
Introduction

EECS4315 Z:
Mission-Critical Systems

Winter 2025

CHEN-WEI WANG

Learning Outcomes

This module is designed to help you understand:
● Mission-Critical Systems vs. Safety-Critical Systems
● Code of Ethics for Professional Engineers
● What a Formal Method Is
● Verification vs. Validation
● Catching Defects: When?
● Model-Based Development: EECS3342 vs. EECS4315

2 of 16

What is a Safety-Critical System (SCS)?

● A safety-critical system (SCS) is a system whose failure or
malfunction has one (or more) of the following consequences:○ death or serious injury to people○ loss or severe damage to equipment/property○ harm to the environment

● Based on the above definition, do you know of any systems that
are safety-critical?

3 of 16

Professional Engineers: Code of Ethics

○ Code of Ethics is a basic guide for professional conduct and
imposes duties on practitioners, with respect to society,
employers, clients, colleagues (including employees and
subordinates), the engineering profession and him or herself.○ It is the duty of a practitioner to act at all times with,
1. fairness and loyalty to the practitioner’s associates, employers,

clients, subordinates and employees;
2. fidelity (i.e., dedication, faithfulness) to public needs;
3. devotion to high ideals of personal honour and professional integrity;
4. knowledge of developments in the area of professional engineering

relevant to any services that are undertaken; and
5. competence in the performance of any professional engineering

services that are undertaken.○ Consequence of misconduct?
● suspension or termination of professional licenses● civil law suits

Source: PEO’s Code of Ethics
4 of 16

Developing Safety-Critical Systems

Industrial standards in various domains list acceptance criteria

for mission- or safety-critical systems that practitioners need to
comply with: e.g.,

Aviation Domain: RTCA DO-178C “Software Considerations in

Airborne Systems and Equipment Certification”
Nuclear Domain: IEEE 7-4.3.2 “Criteria for Digital Computers

in Safety Systems of Nuclear Power Generating Stations”
Two important criteria are:
1. System requirements are precise and complete
2. System implementation conforms to the requirements
But how do we accomplish these criteria?

5 of 16

Safety-Critical vs. Mission-Critical?

● Critical :
A task whose successful completion ensures the success of a
larger, more complex operation.
e.g., Success of a pacemaker⇒ Regulated heartbeats of a patient● Safety :
Being free from danger/injury to or loss of human lives.● Mission:
An operation or task assigned by a higher authority.

Q. Formally relate being safety-critical and mission-critical.
A.○ safety-critical⇒ mission-critical○ mission-critical �⇒ safety-critical● Relevant industrial standard: RTCA DO-178C (replacing
RTCA DO-178B in 2012) “Software Considerations in Airborne

Systems and Equipment Certification”
Source: Article from OpenSystems

6 of 16

Using Formal Methods for Certification

● A formal method (FM) is a mathematically rigorous
technique for the specification, development, and verification of
software and hardware systems.● DO-333 “Formal methods supplement to DO-178C and

DO-278A” advocates the use of formal methods:
The use of formal methods is motivated by the expectation

that, as in other engineering disciplines, performing appropriate

mathematical analyses can contribute to establishing the

correctness and robustness of a design.● FMs, because of their mathematical basis, are capable of:○ Unambiguously describing software system requirements.
○ Enabling precise communication between engineers.○ Providing verification (towards certification) evidence of:● A formal representation of the system being healthy .
● A formal representation of the system satisfying safety properties .

7 of 16

Verification: Building the Product Right?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Implementation built via reusable programming components.○ Goal : Implementation Satisfies Intended Requirements○ To verify this, we formalize them as a system model and a set of
(e.g., safety) properties, using the specification language of a
theorem prover (EECS3342) or a model checker (EECS4315).○ Two Verification Issues:
1. Library components may not behave as intended .
2. Successful checks/proofs ensure that we built the product right , with

respect to the informal requirements. But...
8 of 16

Validation: Building the Right Product?

satisfies?

Implementation

System Properties

System Model
uses

translated

translated

checked/proved?

Library of
Programming
Components

Informal
Requirements

○ Successful checks/proofs �⇒We built the right product .○ The target of our checks/proofs may not be valid:
The requirements may be ambiguous, incomplete, or contradictory .○ Solution: Precise Documentation [EECS4312]

9 of 16

Catching Defects – When?

● To minimize development costs , minimize software defects.● Software Development Cycle:
Requirements → Design → Implementation → Release
Q. Design or Implementation Phase?
Catch defects as early as possible .

∵ The cost of fixing defects increases exponentially as software
progresses through the development lifecycle.● Discovering defects after release costs up to 30 times more
than catching them in the design phase.● Choice of a design language , amendable to formal
verification, is therefore critical for your project.

Source: IBM Report
10 of 16

Model-Based Development in EECS3342

● Modelling and formal reasoning should be performed before

implementing/coding a system.○ A system’s model is its abstraction , filtering irrelevant details.
A system model means as much to a software engineer as a
blueprint means to an architect.○ A system may have a list of models, “sorted” by accuracy:�m0,m1, . . . , mi , mj , . . . ,mn�

● The list starts by the most abstract model with least details.● A more abstract model mi is said to be refined by its subsequent,
more concrete model mj .

● The list ends with the most concrete/refined model with most details.○ It is far easier to reason about:
● a system’s abstract models (rather than its full implementation)
● refinement steps between subsequent models

● The final product is correct by construction .
11 of 16

Model-Based Development in EECS4315

● Modelling and formal reasoning should be performed before

implementing/coding a system.
○ A system’s model is its abstraction , filtering irrelevant details.

A system model means as much to a software engineer as a
blueprint means to an architect.

● A design model m specified at the “right” level of abstraction:
State space not causing a state explosion.○ m is checked against invariant and temporal properties.○ m may be added with more details (e.g., variables) to result in a
more “refined” model m

′.○ m
′ is consistent with (or “refines”) m as long as:
● No combinatorial explosion from variable ranges● All properties that m passes also pass in m

′.

12 of 16

TLA+: An Industrial Strength Toolbox

From https://lamport.azurewebsites.net/tla/tla.html:

TLA + (Temporal Logic of Actions) is a high-level language for modeling

programs and systems–especially concurrent and distributed ones.

It’s based on the idea that the best way to describe things precisely is with

simple mathematics.

TLA+ and its tools are useful for eliminating fundamental design errors,

which are hard to find and expensive to correct in code.

TLA+ is a language for modeling software above the code level and
hardware above the circuit level.

It has an IDE (Integrated Development Environment) for writing models and
running tools to check them. The tool most commonly used by engineers is

the TLC model checker , but there is also a proof checker.
TLA+ is based on mathematics and does not resemble any programming
language. Most engineers will find PlusCal , described below, to be the

easiest way to start using TLA+.
13 of 16

Beyond this lecture . . .

● The TLA+ toolbox has been report about its use in industry:
https://lamport.azurewebsites.net/tla/
industrial-use.html

● Two papers have been made available on eClass:○ Newcombe, C. Why Amazon Chose TLA+. In Abstract State

Machines, Alloy, B, TLA, VDM, and Z, pp 25 – 39. Springer (2014).○ Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M.,
Deardeuff, M. How Amazon Web Services Uses Formal
Methods. In Communications of the ACM, 58(4), pp 66 – 73. ACM
(2015).

● You’re encouraged to read them first: we will guide you through
some highlights later in the course (after you’ve gained
experience on the TLA+ toolbox).

14 of 16

Index (1)

Learning Outcomes

What is a Safety-Critical System (SCS)?

Professional Engineers: Code of Ethics

Developing Safety-Critical Systems

Safety-Critical vs. Mission-Critical?

Using Formal Methods to for Certification

Verification: Building the Product Right?

Validation: Building the Right Product?

Catching Defects – When?

Model-Based Development in EECS3342

Model-Based Development in EECS4315

15 of 16

Index (2)

TLA+: An Industrial Strength Toolbox

Beyond this lecture . . .

16 of 16

