
The State Design Pattern
Readings: OOSC2 Chapter 20

EECS3311 A: Software Design
Winter 2020

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Motivating Problem

Consider the reservation panel of an online booking system:

2 of 30

https://www.cheapflights.co.uk/

State Transition Diagram
Characterize interactive system as: 1) A set of states; and 2)
For each state, its list of applicable transitions (i.e., actions).
e.g., Above reservation system as a finite state machine :

(2)
Flight Enquiry

(1)
Initial

(3)
Seat Enquiry

(5)
Confirmation

(4)
Reservation

3

3

2

3

23

2

2

2

3

(6)
Final

1

3 of 30

Design Challenges

1. The state-transition graph may large and sophisticated .
A large number N of states has O(N2) transitions

2. The graph structure is subject to extensions/modifications.
e.g., To merge “(2) Flight Enquiry” and “(3) Seat Enquiry”:

Delete the state “(3) Seat Enquiry”.
Delete its 4 incoming/outgoing transitions.

e.g., Add a new state “Dietary Requirements”

3. A general solution is needed for such interactive systems .
e.g., taobao, eBay, amazon, etc.

4 of 30

https://world.taobao.com/
https://www.ebay.ca/
https://www.amazon.ca/

A First Attempt

1 Initial panel:
-- Actions for Label 1.

2 Flight Enquiry panel:
-- Actions for Label 2.

3 Seat Enquiry panel:

-- Actions for Label 3.
4 Reservation panel:
-- Actions for Label 4.

5 Confirmation panel:
-- Actions for Label 5.

6 Final panel:
-- Actions for Label 6.

3 Seat Enquiry panel:

from
Display Seat Enquiry Panel

until
not (wrong answer or wrong choice)

do
Read user’s answer for current panel
Read user’s choice C for next step
if wrong answer or wrong choice then
Output error messages

end
end
Process user’s answer
case C in
2: goto 2 Flight Enquiry panel
3: goto 4 Reservation panel

end

5 of 30

A First Attempt: Good Design?

● Runtime execution ≈ a “bowl of spaghetti” .
⇒ The system’s behaviour is hard to predict, trace, and debug.

● Transitions hardwired as system’s central control structure.
⇒ The system is vulnerable to changes/additions of
states/transitions.

● All labelled blocks are largely similar in their code structures.
⇒ This design “smells” due to duplicates/repetitions!

● The branching structure of the design exactly corresponds to
that of the specific transition graph.
⇒ The design is application-specific and not reusable for
other interactive systems.

6 of 30

A Top-Down, Hierarchical Solution
● Separation of Concern Declare the transition table as a

feature the system, rather than its central control structure:
transition (src: INTEGER; choice: INTEGER): INTEGER

-- Return state by taking transition ’choice’ from ’src’ state.
require valid_source_state: 1 ≤ src ≤ 6

valid_choice: 1 ≤ choice ≤ 3
ensure valid_target_state: 1 ≤ Result ≤ 6

● We may implement transition via a 2-D array.
`````````̀SRC STATE

CHOICE 1 2 3

1 (Initial) 6 5 2
2 (Flight Enquiry) – 1 3
3 (Seat Enquiry) – 2 4
4 (Reservation) – 3 5
5 (Confirmation) – 4 1
6 (Final) – – –APPLICATION

app

transition: ARRAY2[INTEGER] 1 2
app.states

INITIAL

3 4 5 6

states: ARRAY[STATE]

FINALFLIGHT_
ENQUIRY

SEAT_
ENQUIRY

RESERVATION CONFIRMATION

6

1

5

2

2

3

1 3

2 4

3 5

4 1

1

2

3

4

5

6

state

choice

7 of 30



Hierarchical Solution: Good Design?

● This is a more general solution.
∵ State transitions are separated from the system’s central
control structure.
⇒ Reusable for another interactive system by making
changes only to the transition feature.

● How does the central control structure look like in this design?

8 of 30



Hierarchical Solution:
Top-Down Functional Decomposition

Modules of execute session and execute state are general
enough on their control structures. ⇒ reusable

9 of 30



Hierarchical Solution: System Control
All interactive sessions share the following control pattern:
○ Start with some initial state.
○ Repeatedly make state transitions (based on choices read from

the user) until the state is final (i.e., the user wants to exit).

execute_session
-- Execute a full interactive session.

local
current state , choice: INTEGER

do
from
current_state := initial

until
is final (current_state)

do
choice := execute state ( current state )
current_state := transition (current_state, choice)

end
end

10 of 30



Hierarchical Solution: State Handling (1)
The following control pattern handles all states:

execute_state ( current state : INTEGER): INTEGER
-- Handle interaction at the current state.
-- Return user’s exit choice.

local
answer: ANSWER; valid_answer: BOOLEAN; choice: INTEGER

do
from
until
valid_answer

do
display( current state )

answer := read answer( current state )

choice := read choice( current state )

valid_answer := correct( current state , answer)

if not valid_answer then message( current state , answer)
end
process( current state , answer)
Result := choice

end
11 of 30



Hierarchical Solution: State Handling (2)

FEATURE CALL FUNCTIONALITY

display(s) Display screen outputs associated with state s
read answer(s) Read user’s input for answers associated with state s
read choice(s) Read user’s input for exit choice associated with state s

correct(s, answer) Is the user’s answer valid w.r.t. state s?
process(s, answer) Given that user’s answer is valid w.r.t. state s,

process it accordingly.
message(s, answer) Given that user’s answer is not valid w.r.t. state s,

display an error message accordingly.

Q: How similar are the code structures of the above
state-dependant commands or queries?

12 of 30



Hierarchical Solution: State Handling (3)
A: Actions of all such state-dependant features must explicitly
discriminate on the input state argument.
display(current_state: INTEGER)
require
valid_state: 1 ≤ current_state ≤ 6

do
if current_state = 1 then
-- Display Initial Panel

elseif current_state = 2 then
-- Display Flight Enquiry Panel

. . .
else
-- Display Final Panel

end
end

○ Such design smells !
∵ Same list of conditional repeats for all state-dependant features.

○ Such design violates the Single Choice Principle .
e.g., To add/delete a state⇒ Add/delete a branch in all such features.

13 of 30



Hierarchical Solution: Visible Architecture

14 of 30



Hierarchical Solution: Pervasive States

Too much data transmission: current state is passed
○ From execute session (Level 3) to execute state (Level 2)
○ From execute state (Level 2) to all features at Level 1

15 of 30



Law of Inversion
If your routines exchange too many data, then
put your routines in your data.
e.g.,

execute state (Level 2) and all features at Level 1:
● Pass around (as inputs) the notion of current state
● Build upon (via discriminations) the notion of current state

execute state ( s: INTEGER )
display ( s: INTEGER )
read answer ( s: INTEGER )
read choice ( s: INTEGER )
correct ( s: INTEGER ; answer: ANSWER)
process ( s: INTEGER ; answer: ANSWER)
message ( s: INTEGER ; answer: ANSWER)

⇒ Modularize the notion of state as class STATE.
⇒ Encapsulate state-related information via a STATE interface.
⇒ Notion of current state becomes implicit : the Current class.

16 of 30



Grouping by Data Abstractions

17 of 30



Architecture of the State Pattern

*
STATE

+
INITIAL

+
HELP

+
FINAL

+
FLIGHT_ENQUIRY

+
SEAT_ENQUIRY

+
RESERVATION

+
CONFIRMATION

state_implementations

read*
display*
correct*
process*
message*

execute+
+

APPLICATION ▶
state+

18 of 30



The STATE ADT
deferred class STATE
read
-- Read user’s inputs
-- Set ’answer’ and ’choice’
deferred end

answer: ANSWER
-- Answer for current state

choice: INTEGER
-- Choice for next step

display
-- Display current state
deferred end

correct: BOOLEAN
deferred end

process
require correct
deferred end

message
require not correct
deferred end

execute
local
good: BOOLEAN

do
from
until
good

loop
display
-- set answer and choice
read
good := correct
if not good then
message

end
end
process

end
end

19 of 30



The Template Design Pattern
Consider the following fragment of Eiffel code:

1 s: STATE
2 create {SEAT ENQUIRY} s.make
3 s.execute
4 create {CONFIRMATION} s.make
5 s.execute

L2 and L4: the same version of effective feature execute
(from the deferred class STATE) is called. [ template ]
L2: specific version of effective features display, process,
etc., (from the effective descendant class SEAT ENQUIRY ) is
called. [ template instantiated for SEAT ENQUIRY ]
L4: specific version of effective features display, process,
etc., (from the effective descendant class CONFIRMATION ) is
called. [ template instantiated for CONFIRMATION ]

20 of 30



APPLICATION Class: Array of STATE

APPLICATION
app

transition: ARRAY2[INTEGER] 1 2
app.states

INITIAL

3 4 5 6

states: ARRAY[STATE]

FINALFLIGHT_
ENQUIRY

SEAT_
ENQUIRY

RESERVATION CONFIRMATION

6

1

5

2

2

3

1 3

2 4

3 5

4 1

1

2

3

4

5

6

state

choice

21 of 30



APPLICATION Class (1)
class APPLICATION create make
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
-- State transitions: transition[state, choice]

states: ARRAY[STATE]
-- State for each index, constrained by size of ‘transition’

feature
initial: INTEGER
number_of_states: INTEGER
number_of_choices: INTEGER
make(n, m: INTEGER)
do number_of_states := n

number_of_choices := m
create transition.make_filled(0, n, m)
create states.make_empty

end
invariant

transition.height = number of states

transition.width = number of choices
end

22 of 30



APPLICATION Class (2)
class APPLICATION
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
put_state(s: STATE; index: INTEGER)
require 1 ≤ index ≤ number_of_states
do states.force(s, index) end

choose_initial(index: INTEGER)
require 1 ≤ index ≤ number_of_states
do initial := index end

put_transition(tar, src, choice: INTEGER)
require
1 ≤ src ≤ number_of_states
1 ≤ tar ≤ number_of_states
1 ≤ choice ≤ number_of_choices

do
transition.put(tar, src, choice)

end
end

23 of 30



Example Test: Non-Interactive Session
test_application: BOOLEAN
local
app: APPLICATION ; current_state: STATE ; index: INTEGER

do
create app.make (6, 3)
app.put_state (create {INITIAL}.make, 1)
-- Similarly for other 5 states.
app.choose_initial (1)
-- Transit to FINAL given current state INITIAL and choice 1.
app.put_transition (6, 1, 1)
-- Similarly for other 10 transitions.

index := app.initial
current_state := app.states [index]
Result := attached {INITIAL} current_state
check Result end
-- Say user’s choice is 3: transit from INITIAL to FLIGHT_STATUS
index := app.transition.item (index, 3)
current_state := app.states [index]
Result := attached {FLIGHT_ENQUIRY} current_state

end
24 of 30



APPLICATION Class (3): Interactive Session
class APPLICATION
feature {NONE} -- Implementation of Transition Graph
transition: ARRAY2[INTEGER]
states: ARRAY[STATE]

feature
execute_session
local
current_state: STATE
index: INTEGER

do
from
index := initial

until
is_final (index)

loop

current state := states[index] -- polymorphism

current state.execute -- dynamic binding
index := transition.item (index, current_state.choice)

end
end

end
25 of 30



Building an Application
○ Create instances of STATE.

s1: STATE
create {INITIAL} s1.make

○ Initialize an APPLICATION.
create app.make(number_of_states, number_of_choices)

○ Perform polymorphic assignments on app.states.
app.put_state(initial, 1)

○ Choose an initial state.
app.choose_initial(1)

○ Build the transition table.
app.put_transition(6, 1, 1)

○ Run the application.
app.execute_session

26 of 30



Top-Down, Hierarchical vs. OO Solutions

● In the second (top-down, hierarchy) solution, it is required for
every state-related feature to explicitly and manually
discriminate on the argument value, via a a list of conditionals.
e.g., Given display(current state: INTEGER) , the

calls display(1) and display(2) behave differently.
● The third (OO) solution, called the State Pattern, makes such

conditional implicit and automatic, by making STATE as a
deferred class (whose descendants represent all types of
states), and by delegating such conditional actions to
dynamic binding .

e.g., Given s: STATE , behaviour of the call s.display
depends on the dynamic type of s (such as INITIAL vs.
FLIGHT ENQUIRY).

27 of 30



Index (1)

Motivating Problem

State Transition Diagram

Design Challenges

A First Attempt

A First Attempt: Good Design?

A Top-Down, Hierarchical Solution

Hierarchical Solution: Good Design?
Hierarchical Solution:
Top-Down Functional Decomposition

Hierarchical Solution: System Control

Hierarchical Solution: State Handling (1)
28 of 30



Index (2)
Hierarchical Solution: State Handling (2)

Hierarchical Solution: State Handling (3)

Hierarchical Solution: Visible Architecture

Hierarchical Solution: Pervasive States

Law of Inversion

Grouping by Data Abstractions

Architecture of the State Pattern

The STATE ADT

The Template Design Pattern

APPLICATION Class: Array of STATE

APPLICATION Class (1)
29 of 30



Index (3)
APPLICATION Class (2)

Example Test: Non-Interactive Session

APPLICATION Class (3): Interactive Session

Building an Application

Top-Down, Hierarchical vs. OO Solutions

30 of 30


	Motivating Problem
	State Transition Diagram
	Design Challenges
	A First Attempt
	A First Attempt: Good Design?
	A Top-Down, Hierarchical Solution
	Hierarchical Solution: Good Design?
	Hierarchical Solution: Top-Down Functional Decomposition
	Hierarchical Solution: System Control
	Hierarchical Solution: State Handling (1)
	Hierarchical Solution: State Handling (2)
	Hierarchical Solution: State Handling (3)
	Hierarchical Solution: Visible Architecture
	Hierarchical Solution: Pervasive States
	Law of Inversion
	Grouping by Data Abstractions
	Architecture of the State Pattern
	The STATE ADT
	The Template Design Pattern
	APPLICATION Class: Array of STATE
	APPLICATION Class (1)
	APPLICATION Class (2)
	Example Test: Non-Interactive Session
	APPLICATION Class (3): Interactive Session
	Building an Application
	Top-Down, Hierarchical vs. OO Solutions

