Certification of
Safety-Critical, Software-Intensive Systems

EECS4312:
Software Engineering Requirements

' Fall 2019

CHEN-WEI WANG

McMaster Centre for Software Certification

e Led a $20M project (MAR.2008 to SEP.2016) of ORF-RE
(Ontario Research Fund for Research Excellence) on the
Certification of Safety-Critical Software-Intensive Systems

¢ Objectives:

o Certify software through product-focused approaches

o Develop methods, tools, and a repository of certified components

o Use formal methods to provide evidence for certification

Collaborating with U of Waterloo and York U (Toronto)

¢ Working with industry and regulators to improve software in:

o Biomedical Devices [IBM]

o Financial Systems [Legacy Systems International Inc (LSI)]

o Automotive [General Motors (GM)]

o Nuclear [Candu, OPG, SWI, Radiy/Sunport]

My contribution: verification of function blocks defined in

standards for components used in the nuclear power industry

Acknowledgement of Collaborators

LASSONDE

McSCert, McMaster University, Canada

o Alan Wassyng [faculty, P.Eng.]
o Mark Lawford [faculty, P.Eng.]
o Linna Pang [PhD student]
Software Engineering Laboratory, York University, Canada
o Jonathan Ostroff [faculty, P.Eng.]
o Simon Hudon [PhD student]

Nanyang Technological University, Singapore

o Yang Liu [faculty]
Singapore University of Technology and Design, Singapore
o Jun Sun [faculty]

3 of 37|

Developing Safety-Critical Systems

LASSONDE

Industrial standards in various domains list acceptance criteria
for mission- or safety-critical systems that practitioners need to
comply with: e.g.,
Aviation Domain: RTCA DO-178C “Software Considerations in
Airborne Systems and Equipment Certification”

Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating Stations”

Two important criteria are:

1. System requirements are precise and complete

2. System implementation conforms to the requirements
But how do we accomplish these criteria?

Professional Engineers: Code of Ethics LASSONDE

o Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.

o ltis the duty of a practitioner to act at all times with,

1. fairness and loyalty to the practitioner’s associates, employers,
clients, subordinates and employees;

2. fidelity to public needs;

3. devotion to high ideals of personal honour and professional integrity;

4. knowledge of developments in the area of professional engineering
relevant to any services that are undertaken; and

5. competence in the performance of any professional engineering
services that are undertaken.

o Consequence of misconduct?

e suspension or termination of professional licenses
o civil law suits

Source: |PEQ’s Code of Ethics

Verification: Building the Product Right? |.assono:

Informal translated)
System Properties
A

A

0
satisfies? 3 checked/proved?
Library of :
Programming Implementation P System Model
Components uses translated
\/—

o

Implementation built via reusable programming components.
Goal : Implementation Satisfies Intended Requirements

To verify this, we formalize them as a system model and a set of
(real-time) properties, using the specification language of a
model checker or a theorem prover.

Two Verification Issues:

1. Library components may not behave as intended.

2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...

o

()

o

Using Formal Methods to Support the e
Certification Process

e DO-333 “Formal methods supplement to DO-178C and
DO-278A” advocates the use of formal methods:

The use of formal methods is motivated by the expectation
that, as in other engineering disciplines, performing appropriate
mathematical analyses can contribute to establishing the
correctness and robustness of a design.
¢ FMs, because of their mathematical basis, are capable of:
o Unambiguously describing software system requirements.

o Enabling precise communication between engineers.
o Providing verification evidence of:
o A formal representation of the system being healthy.
o A formal representation of the system satisfying safety properties .

6 of 37

Validation: Building the Right Product?

Informal translated)
System Properties

I 7}

0
satisfies? 3 checked/proved?
Library of :
Programming Implementation P System Model
Components uses translated
/

o Successful checks/proofs =+ We built the right product.
o The target of our checks/proofs may not be valid:

The requirements may be ambiguous, incomplete, or contradictory.
o Solution: Precise Documentation

Chen-Wei Wang, Jonathan Ostroff, and Simon Hudon. Precise Documentation and Validation of Requirements. In
FTSCS. Springer's Communications in Computer and Information Science (CCIS), Volume 419, pp. 262 — 279, 2014.
8 of 37|

\n,

Building the Right Product Right LASSONDE

Informal validated Precise translated
nform »| D ion of - System Properti
Requirements Requirements
3

A
satisfies? | checked/proved?

Library of Certified Library of _
> i P> System Model
Components certified ® uses translated
-~

e Use function tables to precisely document requirements
¢ Use the PVS theorem prover to:
o Formulate library components
o Verify animplementation w.r.t. precise, validated requirements

9 of 37

\n,

Cyber-Physical Systems (CPSs) LASSONDE

¢ Integrations of computation and physical processes

¢ With feedback loops, embedded computers monitor (via
sensors) and control (via actuators) the physical processes.

¢ The design of CPSs requires the understanding of the
joint dynamics of computers, software, networks, and physical
processes.

Darlington Shutdown Systems (SDSs)

Two SDSs constitute a safety subsystem.

Each SDS is a watchdog system that monitors system

parameters of the Darlington Nuclear Generating Station in

Ontario, Canada, and shuts down (i.e., trips) the reactor if it

observes “bad” behaviour.

Both SDSs are physically isolated from the control system.

o Fully isolated safety systems are much less complex than the
control systems.

o This reduced problem complexity enables us to design, build,
and certify the behaviour of the safety system to a level of quality

that would be difficult to achieve for an integrated (and thus more
complex) system.

Both SDSs are completely independent.

The Redesign Project of the Darlington SDSs

o Ontario Hydro (now Ontario Power Generation Inc. — OPG)
developed the original version of the SDS software in late 1980s.
o When seeking for regulatory approval , the regulators were not
convinced that the software would
o Perform correctly and reliably
e Remain correct and reliable under maintenance
o David Parnas suggested that a requirements/design document ,
using function tables, be constructed without referencing code.
o A verification process conducted after the document validated.
e The regulators concluded that the software was safe for use .

A. Wassyng and M. Lawford. (2003) Lessons Learned from a Successful Implementation
of Formal Methods in an Industrial Project. FME.

Function Tables %

ESONDE

¢ readable & precise documentation for complex relations
e suitable for documenting software requirements and design

Result

Condition f IF G,
Cia val, IF C;; THEN f = val,
Gis val, ELSEIF C;, THEN f = val,

ELSEIF C,,, THEN f = val
m ELSEIF
ELSEIF C, THEN f

m

Cii val

val

n

N val,

¢ Two healthiness conditions:
o completeness —no missing cases
o disjointness — deterministic behaviour

¢ used in Darlington nuclear reactor SDSs

[automated in PVS]

[> one row is always true]
[rows don't overlap]

[e.g., f_NOPsentrip]

Example: Neutron OverPower Unit of
Darlington SDS

ESONDE

L'_NOPparmlripT

' i ~| NOP SENSOR 0 >
calibrated_nop_signal[0 L> F NOPsentrip[0]
f_NOPsp

NOP
Controller

PLANT

calibratedfnopfsignal[]z]: NOP SENSOR 17

f_NOPsentrip[17]
If _NOPsp

o NOP Controller depends on 18 instances of Sensor Trip units.
o Each sensor i monitors two floating-point quantities:
o calibrated_nop_signal[i] [a calibrated NOP signal value]
o f_NOPsp [set point value]
o How do we formalize such informal requirements?

[function tables!]

NOP Example: Function Tables Y

LASSONDE
Result
Condition [c-NOPparmtrip
3ie0..17 o £ NOPsentrip[i] = e_Trip e_Trip
Vie0..17 o £ NOPsentrip[i| = e_NotTrip e_NotTrip
Table: NOP Controller
Result
Condition | £NOPsentrip[i]]|
calibrated_nop_signal[i] > f-NOPsp e_Trip

f NOPsp — k_ NOPhys < calibrated_nop_signal[i]l < NOPsp || (f-NOPsentrip[i])-1
calibrated_nop_signal[i] < - NOPsp — k_LNOPhys e_NotTrip

Table: NOP sensor i, i€ 0.. 17 (monitoring calibrated_nop_signal[i])

Prototype Verification System (PVS) %%

e interactive environment

o specifications using higher-order logic [predicates]
o proofs using sequent-style deductions [inference rules]

e direct syntactic support of specifying tabular expressions
o completeness & disjointness generated as proof obligations
e used for the Darlington SDSs

M. Lawford, P. Froebel, and G. Moum. (2004) Application of Tabular Methods to the

Specification and Verification of a Nuclear Reactor Shutdown System. Formal Methods in
System Design.

Re-Implementation of the SDSs using PLCs #%

¢ Input-output behaviour of SDSs has been specified using
function tables

¢ In the refurbishment project, we attempted to verify the
re-implementation of SDSs using Programmable Logic
Controllers (PLCs)

A Visual Introduction to PLCs

Disclaimer: Many of the PLC and illustration diagrams below are originated
from the book Programmable Logic Controllers (4th Edition; McGraw-Hill) by
Frank D. Petruzella.

PLCs: Utilized in
Automating Industrial Process Control

a) Relay-based Control Panel (b) PLC-based Control Panel

PLCs as Cyclic Executives:
Inputs, Outputs, Repeated Scans

User program

monitor inputs update outputs

execute program

Pushbutton Limit switch Sensor

21 of 37

PLCs: Schematic EASSONDE

Programs in, e.g., ladder logic, are loaded into memory.

Input Power supply

Output
module module module
L ; L
1
o o i Processor | Module i 1
Input oo | ! Central !
sensing ol ! Processing e 4@— Output
devices ! Unit (CPU) i Ioaq
! ! devices
| Memory |
—O<JI0— ! !
| | Program Data i X
Optical / Optical
isolation isolation
= [
= |
L
Programming device

Processor

!

o
&

8 Laptop computer
£l

0
8
3

[

Software
14
"‘

“i

T e I

=2

Serial port

PLC Monitor

i

23 of 37 l

Using Theorem Proving to Certify Componepts..:

IEC 61131 Standard of PLCs

Annex F of IEC 61131-3

A formal approach to certifying the FB library
Example Issues

24 of 37

e Function Blocks (FBs): reusable components for programming
PLCs.

e First published in 1993, IEC 61131-3 attempts to standardize
the programming notations of PLCs using FBs:
o |IL (Instruction List)
o ST (Structured Text)
o LD (Ladder Diagram)
o FBD (Function Block Diagram)

e There are three categories of FBs:
o basic, stateless functions
o basic FBs
o composite FBs

IEC 61131-3 (ed 2.0, 2003): A Standard of P

[e.g., +, =1, becd2int]
[e.g., hysteresis]
[e.g., limits_alarm]

25 of 37

Annex F of IEC 61131-3:
A Function Block Library

e |[EC 61131-3 Annex F lists a library of commonly-used FBs.

e PLC manufactures often provide a “IEC 61131-3 compliant”
FB library with their product.

¢ For the purpose of the re-implementation of SDS1 using FBs ,
we formally certify Annex F using:
o function tables
o PVS theorem prover

e Examined 29 FBs in the library, with a focus on
implementations specified in ST and FBD:
o 10 issues found [ambiguities, missing assumptions, errors]
o Lack of precise, black-box requirements has led to these issues

unnoticed for > 20 years!

26 of 37

[requirements specification]
[verification]

PVS Verification Environment

FB Requirements

Correctness

IEC 61131-3 Standard }

‘ Formalization

Natural
Language
Description

Manual
translation
Correctness

PVS

| |
| |
| |
‘ ‘ verification

Consistency
-

-
FBD Formalization FBD e
Implementation Specification |Equivalence

ST }Formalization -
Implementation|

1. Formalize FB requirements as function tables

2. Formalize ST and FBD implementations

3. Prove correctness and consistency of individual FBs
4

. Identify issues in IEC 61131-3 Annex F & Propose solutions

|
|
|
|

|

|

|

|

| |

} } Consistency
| >

|

|

|

|

|

|

|

Verification Results from Theorem Proving |ussono:

Found issues in Annex F of IEC 61131-3:
1. Ambiguous behaviour

o Incomplete timing diagrams: pulse timer
o Implicit delay unit: sr block

2. Missing assumptions
o input limits: ctud block, hysteresis_alarm, limits_alarm block
o possible misusage: delay block
o possible division-by-zero: average, pid
o possible invalid array indexing: diffeq
3. Erroneous implementation
o inconsistent implementations: stack_int

For each issues, we propose a solution.

28 of 37

Example 1: Inconsistent Implementations fat.
STACK_INT

PUSH_STK:

o= o+ =1
1--|EN ENO|----------- |EN ENO|------~- |EN ENO|--
0--1 | --EMPTY 1--| |--PTR--IG | -—+--0FLO

F— 4=l I NI--—-| [ELSIF PUSH & NOT OFLO THEN

EMPTY := 0; PTR := PTR+1l; OFLO := (PTR = NI);
| R + [+ IF NOT OFLO THEN OUT := IN ; STK[PTR] := IN;
| o= I 1 SEL | P
+-—-©IEN ENO| R A B ouT ELSE OUT := 0;
IN-—+--m- | |--STK[PTR] +----=-- Imo | END IF ;
| o + I 0-—-1IN1 | .
ey g + END_IF ;

o The two alternative implementations are inconsistent as to
when to push an item onto a LIFO stack:
FBD version specifies that the push operation is performed when the
stack is already overflowed!
We proposed to add a negation gate between OFLO to EN.
Does it make sense to fix the ST implementation instead?

o

o

29 of 37

Example 2: Up and Down Counters LASSONDE

o An up-down counter (CTUD) consists of an up counter (CTU)

and a down counter (CTD).
o The output counter value CV is:

D (using the up counter) if a rising edge is detected on
an input condition CU

. (using the down counter) if a rising edge is detected

on the input CD.
Actions of increment and decrement are subject to a high limit PVmax
and a low limit PVmin.

o The initial value of CV is:

. to a preset value PV if a load flag LD is TRUE
o | Defaulted |to 0 if a reset condition R is enabled

o Two Boolean outputs are produced to reflect the change on CV:
e QU= (CV> PV)
e QD= (CV<=0)

Example 2: Informal Requirements

FUNCTION_BLOCK CTUD

VAR_INPUT
CU, CD : BOOL R_EDGE; (* Value to be counted up/down x)
R : BOOL (* Reset *)
LD : BOOL (* Load value flag *)
PV : INT (* Preset value *)
END_VAR
VAR_OUTPUT
RS + QU : BOOL (* Compare CV with PV for up counter)
| cump | QD : BOOL (* Compare CV with 0 for down counter *)
| CV : INT (% Current counted value x)
BOOL -->CU QUl** BOOL END_VAR
BOOL -->CD QDl** BOOL IF R THEN CV := 0 ;
BOOL --|R | ELSIF LD THEN CV := PV ;
BOOL --|LD | ELSE

INT --|PV CV|-- INT IF NOT (CU AND CD) THEN
| | IF CU AND (CV < PVmax)
Hmmmmmm o + THEN CV := CV + 1 ;

ELSIF CD AND (CV > PVmin)
THEN CV := CV - 1 ;
END IF ;
END IF ;
END IF ;
QU := (CV >= PV) ;
QD := (CV <= 0) ;
END_FUNCTION_BLOCK

31 of 37

Example 2: Issues? LASSONDE

« What if| PVmax < PVmin|?
= The enabling condition of counter:

PVmin < CV < PVmax = false

e What if‘ LDAPV < PVmin\ (CV loaded with PV)?
In the next cycle, if CD is true, then the enabling condition of

decrement |:

CD A (CV > PVmin)
{ CV was preset to PV<PVmin }
CD A (PV > PVmin)
= { contriction }
false

e What if[LD A PV > PVmax|?

Example 2: Resolution?

Function Table!

Result

Condlition CcV

R 0

LD PV

CUACD NC
CV_1< PVmax CV_1+1

R 5 CUA-CD oy S PVmax [NC
B CV_1> PVmin || CV_4-1

~CUACD oy —Bvmin [NC

~CUA -CD NC

assume: PVmin < PV < PVmax

33 of 37

Beyond this lecture ...

Linna Pang, Chen-Wei Wang, Mark Lawford, and Alan Wassyng.
Formal Verification of Function Blocks Applied to IEC
61131-3. In Science of Computer Programming (SCP), Volume
113, December 2015, pp. 149 — 190.

34 of 37

Index (1) L;ASSONDE

McMaster Centre for Software Certification
|[Acknowledgement of Collaborators|
[Developing Safety-Critical Systems|
Professional Engineers: Code of Ethics|
Using Formal Methods to

[Support the Certification Process|
[Verification: Building the Product Right?|
[Validation: Building the Right Product?]
[Building the Right Product Right|
[Cyber-Physical Systems (CPSs)|

[Darlington Shutdown Systems (SDSs)|

[The Redesign Project of the Darlington SDSs|
Function Tables|

l_%mle: Neutron OverPower Unit of Darlington SDS|

Index (2) L;ASSONDE

[NOP Example: Function Tables|
[Prototype Verification System (PVS)|
[Re-Implementation of the SDSs using PLCs]|

A Visual Introduction to PLCs|
PLCs: Utilized in

[Automating Industrial Process Controll|

PLCs: Replacing Relay-based Controllers|

PLCs as Cyclic Executives: |
Inputs, Outputs, Repeated Scans|

PLCs: Schematic

[PLCs: Programming & Debugging Interfaces|

[Using Theorem Proving to Certify Components|

IEC 61131-3 (ed 2.0, 2003): A Standard of PLCs|

Annex F of IEC 61131-3: |
A Fu,nction Block Library]|

Index (3) esonge

[Formal Verification of the FB Library: How?|

|Verification Results from Theorem Proving|

[Example 1: Inconsistent Implementations for STACK_INT]|

[Example 2: Up and Down Counters|

[Example 2: Informal Requirements|

[Example 2: Issues?|

|[Example 2: Resolution?|

[Beyond this lecture .. .|

37 of 37

