Program Verification
Readings: Chapter 4 of LICS2

EECS4315 Z:
Mission-Critical Systems
Winter 2025

UNIVERSITE '
UNIVERSITY

CHEN-WEI WANG

LASSONDE

ooooooooooooooooo

Learning Objectives

Motivating Examples: Program Correctness
Hoare Triple

Weakest Precondition (wp)

Rules of wp Calculus

Contract of Loops (invariant vs. variant)

AU

Correctness Proofs of Loops

LASSONDE

ooooooooooooooooo

Assertions: Weak vs. Strong

e Describe each assertion as a set of satisfying value.
x > 3 has satisfying values { x | x>3}={4,5,6,7,... }
X >4 has satisfying values { x | x>4 }={5,6,7,... }

¢ An assertion p is stronger than an assertion q|if | p’s set of

satisfying values is a subset of g’s set of satisfying values.

o Logically speaking, p being stronger than g (or, q being weaker

than p) means p = q.
oeg,x>4=x>3
What'’s the weakest assertion?

What's the strongest assertion?
In System Specification:

o A weaker invariant has more acceptable object states

e.g., balance > 0 vs. balance > 100 as an invariant for ACCOUNT
o A weaker precondition has more acceptable input values
o A weaker postcondition has more acceptable output values

[TRUE]
[FALSE]

Assertions: Preconditions

LASSONDE

ooooooooooooooooo

Given preconditions P; and P», we say that

’ P> requires less than P; ‘if
P> is less strict on (thus allowing more) inputs than Py does.

{x[P10 }e{x|Pa(x) }

More concisely:
P1 = P2

e.g., Forcommand withdraw (amount: INTEGER),
| P> : amount > 0| requires less than | Py : amount > 0|

What is the precondition that requires the least?

[true]

Assertions: Postconditions

ooooooooooooooooo

Given postconditions or invariants Qq and Q», we say that

’ Q> ensures more than Qq ‘if
Q» is stricter on (thus allowing less) outputs than Qy does.

{x[Q(x) pe{x[Qi(x)}

More concisely:
Qz = Q1

e.g., Forquery g (i: INTEGER): BOOLEAN,
’ Qo :Result = (i>0)A(imod2=0) ‘ ensures more than
|Qy:Result =(i>0)v(imod2=0)]

What is the postcondition that ensures the most? [false]

LASSONDE

ooooooooooooooooo

Motivating Examples (1)

Is this algorithm correct?

——algorithm increment_by_ 9 {
variable i;
{
(# precondition x

(* postcc

assert M
}
}

Q: Is i > 3 is too weak or too strong?
A: Too weak

- assertion i/ > 3 allows value 4 which would fail postcondition.

Motivating Examples (2)

Is this algorithm correct?

ooooooooooooooooo

——algorithm increment_by_9 {
variable i;
{
(* precondition =)

assert |i > 5

assert ‘
}
}

Q: Is i > 5 too weak or too strong?
A: Maybe too strong

- assertion i > 5 disallows 5 which would not fail postcondition.
Whether 5 should be allowed depends on the requirements.

LASSONDE

ooooooooooooooooo

Software Correctness

e Correctness is a relative notion:

consistency of implementation with respect to specification.
= This assumes there is a specification!

¢ We introduce a formal and systematic way for formalizing a
program S and its specification (pre-condition Q and

post-condition R) as a Boolean predicate : | {Q} s {R}

ceg,{i>3}i :=1i+ 9{i>13}

oeg.,{i>5}i :=1i + 9{i>13}

o If @ be proved TRUE, then the S is correct.
eg., {i>5}1 := i + 9 {i>13} can be proved TRUE.

o If cannot be proved TRUE, then the S is incorrect.
eg., {i>3}1 := 1 + 9 {i>13} cannot be proved TRUE.

Hoare Logic s

ooooooooooooooooo

e Consider a program S with precondition @ and postcondition R.

o {Q} s {R} is a correctness predicate for program S

o {Q} s {R} is TRUE if program S starts executing in a state
satisfying the precondition Q, and then:
(a) The program S terminates.
(b) Given that program S terminates, then it terminates in a state
satisfying the postcondition R.

e Separation of concerns
(a) requires a proof of termination .

(b) requires a proof of partial correctness .
Proofs of (a) + (b) imply total correctness .

=,

Hoare Logic and Software Correctness LASSONDE

ooooooooooooooooo

Consider the contract/specification view of an algorithm f

(whose body of implementation is S) as a | Hoare Triple |:
{Q} s {R}
Qis the precondition of f.
S is the implementation of f.
Ris the postcondition of f.

o {true} s {R}

All input values are valid [Most-user friendly]
o {false} s {R}
All input values are invalid [Most useless for clients]

e}

{Q@} s {true}
All output values are valid [Most risky for clients; Easiest for suppliers]

{Q} s {false}

o

All output values are invalid [Most challenging coding task]
o {true} s {true}
All inputs/outputs are valid (No specification) [Least informative]

10 of 35]

Proof of Hoare Triple using wp LASSONDE

ooooooooooooooooo

{@} s{R} = Q= wp(S,R)

e wp(S, R) isthe weakest precondition for S to establish R .

o If @= wp(S, R), then any execution started in a state satisfying Q
will terminate in a state satisfying R.

o If Q= wp(S, R), then some execution started in a state satisfying
Q will terminate in a state violating R.

e Scan be:
o Assignments [x := v]
o Alternations [if ... then ... else ... end]
o Sequential compositions [S1; S
o Loops [while(...) { ... }]

¢ We will learn how to calculate the wp for the above

programming constructs.

Denoting Pre- and Post-State Values LASSONDE

ooooooooooooooooo

¢ In the postcondition , for a program variable x:

o We write to denote its pre-state (old) value.

o We write to denote its post-state (new) value.
Implicitly, in the precondition , all program variables have their
pre-state values.

eg.,{bb>atb :=b - a{b=by-a}
¢ Notice that:

o We may choose to write “b” rather than “by” in preconditions
-+ All variables are pre-state values in preconditions

o We don’t write “by” in program
-+ there might be multiple intermediate values of a variable due
to sequential composition

wp Rule: Assignments (1) o wp Rule: Assignments (3) Exercise LASSONDE
What is the weakest precondition for a program x := x + 110
establish the postcondition x > xo?
{7} x = x + 1{x>Xx0}
For the above Hoare triple to be TRUE, it must be that
wp(x := e, R)=R[x:=e] ?=wp(x := x + 1,X>Xp).
wp(x := x + 1,X>Xp)
R[x := e] means to substitute all free occurrences of variable x in = { Rule of Wp: Assignments }
postcondition R by expression e. X > Xo[X:=Xp+ 1]
= { Replacing X by Xp+1 }
Xo + 1> X0
= {1>0 always true }
True
Any precondition is OK. False is valid but not useful.

wp Rule: Assignments (2) e wp Rule: Assignments (4) Exercise LASSONDE

ooooooooooooooooo

What is the weakest precondition for a program x := x + 110
establish the postcondition x = 237

Recall: {7} x := x + 1{x=23}
{@} s {R} = Q= wp(S,R) For the above Hoare triple to be TRUE, it must be that
?=>wp(x := x + 1,x=23).
How do we prove {Q} x := e {R}? wp(x := x + 1, x=23)
= { Rule of wp: Assignments }
{Q} x := e{R} — Q= R[x:=¢€] X =23[x:=xo + 1]
—_— .
wo(x i= o, R) = { Replacing X by Xp+1 }
Xo+1=23
= { arithmetic }
X0=22

Any precondition weaker than x = 22 is not OK.

e ...

wp Rule: Assignments (4) Revisit LASSONDE

ooooooooooooooooo

Given {??}n:=n+9{n>13}:

. is the weakest precondition (wp) for the given
implementation (n := n + 9) to start and establish the
postcondition (n > 13).

¢ Any precondition that is equal to or stronger than the wp
(n>4) will result in a correct program.

e.g., {n>5}n:=n+9{n> 13} can be proved TRUE.

¢ Any precondition that is weaker than the wp (n > 4) will result
in an incorrect program.
e.g., {n>3}n:=n+9{n> 13} cannot be proved TRUE.
Counterexample: n = 4 satisfies precondition n > 3 but the
output n = 13 fails postcondition n> 13.

[17 of 35|

wp Rule: Alternations (1) LASSONDE

ooooooooooooooooo

B = wp(S1, R)
wp(if B then S; else S; end R)=| A
- B = wp(S,, R)

The wp of an alternation is such that all branches are able to
establish the postcondition R.

S——

wp Rule: Alternations (2) LASSONDE
Recall: {@} s {R} = Q= wp(S,R)
How do we prove that {Q} if B then S; else S; end {R}?
{0}
if B then

{on B} Si {R}
else

end

{r}

{for-B} S {R}

{@} if B then S; else S, end {R}

<~

S——

wp Rule: Alternations (3) Exercise LASSONDE

{QA B }S;{R} (QA B) = wp(S;, R)
A — | A
{Qr-B } S {R} (Qn-B) = wp(S:, R)

ooooooooooooooooo

Is this prog

ram correct?

{x>0ny>0}
if x > y th
bigger :=
else
bigger :=
end

{bigger > smaller}

en
x ; smaller :

Il
<

vy ; smaller := x

bigger := x ; smaller :=
{bigger > smaller}

({(X>0/\y>0)/\(x>y)})
Yy

A
{(x>0Ay>0)A=(x>Yy)}
bigger := vy ; smaller := x
{bigger > smaller}

LASSONDE

ooooooooooooooooo

wp Rule: Sequential Composition (1)

Wp(S1 7 827 R) = Wp(S17 Wp(S27 R))

The wp of a sequential composition is such that the |first phase

establishes the wp for the ’ second phase ‘ to establish the
postcondition R.

21 of 35]

LASSONDE

ooooooooooooooooo

wp Rule: Sequential Composition (2)

Recall:
{@} s {R} = Q= wp(S.R)

How do we prove {Q} Sy ; S {R}?

{@Q}S1 i S2{R} < Q= wp(Sy, wp(Sz, R))

wp(Sy ; S, R)

wp Rule: Sequential Composition (3) Exerci:igsom

ooooooooooooooooo

Is { True } tmp

:= x; x :=vy; y := tmp{ x>y } correct?

If and only if True = wp(tmp := x ; x =y ; y := tmp, X> V)

wp(tmp :=
= { wp rule
wp(tmp :=
= { wp rule
wp(tmp :=
= { wp rule
wp(tmp :=
= { wp rule
wp(tmp :=
= { wp rule

X 7

= tmp|, X>Y)

X 1=y iy
for seg. comp. }

x,wWp(x :=y ; [y := tmp| x>y))

for seg. comp. }

<, Wp(x := y, wp(y := tmpax>)))

for assignment }

x, wp(x :=y,[x]>tmp))

for assignment }

<.y [imp)

for assignment }

y>x

-+ True = y > x does not hold in general.
.. The above program is not correct.

e —,

Loops s

ooooooooooooooooo

e Aloop is a way to compute a certain result by successive
approximations.
e.g. computing the maximum value of an array of integers
e Loops are needed and powerful
e But loops very hard to get right:
o “off-by-one” error
o Not establishing the desired condition

o Improper handling of borderline cases
o Infinite loops

[partial correctness]
[partial correctness |
[partial correctness]

[termination]

LSSoNDE

Correctness of Loops

How do we prove that the following loop is correct?

{0}

Sinit

while (B) {
Shody

}

{R}

In case of C/Java/PlusCal, | B| denotes the stay condition.
o In TLA+ toolbox, there is not native, syntactic support for

model-checking the total correctness of loops.
o Instead, we have to manually add assertions to encode:

e LOOP INVARIANT [for establishing partial correctness |
e LOOP VARIANT [for ensuring termination |

LSSoNDE

Specifying Loops

¢ Use of loop invariant (LI) and loop variant (LV).
o LI: Boolean expression for measuring/proving partial correctness
o Typically a special case of the postcondition.
e.g., Given postcondition “Result is maximum of the array”:
LI can be “Result is maximum of the part of array scanned so far’.
o Established before the very first iteration.
o Maintained TRUE after each iteration.
o LV: Integer expression for measuring/proving fermination
¢ Denotes the “number of iterations remaining”
e Decreased at the end of each subsequent iteration
o Maintained non-negative at the end of each iteration.
e As soon as value of LV reaches zero, meaning that no more iterations
remaining, the loop must exit.

¢ Remember:
total correctness = partial correctness + termination

LSSoNDE

Specifying Loops: Synta

CONSTANT ...
I(var_list)
V(var_1list) == ...

—-algorithm MYALGORITHM {

1ist =)

variables ..., variant_pre = 0, variant_post = 0;
{
assert Q; (#* Precondition =)
Sinit
assert I(...); (* Is LI esta *)
while(B) {
variant pre := V(...);
Sbody
variant_post := V(...);

assert variant_post >= 0;

assert variant_post < variant_pre;
assert I(...); (* Is LI
}

assert R; (# Postcondition %)

preserved? %)

27 of 35]

LSSoNDE

Specifying Loops: Runtime Checks (1)

Loop
Invariant
Violation

Postcondition
Violation

V20AV<Y, !

Sbodyl
V<ovVzV,

B

IR E TR R R >

Specifying Loops: Runtime Checks (2)

EASS0NDE
1 | I(di) == (1 <= 1) /\ (i <= 6)
2 |V(i) == 6 - 1
3 | ——algorithm loop invariant_test
4 variables i = 1, variant_pre = 0, variant_post = 0;
5 {
6 assert I(i);
7 while (i <= 5) {
8 variant_pre := V(i);
9 i =1+ 1;
10 variant_post := V(1i);
11 assert variant_post >= 0;
12 assert variant_post < variant_pre;
13 assert I(i);
14 } o
15 }
L1: Changeto1 <= i /\ i <= 5fora Loop Invariant Violation.
L2: Changeto 5 - i fora Loop Variant Violation.
Specifying Loops: Visualization LASSONDE

Exit condition
Previous state

Initialization Invariant Postcondition

-
7
Bod
Body y Boly

“. Bo

U
\
\

Digram Source: page 5 in Loop Invariants: Analysis, Classification, and Examples
g pag P iz P

LASSONDE

ooooooooooooooooo

Proving Correctness of Loops (1)

{0}

Sinit

assert I(...);

while(B) {
variant_pre := V(...);
Sbody
variant_post := V(...);
assert variant_post >= 0;
assert variant_post < variant_pre;
assert I(...);

}

{R}

o Aloop is partially correct if:
e Given precondition Q, the initialization step Sj,;; establishes L/ /.
e Atthe end of Speqy, if not yet to exit, L/ [is maintained.
e If ready to exit and L/ | maintained, postcondition R is established.
o Aloop terminates if:
e Given L/ I, and not yet to exit, Speq, maintains LV V as non-negative.
e Given L/ /, and not yet to exit, Sp,q, decrements LV V.

LASSONDE

ooooooooooooooooo

Proving Correctness of Loops (2)

e Aloop is partially correct if:
o Given precondition Q, the initialization step Sj, establishes L/ .
o Atthe end of Spogy, if Not yet to exit, L/ /is maintained.
{I'n B} Spoay {1}
o |f ready to exit and L/ | maintained, postcondition R is established.

¢ Aloop terminates if:
o Given LI I, and not yet to exit, Spoq, Maintains LV V as non-negative.
’{//\B} Shoay {V >0} \
o Given LI I, and not yet to exit, Spoqy decrements LV V.
| {17 B} Soooy {V < Vo} |

Index (1) LassoNpE

|[Learning Objectives|

|Assertions: Weak vs. Strong|

Assertions: Preconditions

A rtions: P

ndition

[Motivating Examples (1)|

[Motivating Examples (2)|

[Software Correctness|

|Hoare Logic and Software Correctness|

[Proof of Hoare Triple using wp|

[Denoting Pre- and Post-State Values|

Index (2) LassoNpE

(wp Rule:

Assignments (1)|

|wp Rule:

Assignments (2)|

|wp Rule:

Assignments (3) Exercise|

|wp Rule:

Assignments (4) Exercise|

|wp Rule:

Assignments (5) Revisit|

[wp Rule:

Alternations (1)

|wp Rule:

Alternations (2)|

(wp Rule:

Alternations (3) Exercise|

|wp Rule:

Sequential Composition (1)|

(wp Rule:

Sequential Composition (2)|

|wp Rule:

Sequential Composition (3) Exercise|

Index (3)

LSSoNDE

|Correctness of Loops|

[Specifying Loops|

[Specifying Loops

: Syntax|

[Specifying Loops

: Runtime Checks (1)|

|Specifying Loops

: Runtime Checks (2)|

[Specifying Loops

: Visualization|

[Proving Correctness of Loops (1)|

[Proving Correctness of Loops (2)|

