
Abstract Data Types (ADTs), Stacks, Queues

EECS2101 X & Z:
Fundamentals of Data Structures

Winter 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Learning Outcomes of this Lecture

This module is designed to help you learn about:
● The notion of Abstract Data Types (ADTs)

● ADTs : Stack vs. Queue
● Implementing Stack and Queue in Java [interface, classes]
● Applications of Stacks vs. Queues
● Circular Arrays
● Optional (but highly encouraged):

○ Criterion of Modularity , Modular Design
○ Dynamic Arrays, Amortized Analysis

2 of 58

Abstract Data Types (ADTs)
● Given a problem, decompose its solution into modules .
● Each module implements an abstract data type (ADT) :

○ filters out irrelevant details
○ contains a list of declared data and well-specified operations

2

Abstract Data Type – entity that consists of:
1) data structure (DS)
2) set of operation supported on the DS
3) error conditions

Abstract Data Type (ADT)

“abstract” ⇒⇒⇒⇒ implementation details are not specified !

ADT

Data
Structure

Interface
add()

remove()
find()

request

result

Basic Data Structures •••• array
(used in advanced ADT) •••• linked list

● Supplier’s Obligations:
○ Implement all operations
○ Choose the “right” data structure [e.g., arrays vs. SLL vs. DLL]
○ The internal details of an implemented ADT should be hidden.

● Client’s Benefits:
○ Correct output
○ Efficient performance

3 of 58

Java API Approximates ADTs (1)

It is useful to have:
● A generic collection class where the homogeneous type of

elements are parameterized as E.
● A reasonably intuitive overview of the ADT.

Java 8 List API
4 of 58

https://docs.oracle.com/javase/8/docs/api/?java/util/List.html

Java API Approximates ADTs (2)

Methods described in a natural language can be ambiguous.
5 of 58

Building ADTs for Reusability
● ADTs are reusable software components that are common for

solving many real-world problems.
e.g., Stacks, Queues, Lists, Tables, Trees, Graphs

● An ADT , once thoroughly tested, can be reused by:
○ Clients of Applications
○ Suppliers of other ADTs

● As a supplier, you are obliged to:
○ Implement standard ADTs [≈ lego building bricks]

Note. Recall the basic data structures: arrays vs. SLLs vs. DLLs
○ Design algorithms using standard ADTs [≈ lego houses, ships]

● For each standard ADT , you should know its interface :
○ Stored data
○ For each operation manipulating the stored data

● How are clients supposed to use the method? [preconditions]

● What are the services provided by suppliers? [postconditions]
● Time (and sometimes space) complexity

6 of 58

What is a Stack?

● A stack is a collection of objects.
● Objects in a stack are inserted and removed according to the

last-in, first-out (LIFO) principle.
○ Cannot access arbitrary elements of a stack
○ Can only access or remove the most-recently added element

7 of 58

The Stack ADT
● top

[precondition: stack is not empty]
[postcondition: return item last pushed to the stack]

● size
[precondition: none]
[postcondition: return number of items pushed to the stack]

● isEmpty
[precondition: none]
[postcondition: return whether there is no item in the stack]

● push(item)
[precondition: stack is not full]
[postcondition: push the input item onto the top of the stack]

● pop
[precondition: stack is not empty]
[postcondition: remove and return the top of stack]

8 of 58

Stack: Illustration
OPERATION RETURN VALUE STACK CONTENTS

– – ∅
isEmpty true ∅
push(5) – 5

push(3) – 3
5

push(1) – 1
3
5

size 3 1
3
5

top 1 1
3
5

pop 1 3
5

pop 3 5
pop 5 ∅

9 of 58

Generic Stack: Interface

public interface Stack< E > {
public int size();
public boolean isEmpty();
public E top();

public void push(E e);

public E pop();
}

The Stack ADT, declared as an interface, allows alternative
implementations to conform to its method headers.

10 of 58

Generic Stack: Architecture

ArrayStack⟨E⟩ LinkedStack⟨E⟩

Stack⟨E⟩

implements implements

11 of 58

Implementing Stack: Array (1)

public class ArrayStack<E> implements Stack<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
private int t; /* index of top */
public ArrayStack() {
data = (E[]) new Object[MAX_CAPACITY];
t = -1;

}

public int size() { return (t + 1); }
public boolean isEmpty() { return (t == -1); }

public E top() {
if (isEmpty()) { /* Precondition Violated */ }
else { return data[t]; }

}
public void push(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { t ++; data[t] = e; }

}
public E pop() {
E result;
if (isEmpty()) { /* Precondition Violated */ }
else { result = data[t]; data[t] = null; t --; }
return result;

}
}

12 of 58

Implementing Stack: Array (2)

● Running Times of Array -Based Stack Operations?

ArrayStack Method Running Time
size O(1)

isEmpty O(1)
top O(1)

push O(1)
pop O(1)

● Exercise This version of implementation treats the end of array as the top of
stack. Would the RTs of operations change if we treated the beginning of
array as the top of stack?

● Q. What if the preset capacity turns out to be insufficient?

A. IllegalArgumentException occurs and it takes O(1) time to respond.

● At the end, we will explore the alternative of a dynamic array .

13 of 58

Implementing Stack: Singly-Linked List (1)

public class LinkedStack<E> implements Stack<E> {
private SinglyLinkedList<E> list;
. . .

}

Question:

Stack Method Singly-Linked List Method
Strategy 1 Strategy 2

size list.size
isEmpty list.isEmpty

top list.first list.last
push list.addFirst list.addLast
pop list.removeFirst list.removeLast

Which implementation strategy should be chosen?
14 of 58

Implementing Stack: Singly-Linked List (2)

● If the front of list is treated as the top of stack , then:
○ All stack operations remain O(1) [∵ removeFirst takes O(1)]

● If the end of list is treated as the top of stack , then:
○ The pop operation takes O(n) [∵ removeLast takes O(n)]

● But in both cases, given that a linked, dynamic structure is
used, no resizing is necessary!

15 of 58

Generic Stack: Testing Implementations

@Test
public void testPolymorphicStacks() {
Stack<String> s = new ArrayStack<>();
s.push("Alan"); /* dynamic binding */
s.push("Mark"); /* dynamic binding */
s.push("Tom"); /* dynamic binding */
assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s.top());

s = new LinkedStack<>();
s.push("Alan"); /* dynamic binding */
s.push("Mark"); /* dynamic binding */
s.push("Tom"); /* dynamic binding */
assertTrue(s.size() == 3 && !s.isEmpty());
assertEquals("Tom", s.top());

}

16 of 58

Polymorphism & Dynamic Binding

1 Stack<String> myStack;
2 myStack = new ArrayStack<String>();
3 myStack.push("Alan");
4 myStack = new LinkedStack<String>();
5 myStack.push("Alan");

● Polymorphism
An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

● Dynamic Binding
Effect of a method call depends on the “current shape” of the
target object.
Which lines? 3, 5

17 of 58

Stack Application: Reversing an Array
● Implementing a generic algorithm:

public static <E> void reverse(E[] a) {
Stack<E> buffer = new ArrayStack<E>();
for (int i = 0; i < a.length; i ++) {
buffer.push(a[i]);

}
for (int i = 0; i < a.length; i ++) {
a[i] = buffer.pop();

}
}

● Testing the generic algorithm:
@Test
public void testReverseViaStack() {

String[] names = {"Alan", "Mark", "Tom"};
String[] expectedReverseOfNames = {"Tom", "Mark", "Alan"};
StackUtilities.reverse(names);
assertArrayEquals(expectedReverseOfNames, names);

Integer[] numbers = {46, 23, 68};
Integer[] expectedReverseOfNumbers= {68, 23, 46};
StackUtilities.reverse(numbers);
assertArrayEquals(expectedReverseOfNumbers, numbers);

}

18 of 58

Stack Application: Matching Delimiters (1)

● Problem
Opening delimiters: (, [, {
Closing delimiters:),], }
e.g., Correct: ()(()){([()])}
e.g., Incorrect: ({[])}

● Sketch of Solution
○ When a new opening delimiter is found, push it to the stack.
○ Most-recently found delimiter should be matched first.
○ When a new closing delimiter is found:

● If it matches the top of the stack, then pop off the stack.
● Otherwise, an error is found!

○ Finishing reading the input, an empty stack means a success!
19 of 58

Stack Application: Matching Delimiters (2)
● Implementing the algorithm:

public static boolean isMatched(String expression) {
final String opening = "([{";
final String closing = ")]}";
Stack<Character> openings = new LinkedStack<Character>();
int i = 0;
boolean foundError = false;
while (!foundError && i < expression.length()) {

char c = expression.charAt(i);
if(opening.indexOf(c) != -1) { openings.push(c); }
else if (closing.indexOf(c) != -1) {

if(openings.isEmpty()) { foundError = true; }
else {

if (opening.indexOf(openings.top()) == closing.indexOf(c)) { openings.pop(); }
else { foundError = true; } } }

i ++; }
return !foundError && openings.isEmpty(); }

● Testing the algorithm:
@Test
public void testMatchingDelimiters() {

assertTrue(StackUtilities.isMatched(""));
assertTrue(StackUtilities.isMatched("{[]}({})"));
assertFalse(StackUtilities.isMatched("{[])"));
assertFalse(StackUtilities.isMatched("{[]})"));
assertFalse(StackUtilities.isMatched("({[]}"));

}

20 of 58

Stack Application: Postfix Notations (1)

Problem: Given a postfix expression, calculate its value.

Infix Notation Postfix Notation
Operator in-between Operands Operator follows Operands
Parentheses force precedence Order of evaluation embedded

3 3
3 + 4 3 4 +

3 + 4 + 5 3 4 + 5 +
3 + (4 + 5) 3 4 5 + +
3 - 4 * 5 3 4 5 * -
(3 - 4) * 5 3 4 - 5 *

21 of 58

Stack Application: Postfix Notations (2)

Sketch of Solution
○ When input is an operand (i.e., a number), push it to the stack.
○ When input is an operator , obtain its two operands by popping

off the stack twice, evaluate, then push the result back to stack.
○ When finishing reading the input, there should be only one

number left in the stack.
○ Error if:

● Not enough items left in the stack for the operator [e.g., 523+*+]
● When finished, two or more numbers left in stack [e.g., 53+6]

22 of 58

What is a Queue?

● A queue is a collection of objects.
● Objects in a queue are inserted and removed according to the

first-in, first-out (FIFO) principle.
○ Each new element joins at the back /end of the queue.
○ Cannot access arbitrary elements of a queue
○ Can only access or remove the

least-recently inserted (or longest-waiting) element

Tickets

Call C
enter

Call Queue

23 of 58

The Queue ADT
● first ≈ top of stack

[precondition: queue is not empty]
[postcondition: return item first enqueued]

● size
[precondition: none]
[postcondition: return number of items enqueued]

● isEmpty
[precondition: none]
[postcondition: return whether there is no item in the queue]

● enqueue(item) ≈ push of stack
[precondition: queue is not full]
[postcondition: enqueue item as the “last” of the queue]

● dequeue ≈ pop of stack
[precondition: queue is not empty]
[postcondition: remove and return the first of the queue]

24 of 58

Queue: Illustration

Operation Return Value Queue Contents
– – ∅

isEmpty true ∅
enqueue(5) – (5)
enqueue(3) – (5, 3)
enqueue(1) – (5, 3, 1)

size 3 (5, 3, 1)
dequeue 5 (3, 1)
dequeue 3 1
dequeue 1 ∅

25 of 58

Generic Queue: Interface

public interface Queue< E > {
public int size();
public boolean isEmpty();
public E first();

public void enqueue(E e);

public E dequeue();
}

The Queue ADT, declared as an interface, allows alternative
implementations to conform to its method headers.

26 of 58

Generic Queue: Architecture

ArrayQueue⟨E⟩ CircularArrayQueue⟨E⟩ LinkedQueue⟨E⟩

Queue⟨E⟩

implements implements

27 of 58

Implementing Queue ADT: Array (1)
public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
private int r; /* rear index */
public ArrayQueue() {
data = (E[]) new Object[MAX_CAPACITY];
r = -1;

}
public int size() { return (r + 1); }
public boolean isEmpty() { return (r == -1); }
public E first() {
if (isEmpty()) { /* Precondition Violated */ }
else { return data[0]; }

}
public void enqueue(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { r ++; data[r] = e; }

}
public E dequeue() {
if (isEmpty()) { /* Precondition Violated */ }
else {
E result = data[0];
for (int i = 0; i < r; i ++) { data[i] = data[i + 1]; }
data[r] = null; r --;
return result;

}
}

}

28 of 58

Implementing Queue ADT: Array (2)

● Running Times of Array -Based Queue Operations?

ArrayQueue Method Running Time
size O(1)

isEmpty O(1)
first O(1)

enqueue O(1)
dequeue O(n)

● Exercise This version of implementation treats the beginning of array as the
first of queue. Would the RTs of operations change if we treated the end of
array as the first of queue?

● Q. What if the preset capacity turns out to be insufficient?

A. IllegalArgumentException occurs and it takes O(1) time to respond.

● At the end, we will explore the alternative of a dynamic array .

29 of 58

Implementing Queue: Singly-Linked List (1)

public class LinkedQueue<E> implements Queue<E> {
private SinglyLinkedList<E> list;
. . .

}

Question:

Queue Method Singly-Linked List Method
Strategy 1 Strategy 2

size list.size
isEmpty list.isEmpty

first list.first list.last
enqueue list.addLast list.addFirst
dequeue list.removeFirst list.removeLast

Which implementation strategy should be chosen?
30 of 58

Implementing Queue: Singly-Linked List (2)

● If the front of list is treated as the first of queue, then:
○ All queue operations remain O(1) [∵ removeFirst takes O(1)]

● If the end of list is treated as the first of queue, then:
○ The dequeue operation takes O(n) [∵ removeLast takes O(n)]

● But in both cases, given that a linked, dynamic structure is
used, no resizing is necessary!

31 of 58

Generic Queue: Testing Implementations

@Test
public void testPolymorphicQueues() {
Queue<String> q = new ArrayQueue<>();
q.enqueue("Alan"); /* dynamic binding */
q.enqueue("Mark"); /* dynamic binding */
q.enqueue("Tom"); /* dynamic binding */
assertTrue(q.size() == 3 && !q.isEmpty());
assertEquals("Alan", q.first());

q = new LinkedQueue<>();
q.enqueue("Alan"); /* dynamic binding */
q.enqueue("Mark"); /* dynamic binding */
q.enqueue("Tom"); /* dynamic binding */
assertTrue(q.size() == 3 && !q.isEmpty());
assertEquals("Alan", q.first());

}

32 of 58

Polymorphism & Dynamic Binding

1 Queue<String> myQueue;
2 myQueue = new CircularArrayQueue<String>();
3 myQueue.enqueue("Alan");
4 myQueue = new LinkedQueue<String>();
5 myQueue.enqueue("Alan");

● Polymorphism
An object may change its “shape” (i.e., dynamic type) at
runtime.
Which lines? 2, 4

● Dynamic Binding
Effect of a method call depends on the “current shape” of the
target object.
Which lines? 3, 5

33 of 58

Exercise:
Implementing a Queue using Two Stacks

public class StackQueue<E> implements Queue<E> {
private Stack<E> inStack;
private Stack<E> outStack;
. . .

}

● For size , add up sizes of inStack and outStack.
● For isEmpty , are inStack and outStack both empty?
● For enqueue , push to inStack.
● For dequeue :

○ pop from outStack
If outStack is empty, we need to first pop all items from inStack
and push them to outStack.

Exercise: Why does this work? [implement and test]
Exercise: Running Time? [see analysis on dynamic arrays]

34 of 58

Implementing Queue ADT: Circular Array (1)
● Maintain two indices: f for front ; r for next available slot .
● Maximum size: N − 1 [N = data.length]
● Empty Queue: when r = f

. . .
f, r

.
f, r

● Full Queue: when ((r + 1) % N) = f

○ When r > f : . . .
f r

○ When r < f :
r f

● Size of Queue:
○ If r = f : 0
○ If r > f : r - f

f r

○ If r < f : r + (N - f)
r f

35 of 58

Implementing Queue ADT: Circular Array (2)

Running Times of CircularArray -Based Queue Operations?

CircularArrayQueue Method Running Time
size O(1)

isEmpty O(1)
first O(1)

enqueue O(1)
dequeue O(1)

Exercise: Create a Java class CircularArrayQueue that
implements the Queue interface using a circular array .

36 of 58

Limitations of Queue

● Say we use a queue to implement a waiting list .
○ What if we dequeue the front customer, but find that we need to

put them back to the front (e.g., seat is still not available, the
table assigned is not satisfactory, etc.)?

○ What if the customer at the end of the queue decides not to wait
and leave, how do we remove them from the end of the queue?

● Solution: A new ADT extending the Queue by supporting:
○ insertion to the front
○ deletion from the end

37 of 58

The Double-Ended Queue ADT

● Double-Ended Queue (or Deque) is a queue-like data
structure that supports insertion and deletion at both the
front and the end of the queue.
public interface Deque<E> {
/* Queue operations */
public int size();
public boolean isEmpty();
public E first();
public void addLast(E e); /* enqueue */
public E removeFirst(); /* dequeue */
/* Extended operations */
public void addFirst(E e);
public E removeLast();

}

● Exercise: Implement Deque using a circular array .

● Exercise: Implement Deque using a SLL and/or DLL.
38 of 58

Optional Materials

These topics are useful for your knowledge about
ADTs, stacks, and Queues.

You are encouraged to follow through these online lectures:
https://www.eecs.yorku.ca/˜jackie/teaching/
lectures/index.html#EECS2011_W22

○ Design by Contract and Modularity
● Week 5: Lecture 3, Parts A2 - A3

○ Dynamic Arrays and Amortized Analysis
● Week 6: Lecture 3, Parts E1 - E5

39 of 58

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2011_W22
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2011_W22

Terminology: Contract, Client, Supplier
● A supplier implements/provides a service (e.g., microwave).
● A client uses a service provided by some supplier.

○ The client is required to follow certain instructions to obtain the
service (e.g., supplier assumes that client powers on, closes
door, and heats something that is not explosive).

○ If instructions are followed, the client would expect that the
service does what is guaranteed (e.g., a lunch box is heated).

○ The client does not care how the supplier implements it.
● What are the benefits and obligations of the two parties?

benefits obligations
CLIENT obtain a service follow instructions

SUPPLIER assume instructions followed provide a service
● There is a contract between two parties, violated if:

○ The instructions are not followed. [Client’s fault]
○ Instructions followed, but service not satisfactory. [Supplier’s fault]

40 of 58

Client, Supplier, Contract in OOP (1)

class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */

} }

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);

} }

Method call m.heat(obj) indicates a client-supplier relation.
○ Client: resident class of the method call [MicrowaveUser]
○ Supplier: type of context object (or call target) m [Microwave]

41 of 58

Client, Supplier, Contract in OOP (2)
class Microwave {
private boolean on;
private boolean locked;
void power() {on = true;}
void lock() {locked = true;}
void heat(Object stuff) {
/* Assume: on && locked */
/* stuff not explosive. */}}

class MicrowaveUser {
public static void main(. . .) {

Microwave m = new Microwave();

Object obj = ??? ;
m.power(); m.lock();

m.heat(obj);

} }

● The contract is honoured if:
Right before the method call :
● State of m is as assumed: m.on==true and m.locked==ture
● The input argument obj is valid (i.e., not explosive).
Right after the method call : obj is properly heated.

● If any of these fails, there is a contract violation.
● m.on or m.locked is false ⇒ MicrowaveUser’s fault.
● obj is an explosive ⇒ MicrowaveUser’s fault.

A fault from the client is identified ⇒ Method call will not start.
● Method executed but obj not properly heated ⇒ Microwave’s fault

42 of 58

Modularity (1): Childhood Activity

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://commons.wikimedia.org and https://www.wish.com

43 of 58

https://commons.wikimedia.org
https://www.wish.com

Modularity (2): Daily Construction

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Source: https://usermanual.wiki/
44 of 58

https://usermanual.wiki/

Modularity (3): Computer Architecture

Motherboards are built from functioning units (e.g., CPUs).

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: www.embeddedlinux.org.cn and https://en.wikipedia.org
45 of 58

www.embeddedlinux.org.cn
https://en.wikipedia.org

Modularity (4): System Development

Safety-critical systems (e.g., nuclear shutdown systems) are
built from function blocks.152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

TIME

H

H-(EPS/2)

QH=1(TRUE)

NC(No change)

L

L+(EPS/2)

H-EPS

L+EPS

QH=0(FASLE)

QL=0(FALSE)

QL=1(TRUE)

NC(No change)

X

152 L. Pang et al. / Science of Computer Programming 113 (2015) 149–190

(* DECLARATION *)
+---------+
| LIMITS_ |
| ALARM |

REAL--|H QH|--BOOL
REAL--|X Q|--BOOL
REAL--|L QL|--BOOL
REAL--|EPS |

+---------+
FUNCTION_BLOCK LIMITS_ALARM
VAR_INPUT
H : REAL; (* High limit *)
X : REAL; (* Variable value *)
L : REAL; (* Lower limit *)
EPS : REAL; (* Hysteresis *)

END_VAR
VAR_OUTPUT
QH : BOOL; (* High flag *)
Q : BOOL; (* Alarm output *)
QL : BOOL; (* Low flag *)

END_VAR
END_FUNCTION_BLOCK

(* Function block body in FBD language *)
HIGH_ALARM

+------------+
| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH
+---+ w2| | | |

H----------------| - |------|XIN2 | |
+---| | | | | |
| +---+ | | | |
+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |
EPS --| / |--| | | |--Q
2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+
| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL
| | | | | |
+---| | +--|XIN2 |
| +---+ | |
+--------------|EPS |

+------------+

Fig. 2. Declaration of the block LIMITS_ALARM and its FBD implementation [9].

Result
Condition F

C1 C1.1 R E S1
C1.2 R E S2
.

C1.m R E Sm
.

Cn R E Sn

IF C1
IF C1.1 THEN F = R E S1
ELSEIF C1.2 THEN F = R E S2
...
ELSEIF C1.m THEN F = R E Sm

ELSEIF ...
ELSEIF Cn THEN F = R E Sn

Fig. 3. Semantics of horizontal condition table (HCT).

connect these internal blocks. The body definition visualizes how the ultimate and intermediate outputs are computed using
two instances of the HYSTERESIS block. For example, the output QL is computed by manipulating the two output values Q
from the top and bottom HYSTERESIS block:

LIMITS_ALARM(H, X, L, EPS).Q =
HYSTERESIS(X, H − EPS

2.0 , EPS
2.0).Q ∨ HYSTERESIS(L + EPS

2.0 , X, EPS
2.0).Q

where we write .Q to denote the output value resulting from the FB invocation in question.

Roadmap for the running example. We specify our interpretation of the precise input-output requirement of the LIM-
ITS_ALARM block using tabular expressions (Section 3.2). To verify its FBD implementation, we first formalize it in PVS
(Section 3.1.5), then we verify its consistency and correctness (Section 4.1) with respect to the tabular requirement. Further-
more, we report any potential issues uncovered regarding this block (Section 5.2.3).

2.2. Tabular expressions

Tabular expressions [12,13,4,5] are a proven and effective approach to describing conditionals and relations, and they
are thus ideal for documenting many system requirements. They are arguably easier to comprehend and to maintain than
conventional mathematical expressions. Reference [14] presents a relational semantics for tabular expressions which covers
the most common types of tabular expressions used in software practice. Recently, reference [15] presented a new semantics
for tabular expressions by using indexing to decouple the appearance of a tabular expression from its semantics. Tabular
expressions have also been proven to be of great help both in inspections [7] and in testing and verification [16].

For our purpose of capturing the input-output requirements of function blocks in IEC 61131-3, tabular expressions of
the form shown in Fig. 3 are appropriate. These tabular expressions are called horizontal condition tables (HCTs). The input
domain is partitioned into condition rows in the left column(s), while rows in the right column(s), inside double borders,
denote the corresponding output results. Rows in the input columns may be divided to specify sub-conditions. We may
interpret the tabular structure in Fig. 3 as a list of “if–then–else” statements, without the sequence implications of the
“if–then–else” construct. This is shown in the right part of the figure. Each row defines the input circumstances under which
the output F is bound to a particular result value. For example, the first row corresponds to the predicate (C1 ∧ C1.1 ⇒ F =
RES1), and so on.

In documenting input-output behaviours using HCTs as illustrated in Fig. 3, we need to reason about their completeness
and disjointness. Completeness ensures that there is an output specified for every combination of inputs – the rows cover

(INTERFACE) SPECIFICATION (ASSEMBLY) ARCHITECTURE

Sources: https://plcopen.org/iec-61131-3
46 of 58

https://plcopen.org/iec-61131-3

Modularity (5): Software Design

Software systems are composed of well-specified classes.
sortedcollections

SORTED_MAP_ADT [K, V]*
feature model
 model: FUN[K, V]
 sorted_keys: ARRAY [K]

feature commands
 extend (key: K; val: V)
 require ¬has (key)

 remove (key: K)
 require has (key)

feature queries
 item(key:K): V
 has (key: K): BOOLEAN

invariant
 ∀i ∈ [1, model.count):
 sorted_keys[i] < sorted_keys[i+1]

 sorted_keys.count = model.count

 ∀k ∈ model.domain : k ∈ sorted_keys

+
SORTED_MODEL_MAP [K, V]

+
SORTED_MAP_
CURSOR [K, V]

*
SORTED_MAP_
DESIGN [K, V]

+
SORTED_RBT_
MAP [K, V]

+
SORTED_LINEAR_

MAP [K, V]

+
SORTED_BST_
MAP [K, V]

SORTED_ADT [K, V]*
feature model
 model: SEQ [KV_PAIR[K,V]]

feature commands
 extend (a_item: TUPLE [key: K; value: V])
 require ¬has (a_item.key)

 remove (a_key: K)
 require has (a_key)

feature queries
 item alias "[]" (a_key: K): V
 require has (a_key)

 as_array: ARRAY[KV_PAIR[K,V]]

invariant
 ∀i ∈ [1, model.count):
 model[i].key < model[i+1].key

 ∀i ∈ [1, model.count]:
 as_array[i] ~ model[i]

+
SORTED_

LINEAR [K, V]

+
SORTED_
TREE [K, V]

+
SORTED_
BST [K, V]

+
SORTED_
RBT [K, V]

new_cursor+

implementation

implementation

implementation

implementation

sortedmaps

studentdesign

ITERATION_CURSOR [G]*
item*: G
forth*
after*: BOOLEAN

new_cursor**
ITERABLE [G]

47 of 58

Design Principle: Modularity
● Modularity refers to a sound quality of your design:

1. Divide a given complex problem into inter-related sub-problems
via a logical/justifiable functional decomposition.
e.g., In designing a game, solve sub-problems of: 1) rules of the
game; 2) actor characterizations; and 3) presentation.

2. Specify each sub-solution as a module with a clear interface:
inputs, outputs, and input-output relations.
● The UNIX principle: Each command does one thing and does it well.
● In objected-oriented design (OOD), each class serves as a module.

3. Conquer original problem by assembling sub-solutions.
● In OOD, classes are assembled via client-supplier relations

(aggregations or compositions) or inheritance relations.
● A modular design satisfies the criterion of modularity and is:

○ Maintainable: fix issues by changing the relevant modules only.
○ Extensible: introduce new functionalities by adding new modules.
○ Reusable: a module may be used in different compositions

● Opposite of modularity: A superman module doing everything.
48 of 58

Array Implementations: Stack and Queue
● When implementing stack and queue via arrays, we imposed a

maximum capacity:
public class ArrayStack<E> implements Stack<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void push(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . . }

}
. . .

}

public class ArrayQueue<E> implements Queue<E> {
private final int MAX_CAPACITY = 1000;
private E[] data;
. . .
public void enqueue(E e) {
if (size() == MAX_CAPACITY) { /* Precondition Violated */ }
else { . . .

}
. . .

}

● This made the push and enqueue operations both cost O(1).
49 of 58

Dynamic Array: Constant Increments
Implement stack using a dynamic array resizing itself by a constant increment:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int C;
4 private int capacity;
5 private E[] data;
6 public ArrayStack() {
7 I = 1000; /* arbitrary initial size */
8 C = 500; /* arbitrary fixed increment */
9 capacity = I;

10 data = (E[]) new Object[capacity];
11 t = -1;
12 }
13 public void push(E e) {
14 if (size() == capacity) {
15 /* resizing by a fixed constant */
16 E[] temp = (E[]) new Object[capacity + C];
17 for(int i = 0; i < capacity; i ++) {
18 temp[i] = data[i];
19 }
20 data = temp;
21 capacity = capacity + C
22 }
23 t++;
24 data[t] = e;
25 }
26 }

● This alternative strategy
resizes the array,
whenever needed,
by a constant amount.

● L17 – L19 make push cost
O(n), in the worst case.

● However, given that resizing
only happens rarely, how about
the average running time?

● We will refer L14 – L22 as the
resizing part and L23 – L24
as the update part.

50 of 58

Dynamic Array: Doubling
Implement stack using a dynamic array resizing itself by doubling:

1 public class ArrayStack<E> implements Stack<E> {
2 private int I;
3 private int capacity;
4 private E[] data;
5 public ArrayStack() {
6 I = 1000; /* arbitrary initial size */
7 capacity = I;
8 data = (E[]) new Object[capacity];
9 t = -1;

10 }
11 public void push(E e) {
12 if (size() == capacity) {
13 /* resizing by doubling */
14 E[] temp = (E[]) new Object[capacity * 2];
15 for(int i = 0; i < capacity; i ++) {
16 temp[i] = data[i];
17 }
18 data = temp;
19 capacity = capacity * 2
20 }
21 t++;
22 data[t] = e;
23 }
24 }

● This alternative strategy
resizes the array,
whenever needed,
by doubling its current size.

● L15 – L17 make push cost
O(n), in the worst case.

● However, given that resizing
only happens rarely, how about
the average running time?

● We will refer L12 – L20 as the
resizing part and L21 – L22 as
the update part.

51 of 58

Avg. RT: Const. Increment vs. Doubling

● Without loss of generality, assume: There are n push operations, and the
last push triggers the last resizing routine.

Constant Increments Doubling
RT of exec. update part for n pushes O(n)

RT of executing 1st resizing I
RT of executing 2nd resizing I +C 2 ⋅ I
RT of executing 3rd resizing I + 2 ⋅C 4 ⋅ I
RT of executing 4th resizing I + 3 ⋅C 8 ⋅ I
RT of executing kth resizing I + (k − 1) ⋅C 2k−1 ⋅ I
RT of executing last resizing n

of resizing needed (solve k for RT = n) O(n) O(log2n)
Total RT for n pushes O(n2) O(n)

Amortized/Average RT over n pushes O(n) O(1)

● Over n push operations, the amortized / average running time of the
doubling strategy is more efficient.

52 of 58

Beyond this lecture . . .

● Attempt the exercises throughout the lecture.
● Implement the Postfix Calculator using a stack.

53 of 58

Index (1)

Learning Outcomes of this Lecture

Abstract Data Types (ADTs)

Java API Approximates ADTs (1)

Java API Approximates ADTs (2)

Building ADTs for Reusability

What is a Stack?

The Stack ADT

Stack: Illustration

Generic Stack: Interface

Generic Stack: Architecture

Implementing Stack: Array (1)
54 of 58

Index (2)

Implementing Stack: Array (2)

Implementing Stack: Singly-Linked List (1)

Implementing Stack: Singly-Linked List (2)

Generic Stack: Testing Implementations

Polymorphism & Dynamic Binding

Stack Application: Reversing an Array

Stack Application: Matching Delimiters (1)

Stack Application: Matching Delimiters (2)

Stack Application: Postfix Notations (1)

Stack Application: Postfix Notations (2)

What is a Queue?
55 of 58

Index (3)

The Queue ADT

Queue: Illustration

Generic Queue: Interface

Generic Queue: Architecture

Implementing Queue ADT: Array (1)

Implementing Queue ADT: Array (2)

Implementing Queue: Singly-Linked List (1)

Implementing Queue: Singly-Linked List (2)

Generic Queue: Testing Implementations

Polymorphism & Dynamic Binding

56 of 58

Index (4)

Exercise:
Implementing a Queue using Two Stacks

Implementing Queue ADT: Circular Array (1)

Implementing Queue ADT: Circular Array (2)

Limitations of Queue

The Double-Ended Queue ADT

Optional Materials

Terminology: Contract, Client, Supplier

Client, Supplier, Contract in OOP (1)

Client, Supplier, Contract in OOP (2)

Modularity (1): Childhood Activity

57 of 58

Index (5)
Modularity (2): Daily Construction

Modularity (3): Computer Architecture

Modularity (4): System Development

Modularity (5): Software Design

Design Principle: Modularity

Array Implementations: Stack and Queue

Dynamic Array: Constant Increments

Dynamic Array: Doubling

Avg. RT: Const. Increment vs. Doubling

Beyond this lecture . . .

58 of 58

	Learning Outcomes of this Lecture
	Abstract Data Types (ADTs)
	Java API Approximates ADTs (1)
	Java API Approximates ADTs (2)
	Building ADTs for Reusability
	What is a Stack?
	The Stack ADT
	Stack: Illustration
	Generic Stack: Interface
	Generic Stack: Architecture
	Implementing Stack: Array (1)
	Implementing Stack: Array (2)
	Implementing Stack: Singly-Linked List (1)
	Implementing Stack: Singly-Linked List (2)
	Generic Stack: Testing Implementations
	Polymorphism & Dynamic Binding
	Stack Application: Reversing an Array
	Stack Application: Matching Delimiters (1)
	Stack Application: Matching Delimiters (2)
	Stack Application: Postfix Notations (1)
	Stack Application: Postfix Notations (2)
	What is a Queue?
	The Queue ADT
	Queue: Illustration
	Generic Queue: Interface
	Generic Queue: Architecture
	Implementing Queue ADT: Array (1)
	Implementing Queue ADT: Array (2)
	Implementing Queue: Singly-Linked List (1)
	Implementing Queue: Singly-Linked List (2)
	Generic Queue: Testing Implementations
	Polymorphism & Dynamic Binding
	Exercise: Implementing a Queue using Two Stacks
	Implementing Queue ADT: Circular Array (1)
	Implementing Queue ADT: Circular Array (2)
	Limitations of Queue
	The Double-Ended Queue ADT
	Optional Materials
	Terminology: Contract, Client, Supplier
	Client, Supplier, Contract in OOP (1)
	Client, Supplier, Contract in OOP (2)
	Modularity (1): Childhood Activity
	Modularity (2): Daily Construction
	Modularity (3): Computer Architecture
	Modularity (4): System Development
	Modularity (5): Software Design
	Design Principle: Modularity
	Array Implementations: Stack and Queue
	Dynamic Array: Constant Increments
	Dynamic Array: Doubling
	Avg. RT: Const. Increment vs. Doubling
	Beyond this lecture …

