of Mixed Record Types
	A Book of a Consistent Record Type

