Priority Queues, Heaps, and Heap Sort

EECS2101 X & Z: Fundamentals of Data Structures Winter 2025

CHEN-WEI WANG

Learning Outcomes of this Lecture

This module is designed to help you understand:

- When the Worst-Case RT of a BST Search Occurs
- *Height-Balance* Property
- The **Priority Queue** (**PQ**) ADT
- Time Complexities of List-Based PQ
- The *Heap* Data Structure (Properties & Operations)
- Heap Sort
- Time Complexities of Heap-Based PQ
- Heap Construction Methods: Top-Down vs. Bottom-Up
- Array-Based Representation of a Heap

2 of 33

Balanced Binary Search Trees: Motivation

- After *insertions* into a BST, the *worst-case RT* of a *search* occurs when the *height h* is at its *maximum*: *O(n)*:
 - $\circ~$ e.g., Entries were inserted in an <u>decreasing order</u> of their keys $\langle 100, 75, 68, 60, 50, 1 \rangle$
 - ⇒ One-path, left-slanted BST
 - e.g., Entries were inserted in an <u>increasing order</u> of their keys (1,50,60,68,75,100)
 - ⇒ One-path, right-slanted BST
 - \circ e.g., Last entry's key is <u>in-between</u> keys of the previous two entries (1,100,50,75,60,68)
 - ⇒ One-path, side-alternating BST
- To avoid the worst-case RT (: a *ill-balanced tree*), we need to take actions *as soon as* the tree becomes *unbalanced*.

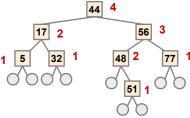
3 of 33

Balanced Binary Search Trees: Definition

• Given a node p, the **height** of the subtree rooted at p is:

• A *balanced* BST *T* satisfies the *height-balance property*:

For every *internal node* n, *heights* of n's <u>child nodes</u> differ ≤ 1 .



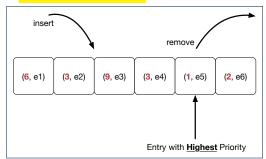
- **Q:** Is the above tree a *balanced BST*?
- Q: Will the tree remain **balanced** after inserting 55?
- Q: Will the tree remain balanced after inserting 63?

 \checkmark

LASSONDE

What is a Priority Queue?

• A **Priority Queue (PQ)** stores a collection of **entries**.



- Each entry is a pair: an element and its key.
- The key of each entry denotes its element's "priority".
- Keys in a
 Priority Queue (PQ) are
 <u>not</u> used for uniquely identifying an entry.
- In a PQ, the next entry to remove has the "highest" priority.
 - e.g., In the stand-by queue of a fully-booked flight, frequent flyers get the higher priority to replace any cancelled seats.
 - e.g., A network router, faced with insufficient bandwidth, may only handle *real-time tasks* (e.g., streaming) with highest priorities.

5 of 33

The Priority Queue (PQ) ADT

• min

[precondition: PQ is not empty]

[postcondition: return entry with highest priority in PQ]

• size

[precondition: none] [postcondition: return number of entries inserted to PQ]

isEmpty

[precondition: none]
[postcondition: return whether there is no entry in PQ]

insert(k, v)

[precondition: PQ is not full]

[postcondition: insert the input entry into PQ]

removeMin

[precondition: PQ is not empty]

[postcondition: remove and return a min entry in PQ]

6 of 33

Two List-Based Implementations of a PQ

Consider two strategies for implementing a *PQ*, where we maintain:

1. A list always sorted in a non-descending order

[≈ INSERTIONSORT]

2. An unsorted list

[* SELECTIONSORT]

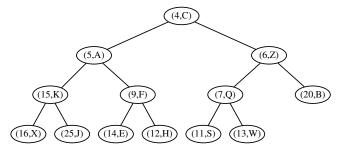
PQ Method	List Method			
	SORTED LIST		Unsorted List	
size	list.size O(1)			
isEmpty	list.isEmpty O(1)			
min	list.first	0(1)	search min	O(n)
insert	insert to "right" spot	O(n)	insert to front	O(1)
removeMin	list.removeFirst	O(1)	search min and remove	O(n)

7 of 33

Heaps

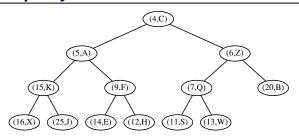
A **heap** is a **binary tree** which:

1. Stores in each node an *entry* (i.e., *key* and *value*).



- 2. Satisfies a *relational* property of stored keys
- 3. Satisfies a *structural* property of tree <u>organization</u>

Heap Property 1: Relational



Keys in a heap satisfy the Heap-Order Property:

- Every node n (other than the root) is s.t. $key(n) \ge key(parent(n))$
 - ⇒ Keys in a root-to-leaf path are sorted in a non-descending order.

e.g., Keys in entry path $\langle (4, C), (5, A), (9, F), (14, E) \rangle$ are sorted.

⇒ The *minimal key* is stored in the *root*.

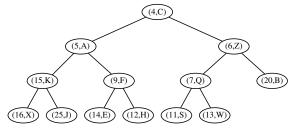
e.g., Root (4, C) stores the minimal key 4.

Keys of nodes from different subtrees are not constrained at all.

e.g., For node (5, A), key of its **LST**'s root (15) is <u>not minimal</u> for its **RST**.

9 of 33

Heap Property 2: Structural



A **heap** with **height h** satisfies the **Complete BT Property**:

- Nodes with depth ≤ h − 2 has two child nodes.
- Nodes with *depth h 1* may have zero, one, or two child nodes.
- Nodes with **depth** h are filled from left to right.
- **Q**. When the # of nodes is n, what is h?

log₂n

Q. # of nodes from Level 0 through Level h-1?

 $n - (2^h - 1)$

Q. # of nodes at Level h?

Q. Minimum # of nodes of a complete BT? Q. Maximum # of nodes of a complete BT?

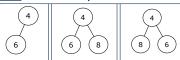
 $2^{h+1} - 1$

10 of 33

Heaps: More Examples

- The *smallest* heap is just an empty binary tree.
- The *smallest* non-empty *heap* is a one-node heap. e.g.,

Two-node and Three-node Heaps:



• These are **not** two-node heaps:

11 of 33

Heap Operations

- There are three main operations for a **heap**:
- 1. Extract the Entry with Minimal Key: Return the stored entry of the root.

[O(1)]

2. Insert a New Entry:

A single root-to-leaf path is affected.

[O(h) or O(log n)]

3. Delete the Entry with Minimal Key: A single root-to-leaf path is affected.

[O(h) or O(log n)]

After performing each operation,

both *relational* and *structural* properties must be maintained.

LASSONDE SCHOOL OF ENGINEERING

Updating a Heap: Insertion

To insert a new entry (k, v) into a heap with **height h**:

- **1.** Insert (k, v), possibly **temporarily** breaking the *relational property*.
 - **1.1** Create a new entry $\mathbf{e} = (k, v)$.
- **1.2** Create a new *right-most* node *n* at *Level h*.
- 1.3 Store entry e in node n. After steps 1.1 and 1.2, the structural property is maintained.
- 2. Restore the heap-order property (HOP) using Up-Heap Bubbling:
 - **2.1** Let c = n.
 - **2.2** While **HOP** is not restored and *c* is not the root:
 - **2.2.1** Let **p** be **c**'s parent.
 - **2.2.2** If $key(p) \le key(c)$, then HOP is restored.

Else, swap nodes c and p.

["upwards" along *n*'s *ancestor path*]

Running Time?

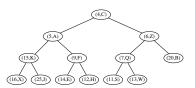
- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take *O(1)*.
- Step 2.2 may be executed up to O(h) (or $O(\log n)$) times.

[O(log n)]

13 of 33

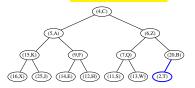
Updating a Heap: Insertion Example (1.1)

(0) A heap with height 3.

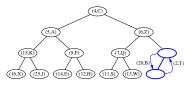


(1) Insert a new entry (2, *T*) as the *right-most* node at Level 3.

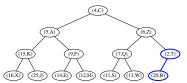
Perform *up-heap bubbling* from here.



(2) **HOP** violated ∴ 2 < 20 ∴ Swap.

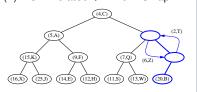


(3) After swap, entry (2, T) prompted up.

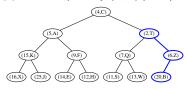


Updating a Heap: Insertion Example (1.2)

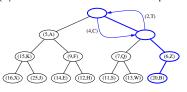
(4) **HOP** violated : 2 < 6 :: Swap.



(5) After swap, entry (2, T) prompted up.



(6) **HOP** violated : 2 < 4 : Swap.



(7) Entry (2, T) becomes root ∴ Done.

15 of 33

Updating a Heap: Deletion

To delete the **root** (with the **minimal** key) from a heap with **height h**:

- 1. Delete the root, possibly temporarily breaking HOP.
- **1.1** Let the *right-most* node at *Level h* be *n*.
- **1.2** Replace the **root**'s entry by **n**'s entry.
- **1.3** Delete *n*.

After steps 1.1 - 1.3, the **structural property** is maintained.

- 2. Restore **HOP** using *Down-Heap Bubbling*:
 - 2.1 Let p be the root.
 - **2.2** While **HOP** is not restored and **p** is not external:
 - 2.2.1 <u>IF p</u> has <u>no</u> right child, let c be p's *left child*.

 Else, let c be p's child with a *smaller key value*.
 - **2.2.2** If $key(p) \le key(c)$, then **HOP** is restored.
 - **Else**, swap nodes p and c.

["downwards" along a root-to-leaf path]

Running Time?

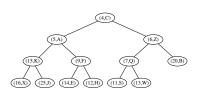
16 of 33

- All sub-steps in 1, as well as steps 2.1, 2.2.1, and 2.2.2 take *O(1)*.
- Step 2.2 may be executed up to O(h) (or O(log n)) times.

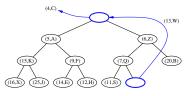
[O(log n)]

Updating a Heap: Deletion Example (1.1)

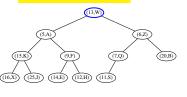
(0) Start with a heap with height 3.



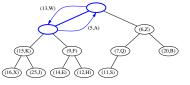
(1) Replace root with (13, W) and delete right-most node from Level 3.



(2) (13, W) becomes the root. Perform down-heap bubbling from here.



(3) Child with smaller key is (5, A). **HOP** violated $\because 13 > 5 \therefore$ Swap.

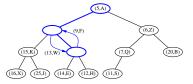


17 of 33

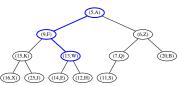
Updating a Heap: Deletion Example (1.2)

(4) After swap, entry (13, W) demoted down.

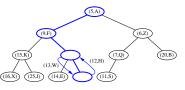
(5) Child with smaller key is (9, F). **HOP** violated $\because 13 > 9 \therefore$ Swap.



(6) After swap, entry (13, W) demoted down.



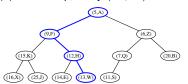
(7) Child with smaller key is (12, H). **HOP** violated : 13 > 12 :: Swap.



18 of 33

Updating a Heap: Deletion Example (1.3)

(8) After swap, entry (13, W) becomes an external node \therefore Done.



19 of 33

Heap-Based Implementation of a PQ

PQ Method	Heap Operation	RT	
min	root	O(1)	
insert	insert then up-heap bubbling	O(log n)	
removeMin	delete then down-heap bubbling	O(log n)	

Top-Down Heap Construction: List of Entries is Not Known in Advance

Problem: Build a heap out of **N** entires, supplied one at a time.

• Initialize an empty heap h.

[O(1)]

• As each new entry $\mathbf{e} = (k, v)$ is supplied, **insert e** into \mathbf{h} .

 Each insertion triggers an up-heap bubbling step. [n = 0, 1, 2, ..., N - 1]which takes *O(log n)* time.

There are N insertions.

 \therefore Running time is $O(N \cdot \log N)$

21 of 33

Bottom-Up Heap Construction: List of Entries is Known in Advance

Problem: Build a heap out of **N** entires, supplied all at once.

- Assume: The resulting heap will be completely filled at all levels. \Rightarrow $N = 2^{h+1} - 1$ for some **height** $h \ge 1$ [h = (log(N + 1)) - 1]
- Perform the following steps called Bottom-Up Heap Construction:

Step 1: Treat the first $\frac{N+1}{2^1}$ list entries as heap roots.

 $\therefore \frac{N+1}{2!}$ heaps with height 0 and size $2^1 - 1$ constructed.

Step 2: Treat the next $\frac{N+1}{2^2}$ list entries as heap roots.

- ♦ Each root sets two heaps from Step 1 as its LST and RST.
- Perform down-heap bubbling to restore HOP if necessary.
- $\therefore \frac{N+1}{2}$ heaps, each with height 1 and size $2^2 1$, constructed.

Step h + 1: Treat next $\frac{N+1}{2^{h+1}} = \frac{(2^{h+1}-1)+1}{2^{h+1}} = 1$ list entry as heap root. \diamond Each **root** sets two heaps from **Step h** as its **LST** and **RST**.

- Perform down-heap bubbling to restore HOP if necessary.
- $\therefore \frac{N+1}{2h+1} = 1$ heap, each with height h and size $2^{h+1} 1$, constructed.

22 of 33

Bottom-Up Heap Construction: Example (1.1) SSONDE

Build a heap from the following list of 15 keys:

(16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14)

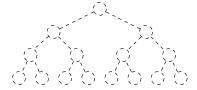
- The resulting heap has:
 - Size N is 15
 - **Height h** is (log(15+1)) 1 = 3
- According to the bottom-up heap construction technique. we will need to perform h + 1 = 4 steps, utilizing 4 sublists:

$$\underbrace{\left(\underbrace{16,15,4,12,6,7,23,20}_{\frac{15+1}{2^1}=8},\underbrace{\underbrace{25,9,11,17}_{\frac{15+1}{2^2}=4}},\underbrace{\underbrace{5,8}_{\frac{15+1}{2^3}=2},\underbrace{\frac{15+1}{2^4}=1}$$

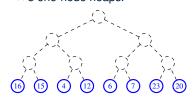
23 of 33

Bottom-Up Heap Construction: Example (1.2) SSONDE

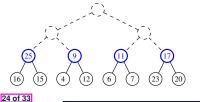
We know in advance to build a heap with height 3 and size $2^{3+1} - 1 = 15$



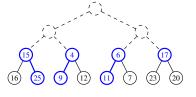
(**Step 1**) Treat first $\frac{15+1}{2^1}$ entries as roots. ∴ 8 one-node heaps.



(Step 2) Treat next $\frac{15+1}{2^2}$ entries as roots. Set LST and RST of each root.

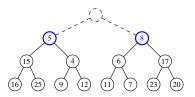


(Step 2 cont.) Down-heap bubbling. ∴ 4 three-node heaps.

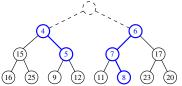


Bottom-Up Heap Construction: Example (1.3) SSONDE

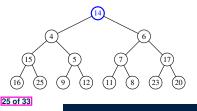
(Step 3) Treat next $\frac{15+1}{2^3}$ entries as roots. Set LST and RST of each root.



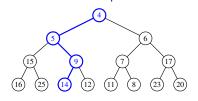
(**Step 3** cont.) Down-heap bubbling. ∴ 2 three-node heaps.



(Step 4) Treat next $\frac{15+1}{2^4}$ entry as roots. Set LST and RST of each root.



(Step 4 cont.) Down-heap bubbling.
∴ 1 fifteen-node heap.



RT of Bottom-Up Heap Construction

- Intuitively, the majority of the intermediate roots from which we perform down-heap bubbling are of very small height values:
 - The first $\frac{n+1}{2}$ **1**-node heaps with **height 0** require **no** down-heap bubbling. [About 50% of the list entries processed]
 - Next $\frac{n+1}{4}$ 3-node heaps with **height 1** require down-heap bubbling.
 - [Another 25% of the list entries processed]
 - \circ Next $\frac{n+1}{8}$ 7-node heaps with *height 2* require down-heap bubbling. [Another 12.5% of the list entries processed]
 - \circ Next two $\frac{N-1}{2}$ -node heaps with *height (h 1)* require down-heap
 - Final one N-node heaps with height h requires down-heap bubbling.
- Running Time of the Bottom-Up Heap Construction takes only O(n)

26 of 33

The Heap Sort Algorithm

Sorting Problem:

Given a list of **n** numbers (a_1, a_2, \ldots, a_n) :

Precondition: NONE

<u>Postcondition</u>: A permutation of the input list $\langle a'_1, a'_2, \ldots, a'_n \rangle$ sorted in a non-descending order (i.e., $a'_1 \le a'_2 \le \ldots \le a'_n \rangle$

The *Heap Sort* algorithm consists of <u>two</u> phases:

- 1. Construct a heap of size N out of the input array.
 - Approach 1: Top-Down "Continuous-Insertions" $[O(N \cdot log N)]$
 - Approach 2: Bottom-Up Heap Construction

[O(N)]

- 2. Delete N entries from the heap.
 - Each deletion takes O(log N) time.
 - 1st deletion extracts the *minimum*, 2nd deletion the 2nd *minimum*, ...
 - ⇒ Extracted *minimums* from *N* deletions form a *sorted* sequence.

∴ Running time of the *Heap Sort* algorithm is **O**(*N* · log *N*).

The Heap Sort Algorithm: Exercise

Sort the following array of integers

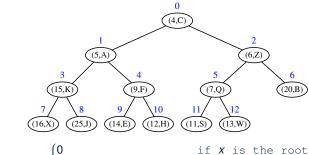
(16, 15, 4, 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14)

into a *non-descending* order using the *Heap Sort Algorithm*.

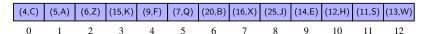
Demonstrate:

- 1. Both top-down and bottom-up heap constructions in Phase 1
- 2. Extractions of minimums in Phase 2

Array-Based Representation of a CBT (1)

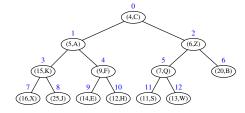


$$index(x) = \begin{cases} 0 & \text{if } x \text{ is the root} \\ 2 \cdot index(parent(x)) + 1 & \text{if } x \text{ is a left child} \\ 2 \cdot index(parent(x)) + 2 & \text{if } x \text{ is a right child} \end{cases}$$



29 of 33

Array-Based Representation of a CBT (2)



- Q1: Where are nodes at *Levels* 0 ... h 1 stored in the array? Indices $0 ... (2^h - 2) \equiv 0 ... (2^{\lfloor log_2 N \rfloor} - 2)$ [e.g., Indices $0 ... 2^3 - 2$]
- Q2: Where are nodes at *Level h* stored in the array? Indices $2^h - 1 ... (N-1) \equiv 2^{\lfloor \log_2 N \rfloor} - 1 ... (N-1)$ [e.g., Indices 7 .. 12]
- Q3: How do we determine if a non-root node x is a left or right child?
 IF index(x) % 2 == 1 THEN left ELSE right
- Q4: Given a non-root node x, how do we determine the *index of x's parent*?

IF index(x) % 2 == 1 **THEN** $\frac{index(x)-1}{2}$ **ELSE** $\frac{index(x)-2}{2}$

30 of 33

Index (1)

Learning Outcomes of this Lecture

Balanced Binary Search Trees: Motivation

Balanced Binary Search Trees: Definition

What is a Priority Queue?

The Priority Queue (PQ) ADT

Two List-Based Implementations of a PQ

Heaps

Heap Property 1: Relational

Heap Property 2: Structural

Heaps: More Examples

Heap Operations

31 of 33

Index (2)

Updating a Heap: Insertion

Updating a Heap: Insertion Example (1.1)

Updating a Heap: Insertion Example (1.2)

Updating a Heap: Deletion

Updating a Heap: Deletion Example (1.1)

Updating a Heap: Deletion Example (1.2)

Updating a Heap: Deletion Example (1.3)

Heap-Based Implementation of a PQ

Top-Down Heap Construction:

List of Entries is Not Known in Advance

Bottom-Up Heap Construction:

List of Entries is Known in Advance

LASSONDE

Index (3)

Bottom-up Heap Construction: Example (1.1)

Bottom-up Heap Construction: Example (1.2)

Bottom-up Heap Construction: Example (1.3)

RT of Bottom-up Heap Construction

The Heap Sort Algorithm

The Heap Sort Algorithm: Exercise

Array-Based Representation of a CBT (1)

Array-Based Representation of a CBT (2)