Verification by Model Checking

EECS4315 Z:
Mission-Critical Systems

YORKQI iir 202

UNIVERSITE -
UNIVERSITY CHEN-WFEI WANG

http://www.eecs.yorku.ca/~jackie

I

Motivation for Formal Verification LASSONDE

Safety-Critical Systems

e.g., shutdown system of a nuclear power plant

¢ Mission-Critical Systems

e.g., mass-produced computer chips

Formal verification of the correctness of critical systems can

prevent loss of fortune or even lives.

Formal verification consists of:

1. Systems:
Need a specification language for modelling abstractions.

2. Properties: Need a specification language for expressing
(e.g., safety, temporal) concerns.

3. Verification: Need a systematic method for establishing that
a system satisfies the desired properties.

The earlier errors are caught in the course of system development,

the cheaper it is to rectify.

o e.g., Much cheaper to catch an error in the design phase than
recalling defected products after release.

_

I

Example of Formal Verification

Pentium FDIV bug https://en.wikipedia.org/wiki/Pentium_FDIV_bug

The Pentium FDIV bug is a hardware bug affecting the floating-point unit (FPU) of

the early Intel Pentium processors. Because of the bug, the processor would return

incorrect binary floating point results when dividing certain pairs of high-precision
numbers.

In December 1994, Intel recalled the defective processors ... In its 1994 annual
report, Intel said it incurred “a $475 million pre-tax charge ... to recover replacement
and write-off of these microprocessors.”

In the aftermath of the bug and subsequent recall, there was a marked
increase in the use of formal verification of hardware floating point operations across
the semiconductor industry. Prompted by the discovery of the bug, a technique ...

called “word-level model checking” was developed in 1996. Intel went on to use
formal verification extensively in the development of later CPU architectures. In the
development of the Pentium 4, symbolic trajectory evaluation and theorem proving
were used to find a number of bugs that could have led to a similar recall
incident had they gone undetected.

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

I

Classification of Verification Methods

¢ Degree of Automation: Automatic, Interactive, or Manual
* ModelCheck-based vs. Proof-based
o Proof-based:
o The system (abstractly) described as a set of formulas I
e Properties specified as a set of formulas ¢

e Prove (automatically or interactively) that T+ ¢ [undecidable]
i.e., I can be derived to ¢ (via inference rules).
o Check-based:
o The system (abstractly) described as a finite model M
o Properties specified as a set of formulas ¢

e Decide (automatically) that M E ¢ [decidable, algorithmic]
i.e., Traversing M'’s state/reachability graph decides if ¢ is satisfied.
¢ Domain of Application
o Hardware vs. Software
o Sequential vs. Concurrent
o Reactive (e.g., bridge controller) vs. Terminating (e.g., sorting alg.)

e Pre-development vs. Post-development

I

Verification via Model Checking LASSONDE

» Automatic, Check-based
¢ Intended for reactive, concurrent systems
o Reactivity:
Continuous reaction to stimuli from the environment
e.g., communication protocols, operating systems, embedded
systems, etc.
o Concurrency:
Simultaneous execution of (independent or inter-dependent)
system units, each of which evolving its own states
e Testing of concurrent, reactive systems is hard:
o Many scenarios are non-reproducible.
o Hard to systematically cover all important interactions
o E. W. Dijkstra: Program testing can be used to show the
presence of bugs, but never to show their absence!

¢ Originated as a post-development method

e But should be used as pre-development method to save cost

I

Model Checking: Temporal Logic

e System
o A system model M is a labeled transition system (LTS) with a
(large) number of states and transitions between states.
o A model of an actual physical system abstracts away details that
are irrelevant to the properties to be checked.
* Properties
o Temporal logic (TL) incorporates the notion of timing.
o A TL formula ¢ is not statically true or false.
o Instead, the truth of a TL formula ¢ depends on where the SUV
dynamically evolves into (by following transitions).
¢ Verification
o A computer program, called a model checker , takes as inputs M
and ¢, and decides if M = ¢
¢ Yes = All reachable states of M satisfy ¢.
e No = An error trace, leading to a state satisfying —¢, is generated.
This facilitates debugging through reproducing a problematic scenario.
¢ Unknown = The checker runs out of memory due to state explosion.

I

Linear-Time Temporal Logic (LTL) LASSONDE

e [TL (Linear-time Temoral Logic) has connectives/operators
which allow us to refer to the future.

e Two features of LTL :

o (Computation) Path:
Time is modelled as an infinite sequence of states.
o Undetermined Future:
Alternative paths exist, one of which being the “actual” path.

I

LTL: Syntax in CFG (1) LASSONDE
¢ uw= T [true]
| 1 [false]
| p [propositional atom |
| (-¢) [logical negation]
| (pno) [logical conjunction]
| (pvo) [logical disjunction]
| (o= 9) [logical implication]
| (X¢) [neXt state |
| (Fo¢) [some Future state |
| (Go) [all future states (Globally)]
| (5U0) [Onei1]
| (pWo) [Weak-until]
| (¢Ro) [Release]

p denotes atomic, propositional statements
e.g., Printer 1tr2 is available.
e.g., Reading of sensor s3 exceeds some threshold.

e.g., The sudoku board is filled out with a correct solution.

I

LTL: Syntax in CFG (2) LASSONDE
¢ u= T [true]
| 1 [false]
| p [propositional atom |
| (-¢) [logical negation |
| (pnro) [logical conjunction |
| (¢pVvo) [logical disjunction |
| (¢ =9) [logical implication]
| (X¢) [neXt state]
| (Fo) [some Future state |
| (Go¢) [all future states (Globally)]
| (0U9) [Ontil]
| (¢Wo) [Weak-until]
| (¢Ro) [Release]

vV and 3 are embedded in defining the temporal connectives.
Universe of disclosure: Set of alternative (computation) paths

I

LTL: Syntax in CFG (3) LASSONDE
¢ = T [true]
| 1 [false]
| p [propositional atom |
| (-¢) [logical negation]
| (pno) [logical conjunction]
| (pvo) [logical disjunction |
| (¢p=9) [logical implication]
| (Xo) [neXt state |
| (Fo¢) [some Future state |
| (Go) [all future states (Globally)]
| (5U0) [Onei1]
| (¢pWo) [Weak-until]
| (¢Ro) [Release]

e Temporal connectives bind tighter than /ogical ones.
e Unary temporal connectives bind tighter than binary ones.
o Use parentheses to force the intended order of evaluation.

o Use a parse tree, a LMD, or a RMD to verify the order of evaluation.

LTL: Symbols of Unary Temporal Operators

Temporal Connective Letter Symbol

Next X O
Future/Eventually F &
Global/Henceforth G O

Lot hH

Practical Knowledge about Parsing

LASSONDE
e A context-free grammar (CFG) g

o defines, recursively, all (typically an infinite number of) possible strings
that can be derived from it.

o contains both terminals/tokens (base cases) and
non-terminals/variables (recursive cases)

e Given an input string s, to show that s € L(g), we can either:

o Draw a parse tree (PT) of s, based on g, where:

o All internal nodes (i.e., roots of subtrees) are ¢ (non-terminals).
o All external nodes (a.k.a. leaves) are characters of s.

o Perform a left-most derivation (LMD), by starting with ¢ (the start
variable) and continuing to substitute the leftmost non-terminal, until no
non-terminals remain.

o Perform a right-most derivation (RMD), by starting with ¢ (the start
variable) and continuing to substitute the rightmost non-terminal, until no
non-terminals remain.

e PTs, LMDs, and RMDs are legitimate, and equivalent, ways for

showing interpretations of a valid LTL formula string.

I

LTL: Exercises on Parsing Formulas

e Draw and compare the parse trees of:
FpnanGg=pUr
vs. F (pAG g=pUr)
vs. F pAr(G g=pUr)
vs. F pA((G g=p)Ur)
e The above formulas are all derivable from the grammar of LTL.
o Show using the LMD (Left-Most Derivations)
o Show using the RMD (Right-Most Derivations)

3010

I

LTL Formulas: More Exercises

Draw the parser trees for:

(F(p=Gr)v((-q)Up))
vs. Fp=Grv-qUp

vs. F((p=Gr)v(-qUp))

1) 3D

I

LTL Formulas: Subformulas LASSONDE

Given an LTL formula ¢, its subformulas are all those whose
parse trees (rooted at ¢) are subtrees of ¢’s parse tree.

e.g., Enumerate all subformula of (F(p=Gr)v ((-q)Up)).

p [appearing twice in the parse tree]
p

Gr

p=(Gr)

F(p=(Gr))

q

-q

p
(-q)u
(F(p:'Gr)v((q)Up))

CooNoOGORWON A

—t

1B 32

LTL Semantics: ‘ié%s%som

Labelled Transition Systems (LTS)

» Definition. Given that P is a set of atoms/propositions of
concern, a transition system M is a formal model
represented as a triple M = (S, —, L):

o S
A finite set of states
o —»: S« S
A transition relation on S
o L:S—>P(P)
A labelling function mapping each state to its satisfying atoms
Assumption. No state of the system can deadlock:
From any state, it's always possible to make progress
(by taking a transition).

VseseS=(35'es’ e SA(s,s)e—)

b ot o

Background for Self-Study

» Topics of sets and relations were covered in EECS3342.
* Slide [Tg to Slide g8 contain what you should recall.

Lot o

I

Set of Tu pleS LASSONDE

Given nsets Sy, S, ..., Sy, a cross/Cartesian product of
theses sets is a set of n-tuples.

Each n-tuple (eq, eo,...,€p) contains n elements, each of
which a member of the corresponding set.

SixSyx---xSy={(ey,6€2,...,6n) | €€ Sjanl1<i<n}

e.g., {a, b} x{2,4} x {$,&} is a set of triples:
{a,b} x{2,4} x {§, &}
{(e1,e2,€3) |e1e{ablnexec{2,4} neze{$ &} }

[(a2,%),(a,2,&),(a,4,%),(a,4,&),
) (b,2,%),(b,2,&),(b,4,$),(b,4,&)

15 ot o

I

Relations (1): Constructing a Relation

A relation is a set of mappings, each being an ordered pair
that maps a member of set S to a member of set T.

e.g.,Say S={1,2,3} and T = {a, b}

o @ is the minimum relation (i.e., an empty relation).

° is the maximum relation (say ry) between S and T,
mapping from each member of S to each memberin T:

{(1,2),(1,b),(2,2),(2,0),(3,a),(3,0)}

o {(x,¥)] (x,¥) e Sx T arx+1}is arelation (say r.) that maps only
some members in S to every member in T:

{(2,a),(2,0),(3,a),(3,b)}

19 ot 5

I

Relations (2.1): Set of Possible Relations [sono:

e We use the power set operator to express the set of all
possible relations on S and T:

P(SxT)
Each member in P(S x T) is a relation.

* To declare a relation variable r, we use the colon (:) symbol to
mean set membership:

r:P(SxT)
e Or alternatively, we write:
r:S« T
where the set S < T is synonymous to the set P(Sx T)

ZAN W) B3

I

Relations (2.2): Exercise
Enumerate {a,b} < {1,2,3}.
e Hints:
o You may enumerate all relations in P({a, b} x {1,2,3}) via their
cardinalities: 0,1, ..., |[{a, b} x {1,2,3}.

o What's the maximum relation in P({a, b} x {1,2,3})?
{(a1),(a2),(a3),(b,1),(b,2),(b,3) }
e The answer is a set containing all of the following relations:

o Relation with cardinality 0: @
o How many relations with cardinality 1? [(Haor123)) -~ g]

o How many relations with cardinality 2? [(H{@2}<[1:28}) = &5 _ 15

o Relation with cardinality |{a, b} x {1,2,3}|:
{(a1),(a,2),(a3),(b,1),(b,2),(b,3) }

I

Relations (3.1): Domain, Range, Inverse [isonc:

Given a relation
r={(@a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

* [domain of r|: set of first-elements from r
o Definition: dom(r)={ d|(d,r')er}
o e.g.,dom(r)={a,b,c,d, e,f}

e | range of r |: set of second-elements from r

o Definition: ran(r) = { r'| (d,r")er }
o e.g.,ran(r)={1,2,3,4,56}

° : a relation like r with elements swapped
o Definition: r' = { (r',d) | (d,r')er}
o eg.,r'={(1,a),(20b),(3c)(4a),(50b),(6,c),(1,d),(2e),(3,}

P ot hH

I

Relations (3.2): Image LASSONDE

Given a relation
r=1{(@ 1), (b 2),(c,3), (a4), (b 5),(c,6),(d 1), (e 2), (f, 3)}
’ relational image of r over set s ‘: sub-range of r mapped by s.

o Definition: r[s]={r"|(d,r')erndes}
o eg., r[{ab}]={1,2,4,5}

X\ MY

I

Relations (3.3): Restrictions

Given a relation
r=1{(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

°] domain restriction of r over set ds |: sub-relation of r with domain ds.
o Definition: ds<ir={ (d,r")| (d,r')erndeds}
© eg7 {a7 b} <] r = {(a7 1)7 (b72)7 (a’4)7 (b75)}

° ’ range restriction of r over set rs ‘: sub-relation of r with range rs.

o Definition: ri>rs={ (d,r') | (d,r')yernr'ers}
o eg.,re{1,2}={(a1),(b2),(d1),(e2)}

27w B2

I

Relations (3.4): Subtractions

Given a relation
r=1{(a1), (b, 2), (c, 3), (a4), (b,5), (c, 6), (d, 1), (e, 2), (, 3)}

°] domain subtraction of r over set ds \: sub-relation of r with domain not ds.
o Definition: ds<ir={ (d,r") | (d,r')ernd¢ds}
© eg7 {a7 b} <]r = {(073)7 (c7 6)7 (d7 1)7 (e72)7 (f73)}

° ’ range subtraction of r over set rs ‘: sub-relation of r with range not rs.

o Definition: re=rs={ (d,r')| (d,r'yernr ¢rs}
o eg, re{1,2}={(c3),(a4),(b5),(c6),(f,3)}

ZASW) B3

I

Functions (1): Functional Property Retoue

e Arelationronsets Sand T (i.e.,, r ¢ S<> T)is also a function

if it satisfies the functional property:
isFunctional (r)

<
Vs, ti,to e (SeSAteTAbeT)=((s,ti)ern(s,b)er=1t=b)
o Thatis, in a function, it is forbidden for a member of S to map to
more than one members of T.
o Equivalently, in a function, two distinct members of T cannot be mapped
by the same member of S.
e e.g.,Say S={1,2,3} and T = {a, b}, which of the following
relations satisfy the above functional property?

o SxT [No]
Witness 1: (1, a), (1,b); Witness 2: (2, a), (2,b); Witness 3: (3, a), (3, b).

o (SxT){(x.y)| (x,y)eSxTax=1} [No]
Witness 1: (2, a), (2, b); Witness 2: (3, a), (3,b)

© {(1,8),(2,[))} [Yes]

I

Functions (2.1): Total vs. Partial LASSONDE

Given arelationre S« T
e ris a partial function if it satisfies the functional property:

<= (isFunctional (r) Adom(r)c S)

Remark. r ¢ S » T means there may (or may not) be s¢ S s.t.
r(s) is undefined (i.e., r[{s}] = @).
°eg.{{(2a),1,b)}.{(2a),3a)(1,b)}}<{1,23}»{ab}

e ris a total function if there is a mapping for each s e S:

<= (isFunctional (r) Adom(r) =S)

Remark. r ¢ S— T implies r ¢ S » T, but not vice versa. Why?
o eg., {(2,a),(3,a),(1,b)} €{1,2,3} - {a,b}
o eg.,{(2,a),(1,b)} ¢{1,2,3} > {a, b}

P orhH

Functions (2.2): LASSONDE

Relation Image vs. Function Application

® Recall: A function is a relation, but a relation is not necessarily a function.
® Say we have a partial function f ¢ {1,2,3} - {a, b}:
f= {(3, a)7 (17b)}

o With f wearing the relation hat, we can invoke relational images :

fli{3y] = {a
fi{13] = {b}
fl{2}] = o

Remark. = |f[{v}]| <1
o each member in dom(f) is mapped to at most one member in ran(f)
e each input set {v} is a singleton set

o With f wearing the function hat, we can invoke functional applications :

f3) = a
f1)y = b
f(2) is undefined

I

LTL Semantics: Example of LTS

* We may visual a transition system M using a directed graph:
o Nodes/Vertices denote states.
o Edges/Arcs denote fransitions.
o Exercises Consider the system with a counter ¢ with the
following assumption:
0<c<3

Say c is initialized 0 and may be incremented (via a transition

inc, enabled when ¢ < 3) or decremented (via a transition dec,

enabled when ¢ > 0).

o Draw a state graph of this system.

o Formulate the state graph as an LTS (via a triple (S,—, L)).
Assume: Set P of atomsis: { c>1,c<1}

ZAS W) 32

LTL Semantics: More Example of LTS

M= (S, —,L):
o S= {30,31,82}
o — ={(S0,51),(S0,S2),(S1,50), (51,52),(52,82) }

o L= {(805 {pv q})v (S1v{q7 I’}), (327 {I’})}

CLINe) MY

I

LTL Semantics: Paths LASSONDE

Definition. A path in a model M = (S, —, L) is an infinite
sequence of states s; € S, where i > 1, such that s; — sj,1.
o We write the path, starting at the initial state sy, as

S —> S — ...

o Note. sy in the above path pattern denotes the first, initial state of
the path, but in general, the actual name of the initial state may
cause confusion, e.g., So.

o A patht=s — s, — ... represents a possible future of M.

o We write 7' for the suffix of path =: a path starting from state s;.
e.g.,7r3:s3—>s4—>...
eg., ' =7

G e} M3

LTL Semantics: All Possible Paths

Given a state s, we represent all possible (computation)
paths as a computation tree by unwinding the transitions.

e.g.

Cyae) B3y

I

LTL Semantics: Path Satisfaction (1)

Definition. Given a model M = (S,—, L) and a path
m =81 — ... in M, whether or not path = satisfies an LTL
formula is defined by the satisfaction relation & as follows:

p < pel(s)
.
1
—¢ =(mE ¢)

PIAPy = TEGATE D
P1VP2 = TEQVTEQD
P1=>¢2 = TEQI =>TEd

203 03 3 3 3 3
L L | IO | s ' NS | BN I

Tips. To evaluate 7 = ¢1 A ¢2 (and similarly for -, v, =):
o If ¢4 and ¢, are sophisticated, decompose it to 7 £ ¢1 and 7 E ¢o.
o Otherwise, directly evaluate ¢1 A ¢ on s;.

I

LTL Semantics: Path Satisfaction (2.1)

Definition. Given a model M = (S,—, L) and a path
m =81 — ... in M, whether or not path = satisfies an LTL
formula is defined by the satisfaction relation & as follows:

T £ X¢ — 7wlEe¢ .
T £ Gp <— (Vieiz1=7'E¢)
T £ F¢p <« (Fieiz1aneg)

34 o1 5

I

LTL Semantics: Model Satisfaction (1)

¢ Definition. Given:
o amodel M = (S,—,L)
o astate se S
o an LTL formula ¢

if and only if for every path = of M starting at s, 7 = ¢.

M,sE¢p < (Vr e (m=8§—...)=>7TE®)

¢ When the model M is clear from the context, we write: .

35 015

LTL Semantics: Model Satisfaction (2.1) |isooe

Consider the following system model:

p’ q

a, r r
o SgET [frue]
o SpH L [frue]
o SoEPAQ [frue]
o SET [false]

i) M3Y2

LTL Semantics: Model Satisfaction (2.2)

Consider the following system model:

° S FXq [false |
Witness Path: sp — [sz | — s2--- i Xq

o 5o Xr [true]

° Sol=X(C]/\I’) [fa/se]
Witness Path: sp — [sz | — sz~ # X(q A T)

© Sol:X(q=>f) [true]

Cyare) By

LTL Semantics: Model Satisfaction (2.3) |ssonoe

Consider the following system model:

, I r
o 5o=G-(pnar) ! [frue]
s=Go¢ < ¢ holds on all reachable states from s.
° SoFGr [false]
Witness Path: [so | — s — sz # Gr
° s2=Gr [true]

CHiare) MY

LTL Semantics: Model Satisfaction (2.4) | ssonoe

Consider the following system model:

q, r r
o soF-(par) [true]
o sokEFr [true]
o soE=F(gnar) [false]

¢ Isis the case that g A r is eventually satisfied on every path?
e No. Witness Path: sp — s — Sp — ...
o SokE=Fr [true]

39 o1 5

I

LTL Semantics: Nested G and F (1)

Given a model M = (S,—, L) and a state s¢ S:
s = FG¢ means that:
o Each path starting with s is such that eventually,

¢ holds continuously.
o For all paths = starting with s (i.e., t=s—[...):

Jieiz1n (Vjej2i=r'r0¢)
¢ Q. How to prove and disprove the above formula pattern?
o Hint. Structure of pattern: Vre... = (Jie---A(Vje... = ¢))

dll ot A5

LTL Semantics: Model Satisfaction (2.5.1) |ssooe

Consider the following system model:

()LD

q, r r

o 5oeFGr [false]
Witness: s — Sy — Sp — S1 — ...

o 5o=FG(pvQ) [false]
Witness: sp — S —> So —> So — ...

o s5o=FG(pvr) [true]

Justification: All possible paths from sy involve sp, sy, and sp,
all of which satisfying p v r.

di ot hH

I

LTL Semantics: Nested G and F (2)

Given a model M = (S,—, L) and a state s¢ S:
sk F¢p1 = FG¢, means that:
o Each path = starting with s is such that
if 1 eventually holds on 7, then ¢, eventually holds continuously
on the same .

Vremr=8— ... =
(Fieiz1an=¢r)
=

(Bieiz1a (Vjej2i=n'rp))
¢ Q. How to disprove the above formula pattern?
¢ A. Find a witness path = which makes the “inner” implication false.

a7 ot hH

LTL Semantics: Model Satisfaction (2.5.2) |.assonoe

Consider the following system model:

p, q

q, r r
o So=F(-gar)=FGr [frue]
Justification:
e S) — Sy — Sy —> ... hever satisfies —-g A r.
e §) — S — S —> S — ... eventually satisfies —~g A r continuously.
e S) — Sp — S, —> ... eventually satisfies —q A r continuously.
o so=F(-gvr)=FGr [false]
Witness: sy — sy —> Sp — ... eventually satisfies -q v r, but

there is no point in this path where r holds continuously.

I

LTL Semantics: Nested G and F (3)

Given a model M = (S,—, L) and a state se S:
o s GF¢ means that:
o Each path starting with s is such that continuously,

¢ holds eventually.
= ¢ holds infinitely often!

o For all paths 7 starting with s (i.e., r=s—[...):
Viei>1= (Jjej2inn i ¢)

e Q. How to prove and disprove the above formula pattern?

o Hint. Structure of pattern: Vre... = (Vie...= (Jje--- A 9))

4ViWe) M2Y:

LTL Semantics: Model Satisfaction (2.6) |ssono

Consider the following system model:

o 50 GFp [false]
Witness: In sp — s, — ..., pis not satisfied infinitely often.

o 5o GF(pvr) [true]

o s GFp=GFr [true]
Hint: Consider paths making the antecedent GF p true.

o s5g=GFr=GFp [false]
Witness: sp — s — ... [Why?]

as ot hH

I

LTL Semantics: Path Satisfaction (2.2)

Definition. Given a model M = (S,—, L) and a path
m =8 — ... in M, whether or not path = satisfies an LTL

formula is defined by the satisfaction relation = as follows:

7l e ¢
T E ¢1Udgs — Jiei>1A A)
(Vjel<j<i-1 = 7 E=¢q)

$1U o
T F p1Wh = (v (Vkok21:»77kﬁ01))
' e ¢y
Jiei>1A| A
T E ¢1R¢2 = (((vj.15jsi:>7r/'=¢2))

v (Vkek21= Kk ¢p)

db ot hH

I

LTL Semantics: Recall Model Satisfaction |, sono:

¢ Definition. Given:
o amodel M = (S,—, L)
o astate se S
o an LTL formula ¢

M, s ¢ |if and only if for every path 7 of M starting at s, 7 = ¢.
M,sEp < (Vme (n=8—...)=>7TE})

» When the model M is clear from the context, we write: .

a7 ot hH

LTL Semantics: Model Satisfaction (3.1) |issonoe

Consider the following system model:

, P r
o sp=pUr ! [frue]
Sp (satisfying p) branches out to s; or sp (both both satisfying r).
o Sg=pWr [true]
P1 U2 = o1 W
o So=rRp [false]
Witness: Say =5y — S1 — Sp — S1.... m# parand = # Gp.

dx ot A5

LTL Semantics: Model Satisfaction (3.2) |issono

Consider the following system model:

, r r

o sonz(pvr)U(pAr)q [false]
Witness: In sy — sy — Sp —> Sq..., p A r never holds.

o SoE(pvr)W(par) [true]
It is the case that: sop = G(p v r).

o soE=(pAar)R(pvr) [frue]

It is the case that: s = G(p Vv r).

a9 ot A5

I

Clarification on the “Until” Connective

e 1 U ¢, requires that:

o ¢ must eventually become true.

o Before ¢o becomes true, ¢y must hold.
» Exercise. Say:

o Atom t: | was 22.
o Atom s: | smoke.

Formulate “I had smoked until | was 22” using LTL.
o sUt [inaccurate]
o ¢1 U ¢o does not insist after eventually becomes frue.

o “l smoked both before and after | was 22” satisfies sU .
o Solution? [sU(tA(G-5))]

STIN) B

I

Formulating English as LTL Formulas (1) |.assonoe

* Assume the following atomic propositions:
busy, requested, acknowledged, enabled, floor2, floor5,
directionUp, buttonPresssed5.
It is impossible to reach a state where the system is started but
not ready.
o G-(started A -ready) [-(F(started A -ready))]
Whenever a request is made, it will be eventually be
acknowledged.
o G(requested = F acknowledged)
A certain process will always be enabled.
o G enabled
An upwards travelling lift at the second floor does not change its
direction when it has passengers wishing to go to the fifth floor.

o

G floor2 A directionUp A buttonPresssed5
= (directionUpU floor5)

o lIs it ok to change from U to W?

) 2D

Formulating English as LTL Formulas (2) [isone:

Assume the following atomic propositions:
requested, waiting, granted, noOnelnCS

Whenever a process makes a request, it starts waiting. As
soon as no other process is in the critical section, the process
is granted access to the critical section.

G (requested = (noOnelnCS R waiting))
Q. Does the above formulation guarantee no starvation?

Hint. Check the formal definition of R.

VA B

I

Formulating English as LTL Formulas (3) |.assonoe

Assume the following atomic propositions:
degReqFullfilled, allowedForGraduation

Until a student fullfils all their degree requirements, their
academic staus remains “not allowed for graduation”. The
change of status, when qualified, may not be instantaneous to
account for human/manual processing.

-allowedForGraduation W
(degReqFulfilled A G allowedForGraduation)

Q. Does the above formulation account for situations where a
student never fulfills their degree requirements?

Hint. Check the formal definition of W.

X) Y

Index (1)

Viotivation for Eormal Verification
[Example of Formal Verificationl
Classification of Verification Methods

IVerlllcahon via Model Cliecklna

Model Checking: Temporal Logid
[Cinear-Time Temporal Logic (LTL)
ICTL: Syntax in CFG (1)
LCTL: Syntax in CFG (2]
LCTL: Syntax in CFG (3]

. OYMDOIS Oof Unary Iemporal Operator

ractical Knowledge about Parsin

Index (2)
l:| L: Exercises on Parsmg Formula§

LILL _Formulas: Nore Exercises

1L _Formulas: Subformulas

T Semantfics:]

[Cabelled Transition Systems (LCTS)
BacRgrouna for Self-Study]

5 ~Tas
[Relations {1): Constructing a Relation|
elations (2.1): Set of Possible Relation
[Relations (2.2): Exercise|
elations (3.1): Domain, Range, Invers

b ot hH

Index (3)
elations (v.<). Ima
[Relations (3.3): Restrictions
elations (v.4). supbtraction
unctions . Functional Froper
unctions (£.1): lotal vs. Fartia

[Functions (2.2):]
[Relation Tmage vs. Function Application|

l:l L Semantics: Example of L1 5
[CTC Semantics: More Example of LTS

1L _Semantics: Paths

L1 _Semantics: All Possible Paths

Index (4)

emantics: rFa atisraction

emantics: Path Safisfaction (2.
[ETC Semantics: Model Satisfaction (1)
[CTC Semantics: Model Satisfaction (2.1)]
[CTC Semantics: Model Satisfaction (2.7}
[CTC Semantics: Model Satisfaction (2.3)]
[CTC Semantics: Model Satisfaction (2.4)
emantics: Nested G an
[CTC Semantics: Model Satisfaction (2.5.1)

emantics: Neste an

CTC Semantics: Model Satisfaction (2.5.2)

YA By

Index (5)

emantics: Neste an

[CTC Semantics: Model Satisfaction (2.6)

emantics: Fa atistaction (2.

L1L_Semantics: Becall Model Satistaction

[CTC Semantics: Model Satisfaction (3.7)
[CTC Semantics: Model Satisfaction (3.2)

Claritication on the ~“Until”_Connective

[Formulafing English as LTL Formulas (1)
[Formulafing English as LTL Formulas (2)
[Formulafing English as LTL Formulas (3)

bR ot hH

	Motivation for Formal Verification
	Example of Formal Verification
	Classification of Verification Methods
	Verification via Model Checking
	Model Checking: Temporal Logic
	Linear-Time Temporal Logic (LTL)
	LTL: Syntax in CFG (1)
	LTL: Syntax in CFG (2)
	LTL: Syntax in CFG (3)
	LTL: Symbols of Unary Temporal Operators
	Practical Knowledge about Parsing
	LTL: Exercises on Parsing Formulas
	LTL Formulas: More Exercises
	LTL Formulas: Subformulas
	LTL Semantics: Labelled Transition Systems (LTS)
	Background for Self-Study
	Set of Tuples
	Relations (1): Constructing a Relation
	Relations (2.1): Set of Possible Relations
	Relations (2.2): Exercise
	Relations (3.1): Domain, Range, Inverse
	Relations (3.2): Image
	Relations (3.3): Restrictions
	Relations (3.4): Subtractions
	Functions (1): Functional Property
	Functions (2.1): Total vs. Partial
	Functions (2.2): Relation Image vs. Function Application
	LTL Semantics: Example of LTS
	LTL Semantics: More Example of LTS
	LTL Semantics: Paths
	LTL Semantics: All Possible Paths
	LTL Semantics: Path Satisfaction (1)
	LTL Semantics: Path Satisfaction (2.1)
	LTL Semantics: Model Satisfaction (1)
	LTL Semantics: Model Satisfaction (2.1)
	LTL Semantics: Model Satisfaction (2.2)
	LTL Semantics: Model Satisfaction (2.3)
	LTL Semantics: Model Satisfaction (2.4)
	LTL Semantics: Nested G and F (1)
	LTL Semantics: Model Satisfaction (2.5.1)
	LTL Semantics: Nested G and F (2)
	LTL Semantics: Model Satisfaction (2.5.2)
	LTL Semantics: Nested G and F (3)
	LTL Semantics: Model Satisfaction (2.6)
	LTL Semantics: Path Satisfaction (2.2)
	LTL Semantics: Recall Model Satisfaction
	LTL Semantics: Model Satisfaction (3.1)
	LTL Semantics: Model Satisfaction (3.2)
	Clarification on the ``Until'' Connective
	Formulating English as LTL Formulas (1)
	Formulating English as LTL Formulas (2)
	Formulating English as LTL Formulas (3)

