
Certification of
Safety-Critical, Software-Intensive Systems

EECS4312:
Software Engineering Requirements

Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

McMaster Centre for Software Certification

● Led a $20M project (MAR.2008 to SEP.2016) of ORF-RE
(Ontario Research Fund for Research Excellence) on the
Certification of Safety-Critical Software-Intensive Systems

● Objectives:
○ Certify software through product-focused approaches
○ Develop methods, tools, and a repository of certified components
○ Use formal methods to provide evidence for certification

● Collaborating with U of Waterloo and York U (Toronto)
● Working with industry and regulators to improve software in:

○ Biomedical Devices [IBM]
○ Financial Systems [Legacy Systems International Inc (LSI)]
○ Automotive [General Motors (GM)]
○ Nuclear [Candu, OPG, SWI, Radiy/Sunport]

● My contribution: verification of function blocks defined in
standards for components used in the nuclear power industry

2 of 37

https://www.mcscert.ca/
https://www.mcscert.ca/orf-cert-summary/

Acknowledgement of Collaborators

McSCert, McMaster University , Canada
○ Alan Wassyng [faculty, P.Eng.]
○ Mark Lawford [faculty, P.Eng.]
○ Linna Pang [PhD student]
Software Engineering Laboratory, York University , Canada
○ Jonathan Ostroff [faculty, P.Eng.]
○ Simon Hudon [PhD student]
Nanyang Technological University , Singapore
○ Yang Liu [faculty]
Singapore University of Technology and Design, Singapore
○ Jun Sun [faculty]

3 of 37

Developing Safety-Critical Systems

Industrial standards in various domains list acceptance criteria
for mission- or safety-critical systems that practitioners need to
comply with: e.g.,

Aviation Domain: RTCA DO-178C “Software Considerations in
Airborne Systems and Equipment Certification”
Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating Stations”

Two important criteria are:
1. System requirements are precise and complete
2. System implementation conforms to the requirements
But how do we accomplish these criteria?

4 of 37

Professional Engineers: Code of Ethics

○ Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.

○ It is the duty of a practitioner to act at all times with,
1. fairness and loyalty to the practitioner’s associates, employers,

clients, subordinates and employees;
2. fidelity to public needs;
3. devotion to high ideals of personal honour and professional integrity;
4. knowledge of developments in the area of professional engineering

relevant to any services that are undertaken; and
5. competence in the performance of any professional engineering

services that are undertaken.
○ Consequence of misconduct?

● suspension or termination of professional licenses
● civil law suits

Source: PEO’s Code of Ethics
5 of 37

http://www.peo.on.ca/index.php?ci_id=1815&la_id=1

Using Formal Methods to Support the
Certification Process

● DO-333 “Formal methods supplement to DO-178C and
DO-278A” advocates the use of formal methods:
The use of formal methods is motivated by the expectation

that, as in other engineering disciplines, performing appropriate
mathematical analyses can contribute to establishing the

correctness and robustness of a design.
● FMs, because of their mathematical basis, are capable of:

○ Unambiguously describing software system requirements.

○ Enabling precise communication between engineers.
○ Providing verification evidence of:

● A formal representation of the system being healthy .
● A formal representation of the system satisfying safety properties .

6 of 37

Verification: Building the Product Right?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Implementation built via reusable programming components.
○ Goal : Implementation Satisfies Intended Requirements
○ To verify this, we formalize them as a system model and a set of

(real-time) properties, using the specification language of a
model checker or a theorem prover.

○ Two Verification Issues:
1. Library components may not behave as intended .
2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...
7 of 37

Validation: Building the Right Product?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Successful checks/proofs /⇒We built the right product .
○ The target of our checks/proofs may not be valid:

The requirements may be ambiguous, incomplete, or contradictory .
○ Solution: Precise Documentation

Chen-Wei Wang, Jonathan Ostroff, and Simon Hudon. Precise Documentation and Validation of Requirements. In

FTSCS. Springer’s Communications in Computer and Information Science (CCIS), Volume 419, pp. 262 – 279, 2014.

8 of 37

http://dx.doi.org/10.1007/978-3-319-05416-2_17
http://dx.doi.org/10.1007/978-3-319-05416-2_17

Building the Right Product Right

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

Precise
Documentation of

Requirements

Certified Library of
Programming
Componentscertified

validated

● Use function tables to precisely document requirements
● Use the PVS theorem prover to:

○ Formulate library components
○ Verify an implementation w.r.t. precise, validated requirements

9 of 37

Cyber-Physical Systems (CPSs)

● Integrations of computation and physical processes
● With feedback loops, embedded computers monitor (via

sensors) and control (via actuators) the physical processes.
● The design of CPSs requires the understanding of the

joint dynamics of computers, software, networks, and physical
processes.

10 of 37

Darlington Shutdown Systems (SDSs)

● Two SDSs constitute a safety subsystem.
● Each SDS is a watchdog system that monitors system

parameters of the Darlington Nuclear Generating Station in
Ontario, Canada, and shuts down (i.e., trips) the reactor if it
observes “bad” behaviour.

● Both SDSs are physically isolated from the control system.
○ Fully isolated safety systems are much less complex than the

control systems.
○ This reduced problem complexity enables us to design, build,

and certify the behaviour of the safety system to a level of quality
that would be difficult to achieve for an integrated (and thus more
complex) system.

● Both SDSs are completely independent.

11 of 37

https://www.opg.com/powering-ontario/our-generation/nuclear/darlington-nuclear/

The Redesign Project of the Darlington SDSs

○ Ontario Hydro (now Ontario Power Generation Inc. – OPG)
developed the original version of the SDS software in late 1980s.

○ When seeking for regulatory approval , the regulators were not
convinced that the software would
● Perform correctly and reliably
● Remain correct and reliable under maintenance

○ David Parnas suggested that a requirements/design document ,
using function tables, be constructed without referencing code.
● A verification process conducted after the document validated .
● The regulators concluded that the software was safe for use .

A. Wassyng and M. Lawford. (2003) Lessons Learned from a Successful Implementation

of Formal Methods in an Industrial Project. FME.

12 of 37

https://doi.org/10.1007/978-3-540-45236-2_9
https://doi.org/10.1007/978-3-540-45236-2_9

Function Tables
● readable & precise documentation for complex relations
● suitable for documenting software requirements and design

● Two healthiness conditions: [automated in PVS]
○ completeness – no missing cases [≥ one row is always true]
○ disjointness – deterministic behaviour [rows don’t overlap]

● used in Darlington nuclear reactor SDSs [e.g., f NOPsentrip]
13 of 37

Example: Neutron OverPower Unit of
Darlington SDS

 NOP SENSOR 0

PLANT
f_NOPsp

c_NOPparmtrip

f_NOPsentrip[0]calibrated_nop_signal[0]

NOP SENSOR 17calibrated_nop_signal[17]

...

f_NOPsp

NOP
Controller

f_NOPsentrip[17]

......

○ NOP Controller depends on 18 instances of Sensor Trip units.
○ Each sensor i monitors two floating-point quantities:

● calibrated nop signal[i] [a calibrated NOP signal value]
● f NOPsp [set point value]

○ How do we formalize such informal requirements?
[function tables!]

14 of 37

NOP Example: Function Tables
Result

Condition c NOPparmtrip
∃i ∈ 0 .. 17 ● f NOPsentrip[i] = e Trip e Trip

∀i ∈ 0 .. 17 ● f NOPsentrip[i] = e NotTrip e NotTrip

Table: NOP Controller

Result
Condition f NOPsentrip[i]

calibrated nop signal [i] ≥ f NOPsp e Trip
f NOPsp − k NOPhys < calibrated nop signal [i] < f NOPsp (f NOPsentrip[i])−1

calibrated nop signal [i] ≤ f NOPsp − k NOPhys e NotTrip

Table: NOP sensor i , i ∈ 0 .. 17 (monitoring calibrated nop signal [i])

15 of 37

Prototype Verification System (PVS)

● interactive environment
○ specifications using higher-order logic [predicates]
○ proofs using sequent-style deductions [inference rules]

● direct syntactic support of specifying tabular expressions
○ completeness & disjointness generated as proof obligations

● used for the Darlington SDSs

M. Lawford, P. Froebel, and G. Moum. (2004) Application of Tabular Methods to the

Specification and Verification of a Nuclear Reactor Shutdown System. Formal Methods in

System Design.

16 of 37

Re-Implementation of the SDSs using PLCs

● Input-output behaviour of SDSs has been specified using
function tables

● In the refurbishment project, we attempted to verify the
re-implementation of SDSs using Programmable Logic
Controllers (PLCs)

17 of 37

A Visual Introduction to PLCs

Disclaimer: Many of the PLC and illustration diagrams below are originated
from the book Programmable Logic Controllers (4th Edition; McGraw-Hill) by
Frank D. Petruzella.

18 of 37

PLCs: Utilized in
Automating Industrial Process Control

2 Chapter 1 Programmable Logic Controllers (PLCs)

 Programmable controllers offer several advantages
over a conventional relay type of control. Relays have to
be hardwired to perform a specifi c function. When the
system requirements change, the relay wiring has to be
changed or modifi ed. In extreme cases, such as in the auto
industry, complete control panels had to be replaced since
it was not economically feasible to rewire the old panels
with each model changeover. The programmable control-
ler has eliminated much of the hardwiring associated with
conventional relay control circuits (Figure 1-2). It is small
and inexpensive compared to equivalent relay-based pro-
cess control systems. Modern control systems still include
relays, but these are rarely used for logic.

 In addition to cost savings, PLCs provide many other
benefi ts including:

• Increased Reliability. Once a program has been
written and tested, it can be easily downloaded
to other PLCs. Since all the logic is contained in
the PLC’s memory, there is no chance of making
a logic wiring error (Figure 1-3). The program
takes the place of much of the external wiring that
would normally be required for control of a process.
Hardwiring, though still required to connect fi eld
devices, is less intensive. PLCs also offer the
 reliability associated with solid-state components.

• More Flexibility. It is easier to create and change a pro-
gram in a PLC than to wire and rewire a circuit. With a
PLC the relationships between the inputs and outputs
are determined by the user program instead of the
manner in which they are interconnected (Figure 1-4).
Original equipment manufacturers can provide system
updates by simply sending out a new program. End
users can modify the program in the fi eld, or if desired,
security can be provided by hardware features such as
key locks and by software passwords.

• Lower Cost. PLCs were originally designed to re-
place relay control logic, and the cost savings have
been so signifi cant that relay control is becoming

 1.1 Programmable Logic Controllers
 Programmable logic controllers (Figure 1-1) are now the
most widely used industrial process control technology.
A programmable logic controller (PLC) is an industrial
grade computer that is capable of being programmed to
perform control functions. The programmable controller
has eliminated much of the hardwiring associated with
conventional relay control circuits. Other benefi ts include
easy programming and installation, high control speed,
network compatibility, troubleshooting and testing conve-
nience, and high reliability.

 The programmable logic controller is designed for
multiple input and output arrangements, extended tem-
perature ranges, immunity to electrical noise, and resis-
tance to vibration and impact. Programs for the control
and operation of manufacturing process equipment and
machinery are typically stored in battery-backed or non-
volatile memory. A PLC is an example of a real-time sys-
tem since the output of the system controlled by the PLC
depends on the input conditions.

 The programmable logic controller is, then, basically
a digital computer designed for use in machine control.
Unlike a personal computer, it has been designed to op-
erate in the industrial environment and is equipped with
special input/output interfaces and a control programming
language. The common abbreviation used in industry for
these devices, PC, can be confusing because it is also the
abbreviation for “personal computer.” Therefore, most
manufacturers refer to their programmable controller as a
PLC, which stands for “programmable logic controller.”

 Initially the PLC was used to replace relay logic, but its
ever-increasing range of functions means that it is found in
many and more complex applications. Because the struc-
ture of a PLC is based on the same principles as those
employed in computer architecture, it is capable not only
of performing relay switching tasks but also of performing
other applications such as timing, counting, calculating,
comparing, and the processing of analog signals.

 Figure 1-1 Programmable logic controller.
 Source: (a–b) Courtesy GE Intelligent Platforms.

(a) (b)

pet10882_ch01_001-016.indd 2pet10882_ch01_001-016.indd 2 7/23/10 9:00 PM7/23/10 9:00 PM

12 Chapter 1 Programmable Logic Controllers (PLCs)

 Software associated with a PLC but written and run on
a personal computer falls into the following two broad
categories:

• PLC software that allows the user to program and
document gives the user the tools to write a PLC
program—using ladder logic or another program-
ming language—and document or explain the
 program in as much detail as is necessary.

• PLC software that allows the user to monitor
and control the process is also called a human
 machine interface (HMI). It enables the user to
view a process—or a graphical representation of a
 process—on a monitor, determine how the system
is running, trend values, and receive alarm condi-
tions (Figure 1-26). Many operator interfaces do
not use PLC software. PLCs can be integrated with
HMIs but the same software does not program both
devices.

 Most recently automation manufacturers have responded
to the increased requirements of industrial control systems

by blending the advantages of PLC-style control with
that of PC-based systems. Such a device has been termed
a programmable automation controller, or PAC (Fig-
ure 1-27). Programmable automation controllers combine
PLC ruggedness with PC functionality. Using PACs, you
can build advanced systems incorporating software capa-
bilities such as advanced control, communication, data
logging, and signal processing with rugged hardware per-
forming logic, motion, process control, and vision.

1.6 PLC Size and Application
 The criteria used in categorizing PLCs include functional-
ity, number of inputs and outputs, cost, and physical size
(Figure 1-28). Of these, the I/O count is the most impor-
tant factor. In general, the nano is the smallest size with
less than 15 I/O points. This is followed by micro types
(15 to 128 I/O points), medium types (128 to 512 I/O
points), and large types (over 512 I/O points).

 Matching the PLC with the application is a key factor
in the selection process. In general it is not advisable to

 Figure 1-26 PLC operator interface and monitor.
 Source: Courtesy Rogers Machinery Company, Inc.

 Figure 1-27 Programmable automation controller (PAC).
 Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

(a)

(b)

 Figure 1-25 PLC installed in an industrial environment.
 Source: (a–b) Courtesy Automation IG.

pet10882_ch01_001-016.indd 12pet10882_ch01_001-016.indd 12 7/23/10 9:01 PM7/23/10 9:01 PM

4 Chapter 1 Programmable Logic Controllers (PLCs)

easily trace and correct software and hardware prob-
lems. To fi nd and fi x problems, users can display the
control program on a monitor and watch it in real
time as it executes (Figure 1-7).

1.2 Parts of a PLC
 A typical PLC can be divided into parts, as illustrated in
 Figure 1-8 . These are the central processing unit (CPU) ,
the input/output (I/O) section, the power supply, and the
 programming device. The term architecture can refer to
PLC hardware, to PLC software, or to a combination of
both. An open architecture design allows the system to be
connected easily to devices and programs made by other
manufacturers. Open architectures use off-the-shelf com-
ponents that conform to approved standards. A system
with a closed architecture is one whose design is propri-
etary, making it more diffi cult to connect to other systems.
Most PLC systems are in fact proprietary, so you must be
sure that any generic hardware or software you may use
is compatible with your particular PLC. Also, although
the principal concepts are the same in all methods of pro-
gramming, there might be slight differences in address-
ing, memory allocation, retrieval, and data handling for
different models. Consequently, PLC programs cannot be
interchanged among different PLC manufacturers.

 There are two ways in which I/Os (Inputs/Outputs) are
incorporated into the PLC: fi xed and modular. Fixed I/O
(Figure 1-9) is typical of small PLCs that come in one
package with no separate, removable units. The processor
and I/O are packaged together, and the I/O terminals will
have a fi xed number of connections built in for inputs and
outputs. The main advantage of this type of packaging is
lower cost. The number of available I/O points varies and
usually can be expanded by buying additional units of
fi xed I/O. One disadvantage of fi xed I/O is its lack of fl ex-
ibility; you are limited in what you can get in the quanti-
ties and types dictated by the packaging. Also, for some
models, if any part in the unit fails, the whole unit has to
be replaced.

 Modular I/O (Figure 1-10) is divided by compartments
into which separate modules can be plugged. This fea-
ture greatly increases your options and the unit’s fl exibil-
ity. You can choose from the modules available from the
manufacturer and mix them any way you desire. The basic
modular controller consists of a rack, power supply, pro-
cessor module (CPU), input/output (I/O modules), and an
operator interface for programming and monitoring. The
modules plug into a rack. When a module is slid into the
rack, it makes an electrical connection with a series of con-
tacts called the backplane, located at the rear of the rack.
The PLC processor is also connected to the backplane and
can communicate with all the modules in the rack.

 The power supply supplies DC power to other modules
that plug into the rack (Figure 1-11). For large PLC systems,
this power supply does not normally supply power to the
fi eld devices. With larger systems, power to fi eld devices is

 Figure 1-7 Control program can be displayed on a monitor
in real time.

PLC Monitor

 Figure 1-5 PLC communication module.
 Source: Photo courtesy Automation Direct, www.automationdirect.com.

 Figure 1-6 High-speed counting.
 Source: Courtesy Banner Engineering Corp.

pet10882_ch01_001-016.indd 4pet10882_ch01_001-016.indd 4 7/27/10 9:58 PM7/27/10 9:58 PM

19 of 37

PLCs: Replacing Relay-based Controllers

 Programmable Logic Controllers (PLCs) Chapter 1 3

obsolete except for power applications. Generally,
if an application has more than about a half-dozen
control relays, it will probably be less expensive to
install a PLC.

• Communications Capability. A PLC can communi-
cate with other controllers or computer equipment to
perform such functions as supervisory control, data
gathering, monitoring devices and process parameters,
and download and upload of programs (Figure 1-5).

User program

PLC

 Figure 1-3 All the logic is contained in the PLC’s memory.

 Figure 1-4 Relationships between the inputs and outputs
are determined by the user program.

Contactor Light Solenoid

Outputs

Inputs

Pushbutton Limit switch Sensor

• Faster Response Time. PLCs are designed for high-
speed and real-time applications (Figure 1-6). The
programmable controller operates in real time,
which means that an event taking place in the
fi eld will result in the execution of an operation or
output. Machines that process thousands of items
per second and objects that spend only a fraction
of a second in front of a sensor require the PLC’s
quick-response capability.

• Easier to Troubleshoot. PLCs have resident diag-
nostics and override functions that allow users to

(a)

(b)

 Figure 1-2 Relay- and PLC-based control panels. (a) Relay-
based control panel. (b) PLC-based control panel.
 Source: (a) Courtesy Mid-Illini Technical Group, Inc.; (b) Photo courtesy Ramco
Electric, Ltd.

pet10882_ch01_001-016.indd 3pet10882_ch01_001-016.indd 3 7/23/10 9:00 PM7/23/10 9:00 PM

 Programmable Logic Controllers (PLCs) Chapter 1 3

obsolete except for power applications. Generally,
if an application has more than about a half-dozen
control relays, it will probably be less expensive to
install a PLC.

• Communications Capability. A PLC can communi-
cate with other controllers or computer equipment to
perform such functions as supervisory control, data
gathering, monitoring devices and process parameters,
and download and upload of programs (Figure 1-5).

User program

PLC

 Figure 1-3 All the logic is contained in the PLC’s memory.

 Figure 1-4 Relationships between the inputs and outputs
are determined by the user program.

Contactor Light Solenoid

Outputs

Inputs

Pushbutton Limit switch Sensor

• Faster Response Time. PLCs are designed for high-
speed and real-time applications (Figure 1-6). The
programmable controller operates in real time,
which means that an event taking place in the
fi eld will result in the execution of an operation or
output. Machines that process thousands of items
per second and objects that spend only a fraction
of a second in front of a sensor require the PLC’s
quick-response capability.

• Easier to Troubleshoot. PLCs have resident diag-
nostics and override functions that allow users to

(a)

(b)

 Figure 1-2 Relay- and PLC-based control panels. (a) Relay-
based control panel. (b) PLC-based control panel.
 Source: (a) Courtesy Mid-Illini Technical Group, Inc.; (b) Photo courtesy Ramco
Electric, Ltd.

pet10882_ch01_001-016.indd 3pet10882_ch01_001-016.indd 3 7/23/10 9:00 PM7/23/10 9:00 PM

(a) Relay-based Control Panel (b) PLC-based Control Panel

20 of 37

PLCs as Cyclic Executives:
Inputs, Outputs, Repeated Scans

 Programmable Logic Controllers (PLCs) Chapter 1 3

obsolete except for power applications. Generally,
if an application has more than about a half-dozen
control relays, it will probably be less expensive to
install a PLC.

• Communications Capability. A PLC can communi-
cate with other controllers or computer equipment to
perform such functions as supervisory control, data
gathering, monitoring devices and process parameters,
and download and upload of programs (Figure 1-5).

User program

PLC

 Figure 1-3 All the logic is contained in the PLC’s memory.

 Figure 1-4 Relationships between the inputs and outputs
are determined by the user program.

Contactor Light Solenoid

Outputs

Inputs

Pushbutton Limit switch Sensor

• Faster Response Time. PLCs are designed for high-
speed and real-time applications (Figure 1-6). The
programmable controller operates in real time,
which means that an event taking place in the
fi eld will result in the execution of an operation or
output. Machines that process thousands of items
per second and objects that spend only a fraction
of a second in front of a sensor require the PLC’s
quick-response capability.

• Easier to Troubleshoot. PLCs have resident diag-
nostics and override functions that allow users to

(a)

(b)

 Figure 1-2 Relay- and PLC-based control panels. (a) Relay-
based control panel. (b) PLC-based control panel.
 Source: (a) Courtesy Mid-Illini Technical Group, Inc.; (b) Photo courtesy Ramco
Electric, Ltd.

pet10882_ch01_001-016.indd 3pet10882_ch01_001-016.indd 3 7/23/10 9:00 PM7/23/10 9:00 PM

 Programmable Logic Controllers (PLCs) Chapter 1 3

obsolete except for power applications. Generally,
if an application has more than about a half-dozen
control relays, it will probably be less expensive to
install a PLC.

• Communications Capability. A PLC can communi-
cate with other controllers or computer equipment to
perform such functions as supervisory control, data
gathering, monitoring devices and process parameters,
and download and upload of programs (Figure 1-5).

User program

PLC

 Figure 1-3 All the logic is contained in the PLC’s memory.

 Figure 1-4 Relationships between the inputs and outputs
are determined by the user program.

Contactor Light Solenoid

Outputs

Inputs

Pushbutton Limit switch Sensor

• Faster Response Time. PLCs are designed for high-
speed and real-time applications (Figure 1-6). The
programmable controller operates in real time,
which means that an event taking place in the
fi eld will result in the execution of an operation or
output. Machines that process thousands of items
per second and objects that spend only a fraction
of a second in front of a sensor require the PLC’s
quick-response capability.

• Easier to Troubleshoot. PLCs have resident diag-
nostics and override functions that allow users to

(a)

(b)

 Figure 1-2 Relay- and PLC-based control panels. (a) Relay-
based control panel. (b) PLC-based control panel.
 Source: (a) Courtesy Mid-Illini Technical Group, Inc.; (b) Photo courtesy Ramco
Electric, Ltd.

pet10882_ch01_001-016.indd 3pet10882_ch01_001-016.indd 3 7/23/10 9:00 PM7/23/10 9:00 PM

monitor inputs

execute program

update outputs

21 of 37

PLCs: Schematic

Programs in, e.g., ladder logic, are loaded into memory.

 Programmable Logic Controllers (PLCs) Chapter 1 5

(b) Fixed type

Power supply

Communications

Input
section

Output
sectionMemory

CPU

M

(a) Modular type

Central
Processing
Unit (CPU)

Programming device

Memory

Input
sensing
devices

Output
load
devices

Program Data

Optical
isolation

Input
module

Output
module

Processor Module

Optical
isolation

Power supply
module

 Figure 1-8 Typical parts of a programmable logic controller.
 Source: (a) Courtesy Mitsubishi Automation; (b) Image Used with Permission of Rockwell Automation, Inc.

 Figure 1-9 Fixed I/O confi guration.

PL

Input
connections

Common power bus

Common return bus

Output
connections

Processor PLC

provided by external alternating current (AC) or direct cur-
rent (DC) supplies. For some small micro PLC systems, the
power supply may be used to power fi eld devices.

 The processor (CPU) is the “brain” of the PLC. A typi-
cal processor (Figure 1-12) usually consists of a micro-
processor for implementing the logic and controlling the
communications among the modules. The processor re-
quires memory for storing the results of the logical op-
erations performed by the microprocessor. Memory is also
required for the program EPROM or EEPROM plus RAM.

 The CPU controls all PLC activity and is designed so
that the user can enter the desired program in relay ladder
logic. The PLC program is executed as part of a repeti-
tive process referred to as a scan (Figure 1-13). A typical
PLC scan starts with the CPU reading the status of inputs.
Then, the application program is executed. Once the pro-
gram execution is completed, the CPU performs internal
diagnostic and communication tasks. Next, the status of
all outputs is updated. This process is repeated continu-
ously as long as the PLC is in the run mode.

pet10882_ch01_001-016.indd 5pet10882_ch01_001-016.indd 5 7/27/10 9:58 PM7/27/10 9:58 PM

22 of 37

PLCs: Programming & Debugging Interfaces

38 Chapter 2 PLC Hardware Components

 Hand-held programmers are compact, inexpensive,
and easy to use. These units contain multifunction keys
and a liquid-crystal display (LCD) or light-emitting
diode (LED) window. There are usually keys for instruc-
tion entering and editing, and navigation keys for mov-
ing around the program. Hand-held programmers have
limited display capabilities. Some units will display only
the last instruction that has been programmed, whereas
other units will display from two to four rungs of ladder
logic. So-called intelligent hand-held programmers are
designed to support a certain family of PLCs from a spe-
cifi c manufacturer.

 The most popular method of PLC programming is to
use a personal computer (PC) in conjunction with the
manufacturer’s programming software (Figure 2-46).
Typical capabilities of the programming software include
online and offl ine program editing, online program moni-
toring, program documentation, diagnosing malfunctions
in the PLC, and troubleshooting the controlled system.
Hard-copy reports generated in the software can be
printed on the computer’s printer. Most software pack-
ages will not allow you to develop programs on another
 manufacturer’s PLC. In some cases, a single manufac-
turer will have multiple PLC families, each requiring its
own software to program.

 2.10 Recording and Retrieving Data
 Printers are used to provide hard-copy printouts of the
processor’s memory in ladder program format. Lengthy
ladder programs cannot be shown completely on a screen.
Typically, a screen shows a maximum of fi ve rungs at a
time. A printout can show programs of any length and
analyze the complete program.

 The PLC can have only one program in memory at
a time. To change the program in the PLC, it is neces-
sary either to enter a new program directly from the

keyboard or to download one from the computer hard
drive (Figure 2-47). Some CPUs support the use of a
memory cartridge that provides portable EEPROM stor-
age for the user program (Figure 2-48). The cartridge
can be used to copy a program from one PLC to another
similar type PLC.

 2.11 Human Machine Interfaces
(HMIs)
 A human machine interface (HMI) can be connected to
communicate with a PLC and to replace pushbuttons, se-
lector switches, pilot lights, thumbwheels, and other op-
erator control panel devices (Figure 2-49). Luminescent
touch-screen keypads provide an operator interface that
operates like traditional hardwired control panels.

 Human machine interfaces give the ability to the op-
erator and to management to view the operation in real

 Figure 2-46 Personal computer used as the programming
device.

Serial port

Laptop computer

Processor

Software

 Figure 2-47 Copying programs to a computer hard drive.

A

C
Copy

(Disk drive)
(Internal hard drive)

A
C

 Figure 2-48 Memory cartridge provides portable storage
for user program.

Memory cartridge

pet10882_ch02_017-042.indd 38pet10882_ch02_017-042.indd 38 7/23/10 9:06 PM7/23/10 9:06 PM

8 Chapter 1 Programmable Logic Controllers (PLCs)

with PLCs. Its origin is based on electromechanical relay
control. The relay ladder logic program graphically rep-
resents rungs of contacts, coils, and special instruction
blocks. RLL was originally designed for easy use and un-
derstanding for its users and has been modifi ed to keep up
with the increasing demands of industry’s control needs.

1.3 Principles of Operation
 To get an idea of how a PLC operates, consider the simple
process control problem illustrated in Figure 1-17 . Here a
mixer motor is to be used to automatically stir the liquid
in a vat when the temperature and pressure reach preset
values. In addition, direct manual operation of the motor
is provided by means of a separate pushbutton station.
The process is monitored with temperature and pressure
sensor switches that close their respective contacts when
conditions reach their preset values.

 This control problem can be solved using the relay
method for motor control shown in the relay ladder dia-
gram of Figure 1-18 . The motor starter coil (M) is energized
when both the pressure and temperature switches are closed
or when the manual pushbutton is pressed.

 Now let’s look at how a programmable logic controller
might be used for this application. The same input fi eld
devices (pressure switch, temperature switch, and push-
button) are used. These devices would be hardwired to an

appropriate input module according to the manufacturer’s
addressing location scheme. Typical wiring connections
for a 120 VAC modular confi gured input module is shown
in Figure 1-19 .

 The same output fi eld device (motor starter coil) would
also be used. This device would be hardwired to an appropri-
ate output module according to the manufacturer’s addressing
location scheme. Typical wiring connections for a 120 VAC
modular confi gured output module is shown in Figure 1-20 .

 Figure 1-16 Typical PC software used to create a ladder logic program.
 Source: Image Used with Permission of Rockwell Automation, Inc.

Pressure
sensor
switch

Motor

Temperature
sensor switch

Manual pushbutton station

 Figure 1-17 Mixer process control problem.

pet10882_ch01_001-016.indd 8pet10882_ch01_001-016.indd 8 7/23/10 9:01 PM7/23/10 9:01 PM

4 Chapter 1 Programmable Logic Controllers (PLCs)

easily trace and correct software and hardware prob-
lems. To fi nd and fi x problems, users can display the
control program on a monitor and watch it in real
time as it executes (Figure 1-7).

1.2 Parts of a PLC
 A typical PLC can be divided into parts, as illustrated in
 Figure 1-8 . These are the central processing unit (CPU) ,
the input/output (I/O) section, the power supply, and the
 programming device. The term architecture can refer to
PLC hardware, to PLC software, or to a combination of
both. An open architecture design allows the system to be
connected easily to devices and programs made by other
manufacturers. Open architectures use off-the-shelf com-
ponents that conform to approved standards. A system
with a closed architecture is one whose design is propri-
etary, making it more diffi cult to connect to other systems.
Most PLC systems are in fact proprietary, so you must be
sure that any generic hardware or software you may use
is compatible with your particular PLC. Also, although
the principal concepts are the same in all methods of pro-
gramming, there might be slight differences in address-
ing, memory allocation, retrieval, and data handling for
different models. Consequently, PLC programs cannot be
interchanged among different PLC manufacturers.

 There are two ways in which I/Os (Inputs/Outputs) are
incorporated into the PLC: fi xed and modular. Fixed I/O
(Figure 1-9) is typical of small PLCs that come in one
package with no separate, removable units. The processor
and I/O are packaged together, and the I/O terminals will
have a fi xed number of connections built in for inputs and
outputs. The main advantage of this type of packaging is
lower cost. The number of available I/O points varies and
usually can be expanded by buying additional units of
fi xed I/O. One disadvantage of fi xed I/O is its lack of fl ex-
ibility; you are limited in what you can get in the quanti-
ties and types dictated by the packaging. Also, for some
models, if any part in the unit fails, the whole unit has to
be replaced.

 Modular I/O (Figure 1-10) is divided by compartments
into which separate modules can be plugged. This fea-
ture greatly increases your options and the unit’s fl exibil-
ity. You can choose from the modules available from the
manufacturer and mix them any way you desire. The basic
modular controller consists of a rack, power supply, pro-
cessor module (CPU), input/output (I/O modules), and an
operator interface for programming and monitoring. The
modules plug into a rack. When a module is slid into the
rack, it makes an electrical connection with a series of con-
tacts called the backplane, located at the rear of the rack.
The PLC processor is also connected to the backplane and
can communicate with all the modules in the rack.

 The power supply supplies DC power to other modules
that plug into the rack (Figure 1-11). For large PLC systems,
this power supply does not normally supply power to the
fi eld devices. With larger systems, power to fi eld devices is

 Figure 1-7 Control program can be displayed on a monitor
in real time.

PLC Monitor

 Figure 1-5 PLC communication module.
 Source: Photo courtesy Automation Direct, www.automationdirect.com.

 Figure 1-6 High-speed counting.
 Source: Courtesy Banner Engineering Corp.

pet10882_ch01_001-016.indd 4pet10882_ch01_001-016.indd 4 7/27/10 9:58 PM7/27/10 9:58 PM

 PLC Hardware Components Chapter 2 37

years in many cases. Some processors have a capacitor
that provides at least 30 minutes of battery backup when
the battery is disconnected and power is OFF.

 Erasable Programmable Read-Only Memory
(EPROM) provides some level of security against unau-
thorized or unwanted changes in a program. EPROMs are
designed so that data stored in them can be read, but not
easily altered without special equipment. For example,
UV EPROMs (ultraviolet erasable programmable read-
only memory) can only be erased with an ultraviolet light.
EPROM memory is used to back up, store, or transfer
PLC programs.

 Electrically erasable programmable read-only mem-
ory (EEPROM) is a nonvolatile memory that offers the
same programming fl exibility as does RAM. The EEPROM
can be electrically overwritten with new data instead of
being erased with ultraviolet light. Because the EEPROM
is nonvolatile memory, it does not require battery backup.
It provides permanent storage of the program and can be
changed easily using standard programming devices. Typi-
cally, an EEPROM memory module is used to store, back
up, or transfer PLC programs (Figure 2-43).

 Flash EEPROMs are similar to EEPROMs in that they
can only be used for backup storage. The main difference
comes in the fl ash memory: they are extremely fast at sav-
ing and retrieving fi les. In addition, they do not need to
be physically removed from the processor for reprogram-
ming; this can be done using the circuitry within the pro-
cessor module in which they reside. Flash memory is also
sometimes built into the processor module (Figure 2-44),
where it automatically backs up parts of RAM. If power
fails while a PLC with fl ash memory is running, the PLC

will resume running without having lost any working data
after power is restored.

 2.9 Programming Terminal Devices
 A programming terminal device is needed to enter, mod-
ify, and troubleshoot the PLC program. PLC manufac-
turers use various types of programming devices. The
simplest type is the hand-held type programmer shown
in Figure 2-45 . This proprietary programming device has
a connecting cable so that it can be plugged into a PLC’s
programming port. Certain controllers use a plug-in panel
rather than a hand-held device.

 Figure 2-42 Battery used to back up processor RAM.

!

"

 Figure 2-43 EEPROM memory module is used to store,
back up, or transfer PLC programs.

EEPROM
(nonvolatile)

Program
backup

Parameters

RAM
(volatile)

Executed
program

Current
data

Memory
bits,

timers,
counters

 Figure 2-44 Flash memory card installed in a socket on
the processor.

Flash
Card

Processor Module

 Figure 2-45 Hand-held programming terminal.

pet10882_ch02_017-042.indd 37pet10882_ch02_017-042.indd 37 7/23/10 9:06 PM7/23/10 9:06 PM

23 of 37

Using Theorem Proving to Certify Components

● IEC 61131 Standard of PLCs
● Annex F of IEC 61131-3
● A formal approach to certifying the FB library
● Example Issues

24 of 37

IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs

● Function Blocks (FBs): reusable components for programming
PLCs.

● First published in 1993, IEC 61131-3 attempts to standardize
the programming notations of PLCs using FBs:
○ IL (Instruction List)
○ ST (Structured Text)
○ LD (Ladder Diagram)
○ FBD (Function Block Diagram)

● There are three categories of FBs:
○ basic, stateless functions [e.g., +, ≥ 1, bcd2int]
○ basic FBs [e.g., hysteresis]
○ composite FBs [e.g., limits alarm]

25 of 37

Annex F of IEC 61131-3:
A Function Block Library

● IEC 61131-3 Annex F lists a library of commonly-used FBs.
● PLC manufactures often provide a “IEC 61131-3 compliant”

FB library with their product.
● For the purpose of the re-implementation of SDS1 using FBs ,

we formally certify Annex F using:
○ function tables [requirements specification]
○ PVS theorem prover [verification]

● Examined 29 FBs in the library, with a focus on
implementations specified in ST and FBD:
○ 10 issues found [ambiguities, missing assumptions, errors]
○ Lack of precise, black-box requirements has led to these issues

unnoticed for ≥ 20 years!
26 of 37

Formal Verification of the FB Library: How?

FBD
Implementation

ST
Implementation

Natural
Language

Description

IEC 61131-3 Standard

FBD
Specification

ST
SpecificationEquivalence

PVS Verification Environment

FB Requirements

Correctness

Formalization

Formalization

Formalization

Manual
translation

PVS
verification

Consistency Consistency

Correctness

LEGEND

1. Formalize FB requirements as function tables
2. Formalize ST and FBD implementations
3. Prove correctness and consistency of individual FBs
4. Identify issues in IEC 61131-3 Annex F & Propose solutions

27 of 37

Verification Results from Theorem Proving

Found issues in Annex F of IEC 61131-3:
1. Ambiguous behaviour

○ Incomplete timing diagrams: pulse timer
○ Implicit delay unit: sr block

2. Missing assumptions
○ input limits: ctud block, hysteresis alarm, limits alarm block
○ possible misusage: delay block
○ possible division-by-zero: average, pid
○ possible invalid array indexing: diffeq

3. Erroneous implementation
○ inconsistent implementations: stack int

For each issues, we propose a solution.

28 of 37

Example 1: Inconsistent Implementations for
STACK INT

○ The two alternative implementations are inconsistent as to
when to push an item onto a LIFO stack:

FBD version specifies that the push operation is performed when the
stack is already overflowed!

○ We proposed to add a negation gate between OFLO to EN.
○ Does it make sense to fix the ST implementation instead?

29 of 37

Example 2: Up and Down Counters

○ An up-down counter (CTUD) consists of an up counter (CTU)

and a down counter (CTD).
○ The output counter value CV is:

● Incremented (using the up counter) if a rising edge is detected on
an input condition CU

● Decremented (using the down counter) if a rising edge is detected
on the input CD.
Actions of increment and decrement are subject to a high limit PVmax
and a low limit PVmin.

○ The initial value of CV is:
● Loaded to a preset value PV if a load flag LD is TRUE

● Defaulted to 0 if a reset condition R is enabled
○ Two Boolean outputs are produced to reflect the change on CV :

● QU ≡ (CV > PV)
● QD ≡ (CV <= 0)

30 of 37

Example 2: Informal Requirements

31 of 37

Example 2: Issues?
● What if PVmax < PVmin ?

⇒ The enabling condition of counter:

PVmin < CV < PVmax ≡ false

● What if LD ∧PV ≤ PVmin (CV loaded with PV)?
In the next cycle, if CD is true, then the enabling condition of

decrement :

CD ∧ (CV > PVmin)
≡ { CV was preset to PV ≤ PVmin }

CD ∧ (PV > PVmin)
≡ { contriction }

false

● What if LD ∧PV ≥ PVmax ?
32 of 37

Example 2: Resolution?

Function Table!

Result
Condition CV

R 0

¬R

LD PV

¬LD

CU ∧ CD NC

CU∧¬CD
CV−1< PVmax CV−1+1
CV−1≥ PVmax NC

¬CU∧CD
CV−1> PVmin CV−1-1
CV−1≤ PVmin NC

¬CU ∧ ¬CD NC
assume: PVmin < PV < PVmax

33 of 37

Beyond this lecture . . .

Linna Pang, Chen-Wei Wang, Mark Lawford, and Alan Wassyng.
Formal Verification of Function Blocks Applied to IEC
61131-3. In Science of Computer Programming (SCP), Volume
113, December 2015, pp. 149 – 190.

34 of 37

http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005

Index (1)
McMaster Centre for Software Certification
Acknowledgement of Collaborators
Developing Safety-Critical Systems
Professional Engineers: Code of Ethics
Using Formal Methods to
Support the Certification Process
Verification: Building the Product Right?
Validation: Building the Right Product?
Building the Right Product Right
Cyber-Physical Systems (CPSs)
Darlington Shutdown Systems (SDSs)
The Redesign Project of the Darlington SDSs
Function Tables
Example: Neutron OverPower Unit of Darlington SDS

35 of 37

Index (2)
NOP Example: Function Tables
Prototype Verification System (PVS)
Re-Implementation of the SDSs using PLCs
A Visual Introduction to PLCs
PLCs: Utilized in
Automating Industrial Process Control
PLCs: Replacing Relay-based Controllers
PLCs as Cyclic Executives:
Inputs, Outputs, Repeated Scans
PLCs: Schematic
PLCs: Programming & Debugging Interfaces
Using Theorem Proving to Certify Components
IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs
Annex F of IEC 61131-3:
A Function Block Library

36 of 37

Index (3)
Formal Verification of the FB Library: How?

Verification Results from Theorem Proving

Example 1: Inconsistent Implementations for STACK INT

Example 2: Up and Down Counters

Example 2: Informal Requirements

Example 2: Issues?

Example 2: Resolution?

Beyond this lecture . . .

37 of 37

	McMaster Centre for Software Certification
	Acknowledgement of Collaborators
	Developing Safety-Critical Systems
	Professional Engineers: Code of Ethics
	Using Formal Methods to Support the Certification Process
	Verification: Building the Product Right?
	Validation: Building the Right Product?
	Building the Right Product Right
	Cyber-Physical Systems (CPSs)
	Darlington Shutdown Systems (SDSs)
	The Redesign Project of the Darlington SDSs
	Function Tables
	Example: Neutron OverPower Unit of Darlington SDS
	NOP Example: Function Tables
	Prototype Verification System (PVS)
	Re-Implementation of the SDSs using PLCs
	A Visual Introduction to PLCs
	PLCs: Utilized in Automating Industrial Process Control
	PLCs: Replacing Relay-based Controllers
	PLCs as Cyclic Executives: Inputs, Outputs, Repeated Scans
	PLCs: Schematic
	PLCs: Programming & Debugging Interfaces
	Using Theorem Proving to Certify Components
	IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs
	Annex F of IEC 61131-3: A Function Block Library
	Formal Verification of the FB Library: How?
	Verification Results from Theorem Proving
	Example 1: Inconsistent Implementations for STACK_INT
	Example 2: Up and Down Counters
	Example 2: Informal Requirements
	Example 2: Issues?
	Example 2: Resolution?
	Beyond this lecture …

