Certification of
Safety-Critical, Software-Intensive Systems

EECS4312:
Software Engineering Requirements

YO R |IT< ' Fall 2019

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

/|

McMaster Centre for Software Certification ircono:

—

e Led a $20M project (MAR.2008 to SEP.2016) of ORF-RE
(Ontario Research Fund for Research Excellence) on the
Certification of Safety-Critical Software-Intensive Systems
Objectives:

o Certify software through product-focused approaches

o Develop methods, tools, and a repository of certified components
o Use formal methods to provide evidence for certification
Collaborating with U of Waterloo and York U (Toronto)

Working with industry and regulators to improve software in:

o Biomedical Devices [IBM]
o Financial Systems [Legacy Systems International Inc (LSI)]
o Automotive [General Motors (GM)]
o Nuclear [Candu, OPG, SWI, Radiy/Sunport]

My contribution: verification of function blocks defined in
standards for components used in the nuclear power industry
2037

https://www.mcscert.ca/
https://www.mcscert.ca/orf-cert-summary/

Acknowledgement of Collaborators LassonDE

McSCert, McMaster University, Canada

o Alan Wassyng [faculty, P.Eng.]
o Mark Lawford [faculty, P.Eng.]
o Linna Pang [PhD student]
Software Engineering Laboratory, York University, Canada
o Jonathan Ostroff [faculty, P.Eng.]
o Simon Hudon [PhD student]
Nanyang Technological University, Singapore

o Yang Liu [faculty]
Singapore University of Technology and Design, Singapore
o Jun Sun [faculty]

30137

- ___
—

Developing Safety-Crltical SyStemS LASSONDE

Industrial standards in various domains list acceptance criteria
for mission- or safety-critical systems that practitioners need to

comply with: e.g.,
Aviation Domain: RTCA DO-178C “Software Considerations in
Airborne Systems and Equipment Certification”

Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating Stations”

Two important criteria are:
1. System requirements are precise and complete
2. System implementation conforms to the requirements

But how do we accomplish these criteria?

e

Professional Engineers: Code of Ethics isono:

o Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.

o ltis the duty of a practitioner to act at all times with,

1.

5.

fairness and loyalty to the practitioner’s associates, employers,
clients, subordinates and employees;

2. fidelity to public needs;
3.
4. knowledge of developments in the area of professional engineering

devotion to high ideals of personal honour and professional integrity;

relevant to any services that are undertaken; and
competence in the performance of any professional engineering
services that are undertaken.

o Consequence of misconduct?

e suspension or termination of professional licenses
e civil law suits

a.0f37

Source: PFQ’s Code of Fthics

http://www.peo.on.ca/index.php?ci_id=1815&la_id=1

/|

Using Formal Methods to Support the
Certification Process

e DO-333 “Formal methods supplement to DO-178C and
DO-278A” advocates the use of formal methods:

The use of formal methods is motivated by the expectation
that, as in other engineering disciplines, performing appropriate
mathematical analyses can contribute to establishing the
correctness and robustness of a design.
e FMs, because of their mathematical basis, are capable of:
o Unambiguously describing software system requirements.

o Enabling precise communication between engineers.
o Providing verification evidence of:
o A formal representation of the system being healthy.
o A formal representation of the system satisfying safety properties .

fof37

SSONDE

|

Verification: Building the Product Right?

Informal translated !
System Propertes
I A

satisfies? | checked/proved?
Library of X
Programming Implementation P System Model
Components uses translated
e

[e]

Implementation built via reusable programming components.
Goal : Implementation Satisfies Intended Requirements

To verify this, we formalize them as a system model and a set of
(real-time) properties, using the specification language of a
model checker or a theorem prover.

Two Verification Issues:
1. Library components may not behave as intended.

2. Successful checks/proofs ensure that we built the product right , with
respect to the informal requirements. But...

[e]

o

[e]

ASSONDE

| gl ‘

translated
System Properties
A

Validation: Building the Right Product?

Informal
checked/proved?

Requirements

A

P
satisfies? 1
;

System Model

\ 4

translated

Library of .
Programming Implementation

Components uses L

o Successful checks/proofs s+ We built the right product.
o The target of our checks/proofs may not be valid:
The requirements may be ambiguous, incomplete, or contradictory

o Solution: Precise Documentation
Chen-Wei Wana. Jonathan Ostroff, and Simon Hudon. Precise Documentation and Validation of Requirements. In
FTSCS. Springer’s Communications in Computer and Information Science (CCIS), Volume 419, pp. 262 — 279, 2014.
e

http://dx.doi.org/10.1007/978-3-319-05416-2_17
http://dx.doi.org/10.1007/978-3-319-05416-2_17

Building the Right Product Right LassonDE
Precise translated
Documentation of System Properties
A
checked/proved?

validated
Informal
Requirements Requirements
2
satisfies?
i

Library of ified Li ’—‘—‘

; > Ce:med Library of > System Model
Components certified @y uses L_/_’ translated

e Use function tables to precisely document requirements

e Use the PVS theorem prover to:

o Formulate library components
o Verify animplementation w.r.t. precise, validated requirements
e

/|

Cyber-Physical Systems (CPSs) LassonDE

e Integrations of computation and physical processes

o With feedback loops, embedded computers monitor (via
sensors) and control (via actuators) the physical processes.

¢ The design of CPSs requires the understanding of the
Joint dynamics of computers, software, networks, and physical

processes.

/|

Darlington Shutdown Systems (SDSs) LassonDE

e Two SDSs constitute a safety subsystem.

e Each SDS is a watchdog system that monitors system
parameters of the Darlington Nuclear Generating Station in
Ontario, Canada, and shuts down (i.e., trips) the reactor if it
observes “bad” behaviour.

e Both SDSs are physically isolated from the control system.
o Fully isolated safety systems are much less complex than the

control systems.

o This reduced problem complexity enables us to design, build,
and certify the behaviour of the safety system to a level of quality
that would be difficult to achieve for an integrated (and thus more
complex) system.

e Both SDSs are completely independent.

1ol

https://www.opg.com/powering-ontario/our-generation/nuclear/darlington-nuclear/

/|

The Redesign Project of the Darlington SDS\sou:

o Ontario Hydro (now Ontario Power Generation Inc. — OPG)
developed the original version of the SDS software in late 1980s.
o When seeking for regulatory approval , the regulators were not
convinced that the software would
o Perform correctly and reliably
¢ Remain correct and reliable under maintenance
o David Parnas suggested that a requirements/design document ,
using function tables, be constructed without referencing code.
o A verification process conducted after the document validated.
o The regulators concluded that the software was safe for use .

A. Wassyng and M. Lawford. (2003) Lessons Learned from a Successful Implementation
of Formal Methods in an Industrial Project. FME.

12037

https://doi.org/10.1007/978-3-540-45236-2_9
https://doi.org/10.1007/978-3-540-45236-2_9

Function Tables

e readable & precise documentation for complex relations
¢ suitable for documenting software requirements and design

SSONDE

|

Result

Condition f IF ¢
Cia val, IF C,; THEN f = val,
Ci2 val, ELSEIF C;, THEN f = val,

G

ELSEIF C,, THEN f
m ELSEIF
ELSEIF C, THEN f

val,,

Crin val

val

n

€y val,
¢ Two healthiness conditions: [automated in PVS]
o completeness — no missing cases [> one row is always true]
o disjointness — deterministic behaviour [rows don’t overlap]
e used in Darlington nuclear reactor SDSs [e.g., f_-NOPsentrip]

13.0t37

/|

Example: Neutron OverPower Unit of
Darlington SDS

LASSONDE
et

PLANT

calibrated_nop_signal[0] g

f_NOPsp

NOP SENSOR 0

chOPparmtripT

calibrated_nop_signal[1 7]7

f_NOPsp

NOP SENSOR 17

J_NOPsentrip[0] o

f NOPsentrip[17]

NOP
Controller

o NOP Controller depends on 18 instances of Sensor Trip units.
o Each sensor i monitors two floating-point quantities:
« calibrated_nop_signal|i]
o f_NOPsp

o How do we formalize such informal requirements?
[function tables!]

e

[a calibrated NOP signal value]
[set point value]

ks

N
NOP Example: Function Tables "'égsésom
Result
|[c_NOPparmtrip ||

Condition
Jie0..17 o £ NOPsentrip[i] = e_Trip e_Trip
Vie0..17 o £ NOPsentrip[i] = e_NotTrip e_NotTrip
Table: NOP Controller
Result
Condition [£NOPsentrip[i]]|
calibrated_nop_signalli] > f-NOPsp e_Trip
f-NOPsp — k_NOPhys < calibrated_nop_signal[i] < NOPsp || (.-NOPsentrip[i])-1
calibrated_nop_signal[i] < - NOPsp — k_ZNOPhys e_NotTrip

Table: NOP sensor i, i< 0..17 (monitoring calibrated_nop_signalli])
e

/|

|

Prototype Verification System (PVS)

SSONDE
e interactive environment
o specifications using higher-order logic [predicates]
o proofs using sequent-style deductions [inference rules]

e direct syntactic support of specifying tabular expressions
o completeness & disjointness generated as proof obligations

e used for the Darlington SDSs

M. Lawford, P. Froebel, and G. Moum. (2004) Application of Tabular Methods to the
Specification and Verification of a Nuclear Reactor Shutdown System. Formal Methods in
System Design.

16.0t37

/|

Re-Implementation of the SDSs using PLCS sssono

e Input-output behaviour of SDSs has been specified using
function tables

¢ In the refurbishment project, we attempted to verify the
re-implementation of SDSs using Programmable Logic
Controllers (PLCs)

SSONDE

ks : ‘
‘

A Visual Introduction to PLCs

Disclaimer: Many of the PLC and illustration diagrams below are originated
from the book Programmable Logic Controllers (4th Edition; McGraw-Hill) by

Frank D. Petruzella.

PLCs: Utilized in
Automating Industrial Process Control

PLCs: Replacing Relay-based Controllers o

;

(a) Relay-based Control Panel (b) PLC-based Control Panel

e

PLCs as Cyclic Executives: LASSONDE
Inputs, Outputs, Repeated Scans

User program

monitor inputs update outputs

@ ﬁ Q% execute program

Pushbutton Limit switch

21037

PLCs: Schematic

/|

|

SSONDE

Programs in, e.g., ladder logic, are loaded into memory.

Output
module

Input Power supply
module module
— 0 o :Processor Module
1
Input | o | | Central
sensing ol N Processing
devices %g : Unit (CPU)
1
— o105\ i Memory
i | Program Data
1
Optical /
isolation

[]

Programming device

(=]
[= |
—

e

Optical
isolation

Output
load
devices

/|

PLCs: Programming & Debugging Interfaces s

6t Vow Soch Comms lode Widow Hop

B'El_i_!;ﬂ (T T — |1 7 1 CVEY]

Processor
]
88
%b) Laptop computer
8%
2o
e i
@
— 7
[Software 3l
= e o
: =) o
A oy
Serial port
PLC Monitor

B | o

L)

Using Theorem Proving to Certify Componeﬁgﬁ

=

IEC 61131 Standard of PLCs

Annex F of IEC 61131-3

A formal approach to certifying the FB library
Example Issues

IEC 61131-3 (ed 2.0, 2003): A Standard of PL;%NDE

» Function Blocks (FBs): reusable components for programming
PLCs.

 First published in 1993, IEC 61131-3 attempts to standardize
the programming notations of PLCs using FBs:

o IL (Instruction List)

o ST (Structured Text)

o LD (Ladder Diagram)

o FBD (Function Block Diagram)

e There are three categories of FBs:

o basic, stateless functions [e.g., +, =1, bca2int |
o basic FBs [e.g., hysteresis]
o composite FBs le.g., limits_alarm]

25.0t.37

/|

Annex F of IEC 61131-3:
A Function Block Library

e |[EC 61131-3 Annex F lists a library of commonly-used FBs.

e PLC manufactures often provide a “/EC 61131-3 compliant”
FB library with their product.

¢ For the purpose of the re-implementation of SDS1 using FBs ,
we formally certify Annex F using:
o function tables [requirements specification]
o PVS theorem prover [verification]
e Examined 29 FBs in the library, with a focus on
implementations specified in ST and FBD:
o 10 issues found [ambiguities, missing assumptions, errors]
o Lack of precise, black-box requirements has led to these issues
unnoticed for > 20 years)

26.0t.37

/|

Formal Verification of the FB Library: How?

LA!
i

Implementation

SSONDE
L oA m s a1 T T T O Ve e o T |
| IEC 61131-3 Standard } | PVS Verification Environment | LEGEND
| | |
| -
I | .
| Natural :—'—>Formallzat|on FB Requirements } —
‘ Language \ | Manual
! Descgript?on } ‘ | translation
| | | Correctness | | Correctness |
‘ | \ | | | ——
} | } Con3|stency | | Con3|stency | PVS
T | | F I ficati
| } | * | | + | verification
} FBD | Formalization } | FBD | ST) }
| Implementation } | | Specification |Equivalence| Specification | |
| | |
| ST } Formalization t — —— — ——— — — — — — — — — — # —_
|
|
|

1. Formalize FB requirements as function tables

2. Formalize ST and FBD implementations

3. Prove correctness and consistency of individual FBs
4

. Identify issues in IEC 61131-3 Annex F & Propose solutions
27.0f37

/|

Verification Results from Theorem Proving Jsove

Found issues in Annex F of IEC 61131-3:

1. Ambiguous behaviour
o Incomplete timing diagrams: pulse timer
o Implicit delay unit: sr block
2. Missing assumptions
o input limits: ctud block, hysteresis_alarm, limits_alarm block
o possible misusage: delay block
o possible division-by-zero: average, pid
o possible invalid array indexing: diffeq
3. Erroneous implementation
o inconsistent implementations: stack_int

For each issues, we propose a solution.

e

/|

Example 1: Inconsistent Implementations fot:soxo:
STACK_INT

PUSH_STK:

ELSIF PUSH & NOT OFLO THEN

EMPTY := 0; PTR := PTR+1l; OFLO := (PTR = NI);:
I At [+ IF NOT OFLO THEN OUT := IN ; STK[PTR] := IN;
= I SEL | R
+-—-@IEN ENO| -G [out ELSE OUT := 0:
IN-—$---—- 1 |--STK[PTR] +------- o | END IF ;
[I 0-—-lINL | -
,,,,,,,,,,,,,,,,,,,,,,,,,, i P END_IF ;

o The two alternative implementations are inconsistent as to
when to push an item onto a LIFO stack:
FBD version specifies that the push operation is performed when the
stack is already overflowed!
We proposed to add a negation gate between OFLO to EN.
Does it make sense to fix the ST implementation instead?

e

o

o

/|

Example 2: Up and Down Counters

SSONDE

|

o An up-down counter (CTUD) consists of an up counter (CTU)

and a down counter (CTD).
o The output counter value CV is:

o (using the up counter) if a rising edge is detected on
an input condition CU

o (using the down counter) if a rising edge is detected

on the input CD.
Actions of increment and decrement are subject to a high limit PVmax
and a low limit PVmin.

o The initial value of CV is:

. to a preset value PV if a load flag LD is TRUE
¢ | Defaulted |to 0 if a reset condition R is enabled

o Two Boolean outputs are produced to reflect the change on CV:
e QU= (CV>PV)
e QD= (CV<=0)

e

/|

™

Example 2: Informal Requirements LASSONDE

FUNCTION_BLOCK CTUD

VAR_INPUT
CU, CD : BOOL R_EDGE; (% Value to be counted up/down x)
R : BOOL (* Reset x)
LD : BOOL (* Load value flag *)
PV : INT (x Preset value x)
END_VAR
VAR_OUTPUT
tmmm— + QU BOOL (* Compare CV with PV for up counter =)
| curp | OD : BOOL (% Compare CV with 0 for down counter)
CV : INT (% Current counted value x)
BOOL -->CU QU|-- BOOL END_VAR
BOOL -->CD QD|-- BOOL IF R THEN CV := 0
BOOL --|R | ELSIF LD THEN CV PV ;
BOOL --|LD | ELSE
INT --|PV CV|-- INT IF NOT (CU AND CD) THEN
| | IF CU AND (CV < PVmax)
* + THEN CV := CV + 1 ;
ELSIF CD AND (CV > PVmin)
THEN CV := CV - 1 ;
END IF
END IF ;
END IF ;
QU := (CV >= PV) ;
QD := (CV <= 0)

END_FUNCTION_BLOCK

Example 2: Issues? o

e What if | PVmax < PVmin|?
= The enabling condition of counter:

PVmin < CV < PVmax = false

e What if] LDAPV < PVmin\ (CV loaded with PV)?
In the next cycle, if CD is true, then the enabling condition of

decrement |:

CD A (CV > PVmin)
{ CV was preset to PV <PVmin }
CD A (PV > PVmin)
= { contriction }
false

 What if | LD A PV > PVmax |?
32037

Example 2: Resolution? LassoNDE

Function Table!

Result

Condlition CV

R 0

LD PV

CUACD NC
CV_1 < PVmax CV_1 +1

R |p CUA-CD CV_1> PVmax NC
h CV_;> PVmin || CV_;-1

~CUACD == BVmin [NC

-CU A -CD NC

assume: PVmin < PV < PVmax

e

/|

Beyond this lecture . .. Lassonpe

Linna Pang, Chen-Wei Wang, Mark Lawford, and Alan Wassyng.
Formal Verification of Function Blocks Applied to IEC
61131-3. In Science of Computer Programming (SCP), Volume
113, December 2015, pp. 149 — 190.

http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005
http://dx.doi.org/DOI:10.1016/j.scico.2015.10.005

Index (1) _;HASSONDE
Ml C for Sof Certificati

Acknowledgement of Collaborators

Developing Safety-Critical Systems

Professional Engineers: Code of Ethics
Using Formal Methods to

Support the Certification Process
Verification: Building the Product Right?

Validation: Building the Right Product?
Building the Right Product Right
Cyber-Physical Systems (CPSs)

Darlington Shutdown Systems (SDSs)

The Redesign Project of the Darlington SDSs
Eunction Tables

Example: Neutron OverPower Unit of Darlington SDS
e

Index (2) ;ASSONDE

NOP Example: Function Tables
Prototype Verification System (PVS

Re-Implementation of the SDSs using PLCs
A Vi T ucti PLC

PLCs: Utilized in

Automating Industrial Process Control

PLCs: Replacing Relay-based Controllers
PLCs as Cyclic Executives:

Inputs, Outputs, Repeated Scans

PLCs: Schematic

PLCs: Programming & Debuggqing Interfaces
Using Theorem Proving to Certify Components

IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs
Annex F of IEC 61131-3:

A Function Block Library
e

Index (3) _;HASSONDE
Formal Verification of the FB Library: How?

Verification Results from Theorem Proving

Example 1: Inconsistent Implementations for STACK_INT

Example 2: Up and Down Counters

Example 2: Informal Requirements

Example 2: Issues?

Example 2: Resolution?

Beyond this lecture . ..

37037

	McMaster Centre for Software Certification
	Acknowledgement of Collaborators
	Developing Safety-Critical Systems
	Professional Engineers: Code of Ethics
	Using Formal Methods to Support the Certification Process
	Verification: Building the Product Right?
	Validation: Building the Right Product?
	Building the Right Product Right
	Cyber-Physical Systems (CPSs)
	Darlington Shutdown Systems (SDSs)
	The Redesign Project of the Darlington SDSs
	Function Tables
	Example: Neutron OverPower Unit of Darlington SDS
	NOP Example: Function Tables
	Prototype Verification System (PVS)
	Re-Implementation of the SDSs using PLCs
	A Visual Introduction to PLCs
	PLCs: Utilized in Automating Industrial Process Control
	PLCs: Replacing Relay-based Controllers
	PLCs as Cyclic Executives: Inputs, Outputs, Repeated Scans
	PLCs: Schematic
	PLCs: Programming & Debugging Interfaces
	Using Theorem Proving to Certify Components
	IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs
	Annex F of IEC 61131-3: A Function Block Library
	Formal Verification of the FB Library: How?
	Verification Results from Theorem Proving
	Example 1: Inconsistent Implementations for STACK_INT
	Example 2: Up and Down Counters
	Example 2: Informal Requirements
	Example 2: Issues?
	Example 2: Resolution?
	Beyond this lecture …

