
EECS3311 Software Design

Summer 2015

Lab Exercises of Week 3

Jackie Wang

Abstract

In this week’s lab session, you are asked to do three exercises on the iterator pattern. It is critical
for you to understand, and appreciate, how information hiding is applied here: the supplier’s
secret representation of the collection (e.g., ARRAY, LINKED LIST, etc.) is completely hidden
from the client; and clients only depend on a uniform interface that is defined in the ITERABLE
and ITERATION CURSOR classes. In the first exercise (Section 1), you will act as a client of
an iterable class: use the Eiffel across constructs to write both contracts and implementations for
iterating through items in the collection in a linear fashion. In the other two exercises, you will act
as a supplier of an iterable class: implement the interface of the ITERABLE class. In the second
exercise (Section 2), you will simply reuse the implementation from Eiffel library classes. In the
second exercise (Section 3), you will develop the implementation of an iterable class on your own.
Click on the heading of each section to link to its associated video.

Contents

1 Acting as a Client: Using the across Constructs 1

2 Acting as a Supplier: an Iterable CART Class 3

3 Acting as a Supplier: an Iterable GENERIC BOOK[G] Class 4

1 Acting as a Client: Using the across Constructs

In this exercise, you will be acting as a client of objects that are iterable. More precisely, you will
use the across for both contracts (which correspond to the universal and existential quantifiers) and
implementation (which corresponds to a loop).

Consider the ITERABLE UTILITIES class:

class
ITERABLE UTILITIES

create
make

feature -- Attributes
collection: ITERABLE [INTEGER]

feature -- Constructors
make (new collection: ITERABLE [INTEGER])

-- Initialize the iterable object for processing.
do

collection := new collection
end

1

https://www.youtube.com/watch?v=Ky62mHb-TJ8
https://www.youtube.com/watch?v=Ky62mHb-TJ8


invariant
all non negative:
∀item : INTEGER | item ∈ collection • item ≥ 0

The ITERABLE UTILITIES class above provides utility functions for inquiring about an iterable
object (or a collection). There are two constraints: 1) the collection stores integers only; and 2) all stored
integers should be non-negative.

Question: How should these constraints be reflected in the ITERABLE UTILITIES class?

Task 1: Create the ITERABLE UTILITIES class above and covert the mathematical pre- and post-
conditions, as well as invariants, into Eiffel using the across constructs.

Now, consider the two new queries min and has below.

feature −− Queries
min: INTEGER

-- Minimum value in ‘collection’.
local

cursor: ITERATION CURSOR [INTEGER]
do

cursor := collection.new cursor
-- Your task: Write a loop that uses this returned cursor to find the minimum.

ensure
result is minimum:
∀item : INTEGER | item ∈ collection • Result ≤ item

end

has (v: INTEGER): BOOLEAN
-- Is there a value in ‘collection’ equal to ‘v’?

local
cursor: ITERATION CURSOR [INTEGER]

do
cursor := collection.new cursor
-- Your task: Write a loop that uses this returned cursor to find the minimum.

ensure
result valid:

Result = (∃item : INTEGER | item ∈ collection • item = v)
end

Task 2: Add the above two queries to the ITERABLE UTILITIES class by converting the mathematical
pre- and post-conditions into Eiffel using the across constructs.

Task 3: As for the body implementation of these two queries, try both possibilities:

1. a from . . . until . . . do . . . end loop

2. an across . . . as . . . loop . . . end construct

Task 4: Is your implementation of the has feature efficient? That is, if the number of integers stored
in the collection is substantial, will your loop exit as soon as the item is found? Or will it examine the
entire list no matter what?

Hint. Use a local variable item found: BOOLEAN that is used as part of the loop exit condition (i.e.,
part of the until condition), and is set True if the current iteration finds the item.

2



2 Acting as a Supplier: an Iterable CART Class

This exercise builds on a previous tutorial video on information hiding, and the project resulted from
that exercise can be downloaded here as the starter code for this exercise. However, you are supposed to
finish that exercise by yourself before attempting the current exercise. Follow these steps:

1. Create a new class GOOD SHOP2 whose text is copied and pasted from GOOD SHOP.

2. Create a new class GOOD CART2 whose text is copied and pasted from GOOD CART.

3. Make the class GOOD CART2 inherit from ITERABLE[ORDER].

Question: Why not inherit from ITERABLE[G]?

4. This will now force the inherited feature new cursor to be effected (i.e., implemented) in GOOD CART2.

5. Since the implementations suggested to you, i.e., ARRAY and LINKED LIST, are both Eiffel li-
brary classes that are both already ITERABLE. This implies that both ARRAY and LINKED LIST
already support some concrete implementations for the new cursor feature.

6. Therefore, the new cursor feature in GOOD CART2 has a one-line implementation:

class
GOOD CART2

inherit
ITERABLE[ORDER]

. . .
feature -- Iteration

new cursor: ITERATION CURSOR[ORDER]
-- A fresh cursor for iterating through orders in current cart.

do
Result := imp.new cursor

end
feature -- Implementation

imp: ARRAY[ORDER] -- Or the type of imp can be LINKED LIST[ORDER]

Question. When the supplier’s secret, i.e., the detailed representation of the collection of or-
ders, changes from ARRAY to LINKED LIST, or vice versa, will the one-line implementation for
GOOD CART2 ’s new cursor feature be affected? Justify your answer.

7. Now that you have implemented all features to make the CART class iterable, you can use it as a
client in the GOOD SHOP2 class:

class
GOOD SHOP2

. . .
feature -- Attributes

cart: CART
feature -- Queries

checkout: INTEGER
-- Total price of orders in current cart.

do
-- Your task to complete the calculation.

end

Question: In the implementation body of checkout, you can no longer write cart.orders, why not?

3

https://www.youtube.com/watch?v=01zGKAjJM5w
https://svn.eecs.yorku.ca/repos/3311/2015S/Public/labs/02_shop_proj.zip


3 Acting as a Supplier: an Iterable GENERIC BOOK[G] Class

This exercise builds on a previous tutorial video on genericity, and the project resulted from that exercise
can be downloaded here as the starter code for this exercise. However, you are supposed to finish that
exercise by yourself before attempting the current exercise.

Recall that to implement the mappings from names to records, we use two arrays (or two linked lists).
Consequently, making this suppliers class (i.e., GENERIC BOOK[G]) iterable will be a more challenging
exercise compared with the case of CART (see Section 2). This is why:

– The new cursor feature is already supported in the ARRAY and LINKED LIST classes (since they
are both descendant classes of ITERABLE ).

– But there is no implementation of the new cursor feature for two arrays (or for two linked lists),
unless you implement one yourself!

Follow these steps:

1. First of all, you need to consider: What should be the return type for the new cursor feature in
GENERIC BOOK[G], if it inherits from ITERABLE? It cannot be simply new cursor: ITERA-
TION CURSOR[G], because it will then only revel the record, but hide its associated name! That
is, as clients iterate through a book object, in each iteration step they should be able to retrieve
both a name and its associated record.

2. To achieve this, we introduce the TUPLE type in Eiffel. Each tuple object contains a list of values,
each of which can be of a distinct type. For example, to declare a tuple type for name-date pairs,
e.g., [“Jim′′, 1970/03/20], [“Jeremy′′, 1969/04/28], etc, we write either

TUPLE [STRING, DATE]

or

TUPLE [name: STRING; record: DATE]

Both of the above tuple types are valid. Note that member types in the first tuple type is separated
by commas, whereas in the second tuple type they are separated by semi-colons. Furthermore, in
the first tuple type, we can only use indices, starting from 1, to refer to tuple elements. In the
second tuple type, we declare names for the members, which allows clients to refer to elements
using those names. Here is an example of declaring and using tuples:

test tuple: BOOLEAN
local

pair: TUPLE[STRING, DATE]
pair2: TUPLE[name: STRING; record: DATE]
d: DATE

do
create d.make (1970, 4, 23)
pair := [”Jim”, d]
Result := pair[1] ∼ ”Jim” and pair[2] ∼ d

pair2 := [”Jim”, d]
Result := pair2.name ∼ ”Jim” and pair2.record ∼ d
check Result end

end

4

https://www.youtube.com/watch?v=2nkKWzZJ50g
https://svn.eecs.yorku.ca/repos/3311/2015S/Public/labs/02_book_proj.zip


3. Before making the GENERIC BOOK class iterable, we first need a new class that implements the
cursor for iterating through two arrays. Having introduced the TUPLE type, create a new class
TWO ARRAY ITERATION CURSOR which inherits from the ITERATION CURSOR class:

class
TWO ARRAY ITERATION CURSOR[G]

inherit
ITERATION CURSOR[TUPLE[STRING, G]]

. . .
end

It is important to note that we instantiate the formal generic parameter G in the ITERATION CURSOR
class by TUPLE[STRING, G], meaning that the cursor is going to let clients iterate through a col-
lection of string-record tuples.

4. Since TWO ARRAY ITERATION CURSOR inherits from ITERATION CURSOR, you will be
forced to implement three inherited features that are deferred: after, item, and forth.

class
TWO ARRAY ITERATION CURSOR[G]

inherit
ITERATION CURSOR[TUPLE[STRING, G]]

create
make

feature
make (ns: ARRAY[STRING]; rs: ARRAY[G])

-- Initialize a cursor from two arrays.
do

. . .
end

feature
after: BOOLEAN

do
. . .

end
item: TUPLE[STRING, G]

do
. . .

end
forth

do
. . .

end
end

Note. The return type of the item feature is a tuple type, and its members are given names that
can be referenced by clients (see the Boolean test case test iterable book below).

The implementation of the above features, in terms of two arrays, is left to you as an exercise. You
might need additional attributes to keep track of the current position of the cursor. Notice that
these auxiliary attribute should be hidden!

5. Having defined your own version of an iteration cursor for two arrays, now inherit the GENERIC BOOK
class from ITERABLE, which will force the inherited feature new cursor to be implemented:

5



class
GENERIC BOOK[G]

inherit
ITERABLE[TUPLE[STRING, G]]

. . .
feature

new cursor: ITERATION CURSOR[TUPLE[STRING, G]]
local

ic: TWO ARRAY ITERATION CURSOR[G]
do

create ic.make (names, records)
end

Question: Contrast this inherit clause with the one for making the GOOD CART2 class iterable
(Section 2). Why in one case G is instantiated as ORDER, but in the other case it is instantiated
by TUPLE[STRING, G]?

6. How would you use an iterable book? Here is an example test case:

test iterable book: BOOLEAN
local

book: GENERIC BOOK[DATE]
today, d1, d2: DATE
all born today: BOOLEAN
pair: TUPLE[name: STRING; record: DATE]

do
create book.make
create today.make now
create d1.make now
create d2.make now
book.add (”Jim”, d1)
book.add (”Jeremy”, d2)
Result :=

across
book as cursor

all
cursor.item [2] ∼ today

end
check Result end

all born today := true
across

book as cursor
loop

pair := cursor.item
if pair.record /∼ today then

all born today := false
end

end
check Result end

end

6


	Acting as a Client: Using the across Constructs
	Acting as a Supplier: an Iterable CART Class
	Acting as a Supplier: an Iterable GENERIC_BOOK[G] Class

