Asymptotic Analysis of Algorithms

EECS2101 X & Z: Fundamentals of Data Structures Winter 2025

CHEN-WEI WANG

What You're Assumed to Know

 You will be required to implement Java classes and methods, and to test their correctness using JUnit.

Review them if necessary:

https://www.eecs.yorku.ca/~jackie/teaching/ lectures/index.html#EECS2030 F21

- Implementing classes and methods in Java
- [Weeks 1 2]

Testing methods in Java

- [Week 4]
- Also, make sure you know how to trace programs using a debugger:

https://www.eecs.yorku.ca/~jackie/teaching/ tutorials/index.html#java_from_scratch_w21

∘ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

2 of 41

Learning Outcomes

This module is designed to help you learn about:

- Notions of Algorithms and Data Structures
- Measurement of the "goodness" of an algorithm
- Measurement of the *efficiency* of an algorithm
- Experimental measurement vs. *Theoretical* measurement
- Understand the purpose of asymptotic analysis.
- Understand what it means to say two algorithms are:
 - o equally efficient, asymptotically
 - one is more efficient than the other, asymptotically
- Given an algorithm, determine its asymptotic upper bound.

3 of 41

Algorithm and Data Structure

- A data structure is:
 - A systematic way to store and organize data in order to facilitate access and modifications
 - Never suitable for all purposes: it is important to know its strengths and limitations
- A <u>well-specified</u> computational problem precisely describes the desired input/output relationship.
 - **Input:** A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$
 - **Output:** A permutation (reordering) $\langle a_1', a_2', \ldots, a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq \ldots \leq a_n'$
 - An *instance* of the problem: (3, 1, 2, 5, 4)
- An *algorithm* is:
 - A solution to a <u>well-specified</u> computational problem
 - A <u>sequence of computational steps</u> that takes value(s) as <u>input</u> and produces value(s) as <u>output</u>
- An *algorithm* manipulates some chosen *data structure(s)*.

Measuring "Goodness" of an Algorithm

- 1. Correctness:
 - Does the algorithm produce the expected output?
 - Use *unit & regression testing* (e.g., JUnit) to ensure this.
- 2. Efficiency:
 - Time Complexity: processor time required to complete
 - Space Complexity: memory space required to store data

Correctness is always the priority.

How about efficiency? Is time or space more of a concern?

5 of 41

Measuring Efficiency of an Algorithm

- Time is more of a concern than is storage.
- Solutions (run on computers) should be as fast as possible.
- Particularly, we are interested in how running time depends on two input factors:
 - 1. size
 - e.g., sorting an array of 10 elements vs. 1m elements
 - 2. structure
 - e.g., sorting an already-sorted array vs. a hardly-sorted array
- Q. How does one determine the *running time* of an algorithm?
 - 1. Measure time via experiments
- 2. Characterize time as a *mathematical function* of the input size

6 of 41

Measure Running Time via Experiments

- Once the algorithm is implemented (e.g., in Java):
 - Execute program on test inputs of various sizes & structures.
 - For each test, record the *elapsed time* of the execution.

```
long startTime = System.currentTimeMillis();
/* run the algorithm */
long endTime = System.currenctTimeMillis();
long elapsed = endTime - startTime;
```

- Visualize the result of each test.
- To make <u>sound statistical claims</u> about the algorithm's running time, the set of test inputs should be "complete".
 e.g., To experiment with the RT of a sorting algorithm:
 - Unreasonable: only consider small-sized and/or almost-sorted arrays
 - Reasonable: also consider large-sized, randomly-organized arrays

7 of 41

Example Experiment

- Computational Problem:
- Input: A character c and an integer n
- Output: A string consisting of n repetitions of character c
 e.g., Given input '*' and 15, output ************
- Algorithm 1 using String Concatenations:

```
public static String repeat1(char c, int n) {
   String answer = "";
   for (int i = 0; i < n; i ++) {      answer += c; }
   return answer; }</pre>
```

• Algorithm 2 using append from StringBuilder:

```
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int i = 0; i < n; i ++) {       sb.append(c); }
   return sb.toString(); }</pre>
```

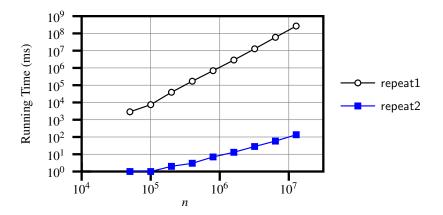

Example Experiment: Detailed Statistics

n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,847,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421 (≈ 3 days)	135

- As *input size* is doubled, *rates of increase* for both algorithms are *linear*:
 - Running time of repeat1 increases by ≈ 5 times.
 - Running time of repeat 2 increases by ≈ 2 times.

9 of 41

Example Experiment: Visualization



10 of 41

Experimental Analysis: Challenges

- **1.** An algorithm must be *fully implemented* (e.g., in Java) in order study its runtime behaviour **experimentally**.
 - What if our purpose is to choose among alternative data structures or algorithms to implement?
 - Can there be a higher-level analysis to determine that one algorithm or data structure is more "superior" than others?
- **2.** Comparison of multiple algorithms is only *meaningful* when experiments are conducted under the <u>same</u> working environment of:
 - Hardware: CPU, running processes
 - o Software: OS, JVM version, Version of Compiler
- 3. Experiments can be done only on a limited set of test inputs.
 - What if *worst-case* inputs were **not** included in the experiments?
 - What if "*important*" inputs were **not** included in the experiments?

11 of 41

Moving Beyond Experimental Analysis

- A better approach to analyzing the efficiency (e.g., running time) of algorithms should be one that:
 - Can be applied using a <u>high-level description</u> of the algorithm (<u>without</u> fully implementing it).

[e.g., Pseudo Code, Java Code (with "tolerances")]

- Allows us to calculate the <u>relative efficiency</u> (rather than <u>absolute</u> elapsed time) of algorithms in a way that is *independent of* the hardware and software environment.
- Considers all possible inputs (esp. the worst-case scenario).
- We will learn a better approach that contains 3 ingredients:
- 1. Counting *primitive operations*
- 2. Approximating running time as a function of input size
- **3.** Focusing on the *worst-case* input (requiring most running time)

Counting Primitive Operations

 A primitive operation (POs) corresponds to a low-level instruction with a constant execution time.

```
    (Variable) Assignment [e.g., x = 5;]
    Indexing into an array [e.g., a [i]]
    Arithmetic, relational, logical op. [e.g., a + b, z > w, b1 && b2]
    Accessing an attribute of an object [e.g., acc.balance]
    Returning from a method [e.g., return result;]
```

Q: Is a *method call* a primitive operation?

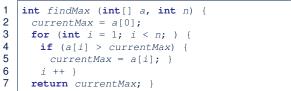
A: Not in general. It may be a call to:

- o a "cheap" method (e.g., printing Hello World), or
- o an "expensive" method (e.g., sorting an array of integers)
- RT of an algorithm is approximated as the number of POs involved (despite the execution environment).

13 of 41

14 of 41

Example: Counting Primitive Operations (1) LASSONDE



```
# of times i < n in Line 3 is executed?
                                                            [ n ]
 # of times the loop body (Line 4 to Line 6) is executed? [n-1]
                                     [1 indexing + 1 assignment]
• Line 2: 2
                                [1 assignment + n comparisons]
• Line 3: n+1
• Line 4:
          (n-1) \cdot 2
                                     [1 indexing + 1 comparison]
Line 5:
          (n-1) \cdot 2
                                     [1 indexing + 1 assignment]
• Line 6: (n-1)\cdot 2
                                     [1 addition + 1 assignment]
Line 7:
                                                      [1 return]
• Total # of Primitive Operations:
```

Example: Counting Primitive Operations (2)LASSONDE

Count the number of primitive operations for

```
boolean foundEmptyString = false;
int i = 0;
while (!foundEmptyString && i < names.length) {
   if (names[i].length() == 0) {
      /* set flag for early exit */
      foundEmptyString = true;
}
i = i + 1;
}</pre>
```

• # times the stay condition of the while loop is checked?

```
[between 1 and names.length + 1]
```

[worst case: names.length + 1 times]

• # times the body code of while loop is executed?

[between 0 and names.length]

[worst case: names.length times]

15 of 41

From Absolute RT to Relative RT

 Each *primitive operation* (*PO*) takes approximately the <u>same</u>, constant amount of time to execute. [say t]

The absolute value of **t** depends on the *execution environment*.

Q. How do you relate the *number of POs* required by an algorithm and its *actual RT* on a specific working environment?

A. Number of **POs** should be **proportional** to the actual **RT**.

```
RT = t · number of POs
```

```
• e.g., findMax (int[] a, int n) has 7n - 2 POs

RT = (7n - 2) \cdot t
```

• e.g., Say two algorithms with $RT(7n-2) \cdot t$ and $RT(10n+3) \cdot t$: It suffices to compare their relative running time:

7n - 2 vs. 10n + 3.

∴ To determine the *time efficiency* of an algorithm, we only focus on their *number of POs*.
16 of 41

Example: Approx. # of Primitive Operations

 Given # of primitive operations counted <u>precisely</u> as 7n − 2, we view it as

$$7 \cdot n^1 - 2 \cdot n^0$$

- We say
 - *n* is the *highest power*
 - o 7 and 2 are the multiplicative constants
 - o 2 is the lower term
- When **approximating** a **function** [e.g., RT ≈ f(**n**)] (considering that **input size** may be very large):
 - Only the *highest power* matters.
 - multiplicative constants and lower terms can be dropped.
 - \Rightarrow 7*n* 2 is approximately *n*

Exercise: Consider $7n + 2n \cdot log \ n + 3n^2$:

- highest power?
- multiplicative constants?

[7, 2, 3]

 $[n^2]$

• lower terms?

 $[7n, 2n \cdot log n]$

17 of 41

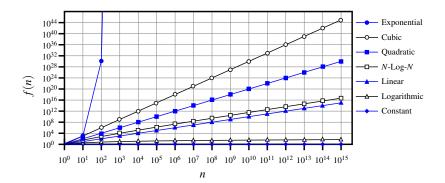
Approximating Running Time as a Function of Input Size

Given the **high-level description** of an algorithm, we associate it with a function f, such that f(n) returns the **number of primitive operations** that are performed on an **input of size** n.

$$\circ f(n) = 5$$
 [constant]
 $\circ f(n) = log_2 n$ [logarithmic]
 $\circ f(n) = 4 \cdot n$ [linear]
 $\circ f(n) = n^2$ [quadratic]
 $\circ f(n) = n^3$ [cubic]
 $\circ f(n) = 2^n$ [exponential]

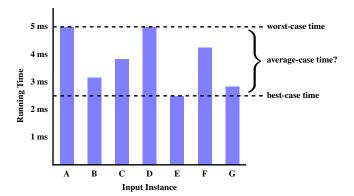
18 of 41

Rates of Growth: Comparison



19 of 41

Focusing on the Worst-Case Input



- **Average-case** analysis calculates the <u>expected</u> running time based on the probability distribution of input values.
- worst-case analysis or best-case analysis?

What is Asymptotic Analysis?

Asymptotic analysis

- Is a method of describing behaviour towards the limit:
 - How the *running time* of the algorithm under analysis changes as the *input size* changes without bound
 - e.g., Contrast: $RT_1(n) = n$ vs. $RT_2(n) = n^2$
- Allows us to compare the <u>relative</u> <u>performance</u> of <u>alternative</u> algorithms:
 - For large enough inputs, the <u>multiplicative constants</u> and lower-order terms of an exact running time can be disregarded.
 - e.g., $RT_1(n) = 3n^2 + 7n + 18$ and $RT_1(n) = 100n^2 + 3n 100$ are considered **equally efficient**, *asymptotically*.
 - e.g., $RT_1(n) = n^3 + 7n + 18$ is considered **less efficient** than $RT_1(n) = 100n^2 + 100n + 2000$, **asymptotically**.

21 of 41

Three Notions of Asymptotic Bounds

We may consider three kinds of **asymptotic bounds** for the **running time** of an algorithm:

• Asymptotic *upper* bound [*O*]

• Asymptotic lower bound $\left[\Omega \right]$

Asymptotic tight bound [Θ]

Asymptotic Upper Bound: Definition

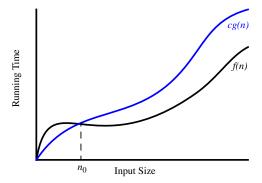
- Let f(n) and g(n) be functions mapping pos. integers (input size) to pos. real numbers (running time).
 - *f(n)* characterizes the running time of some algorithm.
 - **O**(g(n)):
 - denotes a collection of functions
 - consists of <u>all</u> functions that can be *upper bounded by g(n)*, starting at <u>some point</u>, using some <u>constant factor</u>
- $f(n) \in O(g(n))$ if there are:
 - A real **constant** c > 0
 - An integer *constant* $n_0 \ge 1$ such that:

$$f(n) \le c \cdot g(n)$$
 for $n \ge n_0$

• For each member function f(n) in O(g(n)), we say that:

```
 f(n) \in O(g(n))  [f(n) is a member of "big-O of g(n)"]  f(n) \text{ is } O(g(n))  [f(n) is "big-O of g(n)"]  f(n) \text{ is order of } g(n)
```

Asymptotic Upper Bound: Visualization



From n_0 , f(n) is upper bounded by $c \cdot g(n)$, so f(n) is O(g(n)).

LASSONDE

Asymptotic Upper Bound: Example (1)

Prove: The function 8n + 5 is O(n).

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$8n + 5 \le c \cdot n$$

Can we choose c = 9? What should the corresponding n_0 be?

n	8n + 5	9n
1	13	9
2	21	18
3	29	27
4	37	36
5	45	45
6	53	54

Therefore, we prove it by choosing c = 9 and $n_0 = 5$.

We may also prove it by choosing c = 13 and $n_0 = 1$. Why?

25 of 41

Asymptotic Upper Bound: Proposition

If f(n) is a polynomial of degree d, i.e.,

$$f(n) = a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d$$

and a_0, a_1, \ldots, a_d are integers, then f(n) is $O(n^d)$.

• We prove by choosing

$$c = |a_0| + |a_1| + \cdots + |a_d|$$

 $n_0 = 1$

- We know that for $n \ge 1$:
- $n^0 \le n^1 \le n^2 \le \cdots \le n^d$
- Upper-bound effect: $n_0 = 1$? $[f(1) \le (|a_0| + |a_1| + \dots + |a_d|) \cdot 1^d]$

$$a_0 \cdot 1^0 + a_1 \cdot 1^1 + \dots + a_d \cdot 1^d \le |a_0| \cdot 1^d + |a_1| \cdot 1^d + \dots + |a_d| \cdot 1^d$$

• Upper-bound effect holds? $[f(\mathbf{n}) \le (|\mathbf{a}_0| + |\mathbf{a}_1| + \dots + |\mathbf{a}_d|) \cdot \mathbf{n}^d]$

$$a_0 \cdot n^0 + a_1 \cdot n^1 + \dots + a_d \cdot n^d \le |a_0| \cdot n^d + |a_1| \cdot n^d + \dots + |a_d| \cdot n^d$$

26 of 41

Asymptotic Upper Bound: Example (2)

Prove: The function $f(n) = 5n^4 - 3n^3 + 2n^2 - 4n + 1$ is $O(n^4)$.

Strategy: Choose a real constant c > 0 and an integer constant $n_0 \ge 1$, such that for every integer $n \ge n_0$:

$$5n^4 + 3n^3 + 2n^2 + 4n + 1 < c \cdot n^4$$

Using the proven **proposition**, choose:

- \circ c = |5| + |-3| + |2| + |-4| + |1| = 15
- $o n_0 = 1$

27 of 41

Asymptotic Upper Bound: Families

- If a function f(n) is **upper bounded by** another function g(n) of degree d, $d \ge 0$, then f(n) is also **upper bounded by** all other functions of a **strictly higher degree** (i.e., d + 1, d + 2, etc.).
 - e.g., Family of O(n) contains all f(n) that can be **upper bounded** by $g(n) = n^{1}$:

```
n, 2n, 3n, \dots [functions with degree 1] n^0, 2n^0, 3n^0, \dots [functions with degree 0]
```

• e.g., Family of $O(n^2)$ contains all f(n) that can be **upper bounded** by $g(n) = n^2$:

$$n^2$$
, $2n^2$, $3n^2$, ... [functions with degree 2] n , $2n$, $3n$, ... [functions with degree 1] n^0 , $2n^0$, $3n^0$, ... [functions with degree 0]

Consequently:

$$O(n^0) \subset O(n^1) \subset O(n^2) \subset \dots$$

Using Asymptotic Upper Bound Accurately LASSONDE

 Use the big-O notation to characterize a function (of an algorithm's running time) as closely as possible.

For example, say $f(n) = 4n^3 + 3n^2 + 5$:

- ∘ Recall: $O(n^3) \subset O(n^4) \subset O(n^5) \subset ...$
- It is the *most accurate* to say that f(n) is $O(n^3)$.
- It is *true*, but not very useful, to say that f(n) is $O(n^4)$ and that f(n) is $O(n^5)$.
- It is *false* to say that f(n) is $O(n^2)$, O(n), or O(1).
- Do <u>not</u> include *constant factors* and *lower-order terms* in the big-O notation.

For example, say $f(n) = 2n^2$ is $O(n^2)$, do not say f(n) is $O(4n^2 + 6n + 9)$.

29 of 41

Asymptotic Upper Bound: More Examples

• $5n^2 + 3n \cdot logn + 2n + 5$ is $O(n^2)$

 $[c = 15, n_0 = 1]$

• $20n^3 + 10n \cdot logn + 5$ is $O(n^3)$

 $[c = 35, n_0 = 1]$

• $3 \cdot logn + 2$ is O(logn)

 $[c = 5, n_0 = 2]$

- Why can't n_0 be 1?
- Choosing $n_0 = 1$ means $\Rightarrow f(1)$ is upper-bounded by $c \cdot log(1)$:
 - We have $f(\boxed{1}) = 3 \cdot log 1 + 2$, which is 2.
 - We have $c \cdot log 1$, which is 0.
 - $\Rightarrow f(\boxed{1})$ *is not* upper-bounded by $c \cdot log \boxed{1}$

[Contradiction!]

• 2^{n+2} is $O(2^n)$

 $[c = 4, n_0 = 1]$

• $2n + 100 \cdot logn \text{ is } O(n)$

 $[c = 102, n_0 = 1]$

30 of 41

Classes of Functions

upper bound	class	cost
<i>O</i> (1)	constant	cheapest
O(log(n))	logarithmic	
<i>O</i> (<i>n</i>)	linear	
$O(n \cdot log(n))$	"n-log-n"	
$O(n^2)$	quadratic	
$O(n^3)$	cubic	
$O(n^k), k \ge 1$	polynomial	
$O(a^n), a > 1$	exponential	most expensive

31 of 41

Upper Bound of Algorithm: Example (1)


```
int maxOf (int x, int y) {
  int max = x;
  if (y > x) {
    max = y;
  }
  return max;
}
```

- # of primitive operations: 4
 2 assignments + 1 comparison + 1 return = 4
- Therefore, the running time is O(1).
- That is, this is a *constant-time* algorithm.

Upper Bound of Algorithm: Example (2)

```
1  int findMax (int[] a, int n) {
2   currentMax = a[0];
3  for (int i = 1; i < n; ) {
4   if (a[i] > currentMax) {
5    currentMax = a[i]; }
6   i ++ }
7  return currentMax; }
```

- From last lecture, we calculated that the # of primitive operations is 7n – 2.
- Therefore, the running time is O(n).
- That is, this is a *linear-time* algorithm.

33 of 41

Upper Bound of Algorithm: Example (3)

```
boolean containsDuplicate (int[] a, int n) {
  for (int i = 0; i < n; ) {
   for (int j = 0; j < n; ) {
     if (i != j && a[i] == a[j]) {
      return true; }
     j ++; }
  i ++; }
  return false; }</pre>
```

- · Worst case is when we reach Line 8.
- # of primitive operations $\approx c_1 + n \cdot n \cdot c_2$, where c_1 and c_2 are some constants.
- Therefore, the running time is $O(n^2)$
- That is, this is a *quadratic* algorithm.

34 of 41

Upper Bound of Algorithm: Example (4)


```
int sumMaxAndCrossProducts (int[] a, int n) {
  int max = a[0];
  for(int i = 1; i < n; i ++) {
    if (a[i] > max) { max = a[i]; }
}

int sum = max;
  for (int j = 0; j < n; j ++) {
  for (int k = 0; k < n; k ++) {
    sum += a[j] * a[k]; } }

return sum; }</pre>
```

- # of primitive operations $\approx (c_1 \cdot n + c_2) + (c_3 \cdot n \cdot n + c_4)$, where c_1 , c_2 , c_3 , and c_4 are some constants.
- Therefore, the running time is $O(n + n^2) = O(n^2)$
- That is, this is a *quadratic* algorithm.

35 of 41

Upper Bound of Algorithm: Example (5)

- # of primitive operations $\approx n + (n-1) + \cdots + 2 + 1 = \frac{n \cdot (n+1)}{2}$
- Therefore, the running time is $O(\frac{n^2+n}{2}) = O(n^2)$
- That is, this is a *quadratic* algorithm.

Beyond this lecture ...

 You will be required to implement Java classes and methods, and to test their correctness using JUnit.

Review them if necessary:

https://www.eecs.yorku.ca/~jackie/teaching/ lectures/index.html#EECS2030_F21

Implementing classes and methods in Java

[Weeks 1 - 2]

Testing methods in Java

[Week 4]

Also, make sure you know how to trace programs using a debugger:

https://www.eecs.yorku.ca/~jackie/teaching/
tutorials/index.html#java_from_scratch_w21

∘ Debugging actions (Step Over/Into/Return) [Parts C – E, Week 2]

37 of 41

Index (1)

What You're Assumed to Know

Learning Outcomes

Algorithm and Data Structure

Measuring "Goodness" of an Algorithm

Measuring Efficiency of an Algorithm

Measure Running Time via Experiments

Example Experiment

Example Experiment: Detailed Statistics

Example Experiment: Visualization

Experimental Analysis: Challenges

Moving Beyond Experimental Analysis

38 of 41

Index (2)

Counting Primitive Operations

Example: Counting Primitive Operations (1)

Example: Counting Primitive Operations (2)

From Absolute RT to Relative RT

Example: Approx. # of Primitive Operations

Approximating Running Time

as a Function of Input Size

Rates of Growth: Comparison

Focusing on the Worst-Case Input

What is Asymptotic Analysis?

Three Notions of Asymptotic Bounds

39 of 41

Index (3)

Asymptotic Upper Bound: Definition

Asymptotic Upper Bound: Visualization

Asymptotic Upper Bound: Example (1)

Asymptotic Upper Bound: Proposition

Asymptotic Upper Bound: Example (2)

Asymptotic Upper Bound: Families

Using Asymptotic Upper Bound Accurately

Asymptotic Upper Bound: More Examples

Classes of Functions

Upper Bound of Algorithm: Example (1)

Upper Bound of Algorithm: Example (2)

Index (4)

Upper Bound of Algorithm: Example (3)
Upper Bound of Algorithm: Example (4)

Upper Bound of Algorithm: Example (5)

Beyond this lecture ...