Review of Math

EECS4315 Z: Mission-Critical Systems Winter 2025

CHEN-WEI WANG

This module is designed to help you review:

- Propositional Logic
- Predicate Logic

Propositional Logic (1)

- A *proposition* is a statement of claim that must be of either *true* or *false*, but not both.
- Basic logical operands are of type Boolean: true and false.
- We use logical operators to construct compound statements.
 - \circ Unary logical operator: negation (\neg)

 Binary logical operators: conjunction (∧), disjunction (∨), implication (⇒), equivalence (≡), and if-and-only-if (⇐⇒).

р	q	$p \land q$	$p \lor q$	$p \Rightarrow q$	$p \iff q$	$p \equiv q$
true	true	true	true	true	true	true
true	false	false	true	false	false	false
false	true	false	true	true	false	false
false	false	false	false	true	true	true

Propositional Logic: Implication (1)

- Written as $p \Rightarrow q$ [pronounced as "p implies q"]
 - We call *p* the antecedent, assumption, or premise.
 - We call *q* the consequence or conclusion.
- Compare the *truth* of $p \Rightarrow q$ to whether a contract is *honoured*:
 - antecedent/assumption/premise p ≈ promised terms [e.g., salary]
 - consequence/conclusion $q \approx$ obligations [e.g., duties]
- When the promised terms are met, then the contract is:
 - *honoured* if the obligations fulfilled. $[(true \Rightarrow true) \iff true]$
 - breached if the obligations violated. $[(true \Rightarrow false) \iff false]$
- When the promised terms are not met, then:
 - Fulfilling the obligation (q) or not (¬q) does not breach the contract.

р	q	$p \Rightarrow q$	
false	true	true	
false	false	true	

Propositional Logic: Implication (2)

There are alternative, equivalent ways to expressing $p \Rightarrow q$: • *q* if *p*

q is true if p is true

◦ *p* only if *q*

If *p* is *true*, then for $p \Rightarrow q$ to be *true*, it can only be that *q* is also *true*. Otherwise, if *p* is *true* but *q* is *false*, then $(true \Rightarrow false) \equiv false$.

<u>Note</u>. To prove $p \equiv q$, prove $p \iff q$ (pronounced: "p <u>if and only if</u> q"):

- p if q [$p \leftarrow q \equiv q \Rightarrow p$]
- *p* **only if** *q*
- *p* is **sufficient** for *q*

 $p \leftarrow q \equiv q \Rightarrow p]$ $[p \Rightarrow q]$

[similar to *q* if *p*]

For q to be true, it is sufficient to have p being true.

• *q* is **necessary** for *p* [similar to *p* **only if** *q*]

If p is true, then it is necessarily the case that q is also true.

Otherwise, if *p* is *true* but *q* is *false*, then $(true \Rightarrow false) \equiv false$.

• q unless $\neg p$

[When is $p \Rightarrow q$ true?]

If q is *true*, then $p \Rightarrow q$ *true* regardless of p.

If q is *false*, then $p \Rightarrow q$ cannot be *true* unless p is *false*.

Given an implication $p \Rightarrow q$, we may construct its:

- **Inverse**: $\neg p \Rightarrow \neg q$ [negate antecedent and consequence]
- **Converse**: $q \Rightarrow p$ [swap antecedent and consequence]
- **Contrapositive**: $\neg q \Rightarrow \neg p$ [inverse of converse]

Propositional Logic (2)

- Axiom: Definition of \Rightarrow
- **Theorem**: Identity of \Rightarrow
- **Theorem**: Zero of ⇒

• Axiom: De Morgan

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

• Axiom: Double Negation

$$p \equiv \neg (\neg p)$$

• Theorem: Contrapositive

$$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$$

7 of 13

true
$$\Rightarrow p \equiv p$$

 $p \Rightarrow q \equiv \neg p \lor q$

false
$$\Rightarrow$$
 p = true

Predicate Logic (1)

 $[-\infty, \ldots, -1, 0, 1, \ldots, +\infty]$

 $[0, 1, ..., +\infty]$

- A *predicate* is a *universal* or *existential* statement about objects in some universe of disclosure.
- Unlike propositions, predicates are typically specified using variables, each of which declared with some range of values.
- We use the following symbols for common numerical ranges:
 - $\circ \mathbb{Z}$: the set of integers
 - $\circ~\mathbb{N}$: the set of natural numbers
- Variable(s) in a predicate may be *quantified*:
 - Universal quantification :

All values that a variable may take satisfy certain property. e.g., Given that *i* is a natural number, *i* is *always* non-negative.

• Existential quantification :

Some value that a variable may take satisfies certain property. e.g., Given that *i* is an integer, *i can be* negative.

Predicate Logic (2.1): Universal Q. (V)

- A *universal quantification* has the form $(\forall X \bullet R \Rightarrow P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- *For all* (combinations of) values of variables listed in *X* that satisfies *R*, it is the case that *P* is satisfied.
 - $\circ \ \forall i \bullet i \in \mathbb{N} \Rightarrow i \ge 0 \qquad [true] \\ \circ \ \forall i \bullet i \in \mathbb{Z} \Rightarrow i \ge 0 \qquad [false]$
 - $\circ \forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i < j \lor i > j$
- Proof Strategies

9 of 13

- **1.** How to prove $(\forall X \bullet R \Rightarrow P)$ *true*?
 - <u>Hint</u>. When is $R \Rightarrow P$ true? [true \Rightarrow true, false $\Rightarrow _$]
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), P(x) holds.
 - Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.
- **2.** How to prove $(\forall X \bullet R \Rightarrow P)$ *false*?
 - <u>Hint</u>. When is $R \Rightarrow P$ false?

[true \Rightarrow false]

[false]

• Give a **witness/counterexample** of $x \in X$ s.t. R(x), $\neg P(x)$ holds.

Predicate Logic (2.2): Existential Q. (∃)

- An existential quantification has the form $(\exists X \bullet R \land P)$
 - X is a comma-separated list of variable names
 - R is a constraint on types/ranges of the listed variables
 - P is a property to be satisfied
- *There exist* (a combination of) values of variables listed in *X* that satisfy both *R* and *P*.
 - $\circ \exists i \bullet i \in \mathbb{N} \land i \ge 0 \qquad [true]$
- ∃i i ∈ Z ∧ i ≥ 0
 ∃i, j i ∈ Z ∧ j ∈ Z ∧ (i < j ∨ i > j)
 - Proof Strategies
 - **1.** How to prove $(\exists X \bullet R \land P)$ *true*?
 - <u>Hint</u>. When is $R \wedge P$ true?
 - Give a **witness** of $x \in X$ s.t. R(x), P(x) holds.
 - **2.** How to prove $(\exists X \bullet R \land P)$ false?
 - <u>Hint</u>. When is *R* ∧ *P* false?
 - Show that for <u>all</u> instances of $x \in X$ s.t. R(x), $\neg P(x)$ holds.
 - Show that for <u>all</u> instances of $x \in X$ it is the case $\neg R(x)$.

10 of 13

[true] [true] [true]

[true < true]

[true \land false, false \land _]

Predicate Logic (3): Exercises

- Prove or disprove: $\forall x \in \mathbb{Z} \land 1 \le x \le 10$) $\Rightarrow x > 0$. All 10 integers between 1 and 10 are greater than 0.
- Prove or disprove: ∀x (x ∈ Z ∧ 1 ≤ x ≤ 10) ⇒ x > 1. Integer 1 (a witness/counterexample) in the range between 1 and 10 is <u>not</u> greater than 1.
- Prove or disprove: ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 1. Integer 2 (a witness) in the range between 1 and 10 is greater than 1.
- Prove or disprove that ∃x (x ∈ Z ∧ 1 ≤ x ≤ 10) ∧ x > 10?
 All integers in the range between 1 and 10 are *not* greater than 10.

Conversions between \forall and \exists :

$$(\forall X \bullet R \Rightarrow P) \iff \neg(\exists X \bullet R \land \neg P) (\exists X \bullet R \land P) \iff \neg(\forall X \bullet R \Rightarrow \neg P)$$

Index (1)

Learning Outcomes of this Lecture Propositional Logic (1) Propositional Logic: Implication (1) Propositional Logic: Implication (2) Propositional Logic: Implication (3) Propositional Logic (2) Predicate Logic (1) Predicate Logic (2.1): Universal Q. (∀) Predicate Logic (2.2): Existential Q. (∃) Predicate Logic (3): Exercises Predicate Logic (4): Switching Quantifications