
Recursion (Part 1)

EECS2101 X & Z:
Fundamentals of Data Structures

Winter 2025

CHEN-WEI WANG

http://www.eecs.yorku.ca/~jackie

Beyond this lecture . . .

● Fantastic resources for developing your recursive skills:
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-2

● The best long-term approaches for mastering recursion are:
○ learning a functional programming language

[e.g., Haskell: https://www.haskell.org/tutorial/]
○ learning to develop a compiler (after learning trees in this course)

[e.g., ANTLR4 from EECS4302]

2 of 10

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-2
https://www.haskell.org/tutorial/
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/index.html#EECS4302_F22

Background Study: Basic Recursion
● It is assumed that, in EECS2030, you learned about the basics of

recursion in Java:
○ What makes a method recursive?
○ How to trace recursion using a call stack?
○ How to define and use recursive helper methods on arrays?

● If needed, review the above assumed basics from the relevant parts
of EECS2030:
○ From F’21: Parts A – C, Lecture 8, Week 12
○ From F’24: Lecture 24, Sec. E (Tower of Hanoi)

Tips.
○ Skim the slides: watch lecture videos if needing explanations.
○ Recursion lab from EECS2030-F22: here [Solution: here]
○ Ask questions related to the assumed basics of recursion!

● Assuming that you know the basics of recursion, we will:
○ Look at an advanced example of recursion on arrays together.
○ Have you complete an assignment on the more advanced

recursion problems.
3 of 10

https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F21
https://www.eecs.yorku.ca/~jackie/teaching/lectures/index.html#EECS2030_F24
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2024/F/EECS2030/slides/06-Recursion.pdf
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5.zip
https://www.eecs.yorku.ca/~jackie/teaching/lectures/2022/F/EECS2030/codes/EECS2030_F22_Lab5_solution.zip

Learning Outcomes of this Lecture

This module is designed to help you:
● Quickly review the recursion basics.
● Know about the resources on recursion basics.
● Get used to the more advanced use of recursion.

4 of 10

Recursion: Principle

● Recursion is useful in expressing solutions to problems that
can be recursively defined:
○ Base Cases: Small problem instances immediately solvable.
○ Recursive Cases:
● Large problem instances not immediately solvable.
● Solve by reusing solution(s) to strictly smaller problem instances.

● Similar idea learnt in high school: [mathematical induction]

5 of 10

Tracing Method Calls via a Stack

● When a method is called, it is activated (and becomes active)
and pushed onto the stack.

● When the body of a method makes a (helper) method call, that
(helper) method is activated (and becomes active) and
pushed onto the stack.

⇒ The stack contains activation records of all active methods.
○ Top of stack denotes the current point of execution .
○ Remaining parts of stack are (temporarily) suspended .

● When entire body of a method is executed, stack is popped .

⇒ The current point of execution is returned to the new top
of stack (which was suspended and just became active).

● Execution terminates when the stack becomes empty .

6 of 10

Tracing Method Calls via a Stack

● Can you identify the pattern of a Fibonacci sequence?

F = 1,1,2,3,5,8,13,21,34,55,89, . . .

● Here is the formal, recursive definition of calculating the nth
number in a Fibonacci sequence (denoted as Fn):

Fn =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 if n = 1
1 if n = 2
Fn−1 + Fn−2 if n > 2

● Your tasks are then to review how to
○ implement the above mathematical, recursive function in Java
○ trace, via a stack, the recursive execution at runtime

by studying this video (≈ 20 minutes):
7 of 10

https://www.youtube.com/watch?v=YPWryhqMcxk&list=PL5dxAmCmjv_7yZlpvPm5n5lHYnyFeSFdK&index=4

Making Recursive Calls on an Array

● For efficiency , we exploit the feature of call by value , by:
○ passing the reference of the same array
○ specifying the range of indices to be considered

void m(int[] a, int from, int to) {
if(from > to) { /* base case */ }
else if(from == to) { /* base case */ }

else { m(a, from + 1 , to) } }

● m(a, 0, a.length - 1) [Initial call; entire array]
● m(a, 1, a.length - 1) [1st r.c. on array of size a.length − 1]
● m(a, a.length-1, a.length-1) [Last r.c. on array of size 1]

● Required Task:
Study the two examples allPositive and isSorted from
the background study.

8 of 10

A More Advanced Example on Recursion

Assuming that you will review the assumed basic, let’s go over
an advanced example from paper to Eclipse:

● Problem Description:
https://www.eecs.yorku.ca/˜wangcw/teaching/

lectures/2025/W/EECS2101/exercises/

EECS2101-W25-Problem-Recursion-splitArray-Spec.pdf

● Java starter project (with hints and JUnit tests):
https://www.eecs.yorku.ca/˜wangcw/teaching/

lectures/2025/W/EECS2101/exercises/

ExtraRecursionProblemSplitArray_Starter.zip

9 of 10

https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/EECS2101-W25-Problem-Recursion-splitArray-Spec.pdf
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/EECS2101-W25-Problem-Recursion-splitArray-Spec.pdf
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/EECS2101-W25-Problem-Recursion-splitArray-Spec.pdf
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/ExtraRecursionProblemSplitArray_Starter.zip
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/ExtraRecursionProblemSplitArray_Starter.zip
https://www.eecs.yorku.ca/~wangcw/teaching/lectures/2025/W/EECS2101/exercises/ExtraRecursionProblemSplitArray_Starter.zip

Index (1)
Beyond this lecture . . .

Background Study: Basic Recursion

Learning Outcomes of this Lecture

Recursion: Principle

Tracing Method Calls via a Stack

Tracing Method Calls via a Stack

Making Recursive Calls on an Array

A More Advanced Example on Recursion

10 of 10

	Beyond this lecture …
	Background Study: Basic Recursion
	Learning Outcomes of this Lecture
	Recursion: Principle
	Tracing Method Calls via a Stack
	Tracing Method Calls via a Stack
	Making Recursive Calls on an Array
	A More Advanced Example on Recursion

